
An. Şt. Univ. Ovidius Constanţa Vol. 17(3), 2009, 263–279

TWO LOGNORMAL MODELS FOR REAL

DATA

Raluca Vernic, Sandra Teodorescu and Elena Pelican

Abstract

Based on the statistical analysis of a data sample from property in-

surance, in this paper we consider two lognormal mixture models that

we fitted to our data sample. The first model is a usual two components

lognormal mixture for which we used the EM algorithm to estimate the

parameters. The second one, called a composite lognormal-lognormal

model, can in fact be reduced to a particular two components mixture

model having truncated lognormals as mixture distributions. This com-

posite model is studied in some detail and we present some specific pa-

rameters estimation methods. We also discuss and compare both models

fit to the data.

1 Introduction

This paper is motivated by the statistical study of a real data set consist-
ing of claims from property insurance, to which we tried to fit an adequate
probability distribution. Property insurance provides protection against most
property risks, such as fire, theft and some water damage, including also spe-
cialized forms of insurance like flood insurance, earthquake insurance or home
insurance. On the general insurance scale, our data set comes from fire and
allied perils insurance (i.e. property insurance against fire, earthquake, flood
etc.).

Between the classical theoretical distributions, the lognormal and Pareto
ones are frequently used to model property loss amounts. For example, fire
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insurance data were previously studied among others by Shpilberg (1997),
McNeil (1997) or Resnick (1977), who fitted several distributions to such data
(like truncated lognormal, ordinary Pareto or generalized Pareto), and, more
recently, by Cooray and Ananda (2005) and Scollnik (2007), who applied sev-
eral composite lognormal-Pareto models.

In this paper we consider two lognormal models to model the claims distri-
bution of a data set from fire and allied perils insurance. The data were kindly
provided by a Romanian insurance company and consist of the entire property
loss amount settled during year 2007 for its own portfolio, more precisely of
n = 1039 settled claims.

Since the histogram of the log-data shows a bi-modality, and the best fit
among the classical distributions was given by the lognormal, we decided to
consider two lognormal mixture models for these data. The first model, pre-
sented in Section 2, is a usual two components lognormal mixture for which we
used the EM (Expectation-Maximization) algorithm to estimate the parame-
ters. The second one, called a composite lognormal-lognormal model, can in
fact be reduced to a particular two components mixture model having trun-
cated lognormals as mixture distributions. This composite model is studied
in some detail in Section 3.

In order to simplify our study, we used the relation between the normal
and the lognormal distributions, and worked mainly on the corresponding
normal mixture models. This is why we start Section 3 by first presenting
some properties of the truncated normal distribution (Section 3.1). Then
the composite normal-normal model is derived in Section 3.2, where we also
present the relation with the composite lognormal-lognormal model and some
specific parameters estimation methods. In Section 3.3, we also discuss and
compare the fitting of both models to the data.

In the following, we will denote by ϕ the standard normal N (0, 1) density
and by Φ its cumulative distribution function (cdf). We use N

(
µ, σ2

)
to

denote the univariate normal distribution with parameters µ ∈ R, σ > 0,
while ϕ (·;µ, σ) denotes its density, i.e.

ϕ (x;µ, σ) =
1

σ
ϕ

(
x−µ

σ

)
=

1

σ
√

2π
exp

{
−

(x − µ)
2

2σ2

}
, x ∈ R.

2 A two components mixture

Based on the histogram of the log-data from Figure 1 that shows a bi-modality,
we decided to try to fit to the log-data a two components normal mixture.
Therefore, if X denotes the random variable (r.v.) under study and Y = lnX,
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then we assume that
Y = IY1 + (1 − I) Y2,

where Yi ∼ N
(
µi, σ

2
i

)
, i = 1, 2, and I is a Bernoulli r.v. taking the values 1

and 0 with probabilities r ∈ [0, 1] and 1− r, respectively. This mixture model
is explicit: generate a value of I and then, depending on the outcome, deliver
either Y1 or Y2. The density of Y is

fY (x) = rϕ (x;µ1, σ1) + (1 − r) ϕ (x;µ2, σ2) , x ∈ R, (1)

while a straightforward calculation gives the density of X as

fX (x) = r
1

x
ϕ (lnx;µ1, σ1) + (1 − r)

1

x
ϕ (lnx;µ2, σ2) , x > 0.

Hence, the density of the r.v. X under study results also as a two components
mixture, but the mixing densities are lognormals.

In order to fit this model to a data sample, we must first estimate the
parameters. This can be done by the EM algorithm.

Figure 1: Histogram of the log-data with estimated normal curve

2.1 The EM algorithm

The EM algorithm is a popular tool for simplifying difficult maximum likeli-
hood problems, see e.g. Dempster et al. (1977). This algorithm was originally
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designed for mixtures of normal distributions, and therefore it can be used
when we notice that the distribution graph (e.g. histogram) presents a multi-
modality. Then the number of modes should give an idea on the number of
mixed distributions. In the following, we will describe this algorithm for a two
components mixture of normal distributions.

Let (y1, ..., yn) be a data sample from the random variable Y . From Demp-
ster et al. (1977), we have the following EM algorithm used to estimate the
parameters r, µ1, σ1, µ2, σ2, for the two components normal mixture (1):

1. Take initial guesses for the parameters, e.g. r̃ = 0.5, µ̃1, µ̃2 taken at
random from the observed data, and σ̃1 = σ̃2 equal to the overall sample
standard deviation.

2. Expectation step: compute the “responsibilities”,

γ̃i =
r̃ ϕ (yi;µ̃1, σ̃1)

r̃ ϕ (yi;µ̃1, σ̃1) + (1 − r̃) ϕ (yi;µ̃2, σ̃2)
, i = 1, ..., n.

3. Maximization step: compute the weighted means and variances,

µ̃1 =

∑n
i=1 γ̃iyi∑n
i=1 γ̃i

, σ̃2
1 =

∑n
i=1 γ̃i (yi − µ̃1)

2

∑n
i=1 γ̃i

,

µ̃2 =

∑n
i=1 (1 − γ̃i) yi∑n

i=1 (1 − γ̃i)
, σ̃2

2 =

∑n
i=1 (1 − γ̃i) (yi − µ̃2)

2

∑n
i=1 (1 − γ̃i)

,

and the mixing probability r̃ = 1
n

∑n
i=1 γ̃i.

4. Iterate Steps 2 and 3 until convergence.

2.2 Numerical results

The main characteristics of our data sample are n = 1039,

Minimum Maximum Mean Variance Standard Deviation
0.12 746261.11 4297.1759 693372009.4 26331.95795

Also, for the log-data we have

Minimum Maximum Mean Variance Standard Deviation
-2.12026 13.52283 6.64286 3.61212 1.90056
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We applied the EM algorithm described before for the log-data, starting
with different initial values. More precisely, we varied the initial guesses for
σ1, σ2 and r, while µ1 and µ2 where fixed, equal to the two modes. Each
time, the EM algorithm (that we implemented in TurboPascal) gave one the
following two solutions:

µ̃1 µ̃2 σ̃2
1 σ̃2

2 r̃
Kolmogorov

dist.

LogLikeli-

hood

Sol. I 0.188 6.839 0.903 2.381 0.029 0.036 -2044.825
Sol. II 5.404 6.814 14.120 1.910 0.121 0.024 -2052.091

In order to check the fitting to the log-data of both resulting mixture distri-
butions, we evaluated the log-likelihood values and the Kolmogorov distances,
also given in the above table. Kolmogorov’s goodness-of-fit test accepts both
distributions, therefore we compared the log-likelihood values, and even if the
race is very close, based on this criteria the first solution seems better.

For comparison reasons, in Figure 2 we show the shapes of both normal
mixtures (denoted EM I for Solution I and EM II for Solution II), together with
the classical normal fitted curve and the data histogram. Note that, while the
EM I curve tends to capture the small left hump, EM II fits better to the right
higher hump, while the classical normal gives the poorest fit between these
three distributions. Therefore, we conclude that our initial (not transformed)
data are well modeled by a two components lognormal mixture. However, in
next section we will introduce another model that fits these data.

3 A composite Normal-Normal model

3.1 The truncated Normal distribution

A r.v. Y has a doubly truncated normal distribution with parameters µ ∈
R, σ > 0, if its density function is

fY (x) =
ϕ (x;µ, σ)

Φ
(

b−µ
σ

)
− Φ

(
a−µ

σ

) , a ≤ x ≤ b. (2)

Here, a and b are the lower and upper truncation points, respectively, while

Φ
(

a−µ
σ

)
and 1 − Φ

(
b−µ

σ

)
are the degrees of truncation from below and, re-

spectively, from above. If a is replaced by −∞, or b by ∞, the distribution
is singly truncated from above (right), or below (left), respectively. The case
a = µ, b = ∞ produces the half-normal distribution. For details on the trun-
cated normal distribution see e.g. Johnson et al. (1994).
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Figure 2: Fitted Normal, EM I and EM II curves to the log-data

The moment generating function (mgf) of the doubly truncated normal
distribution is

MY (t) =
Φ

(
b−µ

σ − σt
)
− Φ

(
a−µ

σ − σt
)

Φ
(

b−µ
σ

)
− Φ

(
a−µ

σ

) eµt+σ2t2/2, (3)

from where the mean results as

EY = µ − σ
ϕ

(
b−µ

σ

)
− ϕ

(
a−µ

σ

)

Φ
(

b−µ
σ

)
− Φ

(
a−µ

σ

) ,

while

EY 2 = µ2 + σ2 + σ2
ϕ′

(
b−µ

σ

)
− ϕ′

(
a−µ

σ

)

Φ
(

b−µ
σ

)
− Φ

(
a−µ

σ

) − 2µσ
ϕ

(
b−µ

σ

)
− ϕ

(
a−µ

σ

)

Φ
(

b−µ
σ

)
− Φ

(
a−µ

σ

) ,

with ϕ′ denoting the first derivative of ϕ. We will now separately consider
singly truncated distributions.
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3.1.1 Upper (right) truncated Normal distribution

As mentioned before, this distribution is obtained by taking in (2) a = −∞.
Let us denote by Y1 a r.v. having this distribution. Then its density is

fY1
(x) =

ϕ (x;µ, σ)

Φ
(

b−µ
σ

) , −∞ < x ≤ b, (4)

while the mgf (3) reduces to

MY1
(t) =

Φ
(

b−µ
σ − σt

)

Φ
(

b−µ
σ

) eµt+σ2t2/2. (5)

For this distribution, the first two moments are

EY1 = µ − σ
ϕ

(
b−µ

σ

)

Φ
(

b−µ
σ

) , EY 2
1 = µ2 + σ2 − σ (b + µ)

ϕ
(

b−µ
σ

)

Φ
(

b−µ
σ

) .

3.1.2 Lower (left) truncated Normal distribution

This distribution results by taking b = ∞ in (2). Denoting by Y2 a r.v. with
this distribution, its density becomes

fY2
(x) =

ϕ (x;µ, σ)

1 − Φ
(

a−µ
σ

) , a ≤ x < ∞. (6)

Its mgf results from (3) as

MY2
(t) =

1 − Φ
(

a−µ
σ − σt

)

1 − Φ
(

a−µ
σ

) eµt+σ2t2/2, (7)

and the first two moments are

EY2 = µ + σ
ϕ

(
a−µ

σ

)

1 − Φ
(

a−µ
σ

) , EY 2
2 = µ2 + σ2 + σ (a + µ)

ϕ
(

a−µ
σ

)

1 − Φ
(

a−µ
σ

) .

3.2 The composite Normal-Normal model

3.2.1 The general model

To model statistical data coming from two different distributions, Cooray and
Ananda (2005) introduced a composite lognormal-Pareto model, that was fur-
ther developed by Scollnik (2007). Furthermore, Teodorescu and Vernic (2009)
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studied a general composite model, whose density is defined as

f (x) =

{
rf∗

1 (x) , −∞ < x ≤ θ
(1 − r) f∗

2 (x) , θ < x < ∞ , (8)

where 0 ≤ r ≤ 1, while f∗

1 and f∗

2 are singly truncated densities from above
and, respectively, below, with truncation point in θ. This density function can
be also interpreted as a two component mixture model with mixing weights r
and 1 − r, i.e.

f (x) = rf∗

1 (x) + (1 − r) f∗

2 (x) . (9)

In the following, we consider the particular case when f∗

1 is the right truncated
normal density, while f∗

2 is the left truncated normal density. We call this a
composite normal-normal density. Notice that even if the density (9) seems
very similar with (1), the main difference is that in (9) the densities involved
in the right hand side are truncated, while in (1) they are not. So the two
mixture models are basically different.

Let Y denote a r.v. having a composite normal-normal distribution. We
will now apply some properties deduced by Teodorescu and Vernic (2009), to
the particular case of this composite model. We start with its density, and
impose a continuity condition at θ. Then we obtain the following result.

Proposition 1. The composite normal-normal density function is given
by

f (x) =






r
ϕ (x;µ1, σ1)

Φ
(

θ−µ1

σ1

) , −∞ < x ≤ θ

(1 − r)
ϕ (x;µ2, σ2)

1 − Φ
(

θ−µ2

σ2

) , θ < x < ∞
, (10)

where the parameters µ1, µ2 ∈ R, σ1, σ2 > 0 and 0 ≤ r ≤ 1 satisfy the conti-
nuity condition

r =
Φ

(
θ−µ1

σ1

)
ϕ (θ;µ2, σ2)

Φ
(

θ−µ1

σ1

)
ϕ (θ;µ2, σ2) +

(
1 − Φ

(
θ−µ2

σ2

))
ϕ (θ;µ1, σ1)

. (11)

Proof. The density function (10) results immediately by inserting (4) and
(6) in (8). Then the continuity condition at the threshold θ, f (θ − 0) =
f (θ + 0) , easily gives the formula (11) of r.¤

Remark 1. In order to obtain a smooth density, we usually impose a
differentiability condition at θ, i.e. f ′ (θ − 0) = f ′ (θ + 0) , that gives

r =
Φ

(
θ−µ1

σ1

)
ϕ′ (θ;µ2, σ2)

Φ
(

θ−µ1

σ1

)
ϕ′ (θ;µ2, σ2) +

(
1 − Φ

(
θ−µ2

σ2

))
ϕ′ (θ;µ1, σ1)

.
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Using ϕ′ (x;µ, σ) = −ϕ (x;µ, σ) x−µ
σ2 in this last expression of r and combining

the result with (11), we obtain the supplementary condition

θ − µ1

σ2
1

=
θ − µ2

σ2
2

, (12)

or, equivalently,

θ =
σ2

1µ2 − σ2
2µ1

σ2
1 − σ2

2

.

Unfortunately, though this supplementary condition reduces the number of
unknown parameters from 5 to 4, it is of no help for our real data. This
is because from (12), it results that in this case we must necessarily have θ
smaller or equal to both µ1, µ2, or both µ1, µ2 smaller or equal to θ, while our
data shows that we rather have µ1 ≤ θ ≤ µ2.

Proposition 2. The cdf of the composite normal-normal distribution is

F (x) =






r
Φ

(
x−µ1

σ1

)

Φ
(

θ−µ1

σ1

) , −∞ < x ≤ θ

1 + (1 − r)
Φ

(
x−µ2

σ2

)
− 1

1 − Φ
(

θ−µ2

σ2

) , θ < x < ∞

. (13)

Proof. From Teodorescu and Vernic (2009), we have that

F (x) =






r
Φ

(
x−µ1

σ1

)

Φ
(

θ−µ1

σ1

) , −∞ < x ≤ θ

r + (1 − r)
Φ

(
x−µ2

σ2

)
− Φ

(
θ−µ2

σ2

)

1 − Φ
(

θ−µ2

σ2

) , θ < x < ∞

,

which easily gives (13).¤

Proposition 3. The mgf of the composite normal-normal distribution is

M (t) = reµ1t+σ2

1
t2/2

Φ
(

θ−µ1

σ1

− σ1t
)

Φ
(

θ−µ1

σ1

) +(1 − r) eµ2t+σ2

2
t2/2

1 − Φ
(

θ−µ2

σ2

− σ2t
)

1 − Φ
(

θ−µ2

σ2

) .

Proof. We have that

M (t) = E
(
etY

)
= r

∫ θ

−∞

etx ϕ (x;µ1, σ1)

Φ
(

θ−µ1

σ1

) dx + (1 − r)

∫
∞

θ

etx ϕ (x;µ2, σ2)

1 − Φ
(

θ−µ2

σ2

)dx.
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We recognize the two integrals to be the mgf-s of the right and, respectively,
left truncated normal distributions. Using formulas (5) and (7), the result is
immediate.¤

Remark 2. By differentiating the mgf, or by using the expressions of the
truncated distributions moments, we obtain the following formulas for the first
two moments of the composite normal-normal distribution

EY = r



µ1 − σ1

ϕ
(

θ−µ1

σ1

)

Φ
(

θ−µ1

σ1

)



 + (1 − r)



µ2 + σ2

ϕ
(

θ−µ2

σ2

)

1 − Φ
(

θ−µ2

σ2

)



 ,

E
(
Y 2

)
= r



µ2
1 + σ2

1 − σ1 (θ + µ1)
ϕ

(
θ−µ1

σ1

)

Φ
(

θ−µ1

σ1

)



 +

+(1 − r)



µ2
2 + σ2

2 + σ2 (θ + µ2)
ϕ

(
θ−µ2

σ2

)

1 − Φ
(

θ−µ2

σ2

)



 .

Proposition 4. If Y follows a composite normal-normal distribution, then
X = eY is composite lognormal-lognormal distributed.

Proof. We will first find the density of X, using its cdf and the relation
with Y ’s cdf. For x > 0, we have

FX (x) = Pr (X < x) = Pr
(
eY < x

)
= Pr (Y < lnx) = FY (lnx) .

Differentiating gives

fX (x) =
1

x
fY (lnx) ,

and using (10), we obtain

fX (x) =






r
1
xϕ (lnx;µ1, σ1)

Φ
(

θ−µ1

σ1

) , 0 < x ≤ eθ

(1 − r)
1
xϕ (lnx;µ2, σ2)

1 − Φ
(

θ−µ2

σ2

) , eθ < x < ∞
.

We recall that 1
xϕ (lnx;µ, σ) , x > 0, is the density of a lognormal distribution

with parameters µ ∈ R, σ > 0, while Φ
(

ln x−µ
σ

)
is its cdf. Note that fX is

in the form (8) with f∗

1 a right truncated lognormal density with parameters
µ1, σ1, and f∗

2 a left truncated lognormal density with parameters µ2, σ2, while
in this case the threshold parameter is θ′ = eθ. Therefore, X = eY has indeed
a composite lognormal-lognormal distribution that inherits the parameters
µi, σi, i = 1, 2, and r from its composite normal-normal correspondent.¤
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3.2.2 Statistical inference: parameters estimation

The composite normal-normal distribution has five unknown parameters µi, σi,
i = 1, 2, and θ, while r results from (11). In Vernic and Teodorescu (2009) we
presented two algorithms for estimating the parameters of a general composite
distribution. We will now particularize them for our situation, then we will
adapt an EM algorithm to this complex estimation problem.

An estimation method based on moments and quantiles.
For (y1, ..., yn) a random data sample, we denote by q2 and q3 its second

and, respectively, third empirical quartiles, by qα its α-quantile, 0 < α < 1,
by ȳ its empirical mean, while y2 = 1

n

∑n
i=1 y2

i . Note that, when writing the
equations based on the empirical quantiles and the cdf F given in (13), we have
several situations depending on the position of θ between qα, q2 and q3. Since
θ is unknown, we should consider all possible situations and see which one
gives the best solution. But for our particular data, based on the histogram
and on the particular values of the quartiles, we assumed that θ < q2, and
that α is chosen such that qα < θ. Therefore, the system we used is






ȳ = EY

y2 = E
(
Y 2

)

α = r
Φ

(
qα−µ1

σ1

)

Φ
(

θ−µ1

σ1

)

0.5 = 1 + (1 − r)
Φ

(
q2−µ2

σ2

)
− 1

1 − Φ
(

θ−µ2

σ2

)

0.75 = 1 + (1 − r)
Φ

(
q3−µ2

σ2

)
− 1

1 − Φ
(

θ−µ2

σ2

)

.

Introducing αi = (θ − µi) /σi, i = 1, 2, we reparameterized the system. Hence,
using σi = (θ − µi) /αi and Remark 2, the system becomes






ȳ = r
(
µ1 − θ−µ1

α1

ϕ(α1)
Φ(α1)

)
+ (1 − r)

(
µ2 + θ−µ2

α2

ϕ(α2)
1−Φ(α2)

)

y2 = r

(
µ2

1 +
(

θ−µ1

α1

)2

− θ2
−µ2

1

α1

ϕ(α1)
Φ(α1)

)
+ (1 − r)×

×
(

µ2
2 +

(
θ−µ2

α2

)2

+
θ2

−µ2

2

α2

ϕ(α2)
1−Φ(α2)

)

α =
r

Φ(α1)
Φ

(
(qα−µ1)α1

θ−µ1

)

0.5 = 1−r
1−Φ(α2)

(
1 − Φ

(
(q2−µ2)α2

θ−µ2

))

0.25 = 1−r
1−Φ(α2)

(
1 − Φ

(
(q3−µ2)α2

θ−µ2

))

, (14)
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with r from (11) given by

r =
α2 (θ − µ1) ϕ (α2) Φ (α1)

α2 (θ − µ1) ϕ (α2) Φ (α1) + α1 (θ − µ2) ϕ (α1) (1 − Φ(α2))
. (15)

Since it involves the cdf Φ of the standard normal distribution, this system
must be solved by numerically methods. We denote the resulting solution by
µ̆i, σ̆i, i = 1, 2, and θ̆.

Remark 3. Initially, instead of qα we wanted to use the first empirical
quartile q1, but from the data we have that θ < q1, and the resulting equation
is

0.75 =
1 − r

1 − Φ(α2)

(
1 − Φ

(
(q1 − µ2) α2

θ − µ2

))
.

Unfortunately, this equation is of no help because considered together with
the last two equations in system (14) leads to an underdetermined subsystem,
that cannot be solved uniquely or cannot be solved at all. This is why we had
to look for a quantile such that qα < θ.

An algorithm based on the method of maximum likelihood (ML).
Without loss of generality, we assume that the data sample is ordered, i.e.
y1 ≤ ... ≤ yn. In order to apply the ML method, we must know the integer
value m such that the unknown parameter θ is in between the m-th and
(m + 1)-th observations, i.e. xm ≤ θ < xm+1. Assuming that somehow we
know this m, using again the notation αi and (15), the likelihood function is

L (y1, ..., yn) =

(
r

Φ(α1)

)m (
1 − r

1 − Φ(α2)

)n−m m∏

i=1

ϕ (yi;µ1, σ1)

n∏

j=m+1

ϕ (yj ;µ2, σ2) =

=

(
α1α2

α2 (θ − µ1) ϕ (α2) Φ (α1) + α1 (θ − µ2) ϕ (α1) (1 − Φ(α2))

)n

×

ϕn−m (α1) ϕm (α2)

m∏

i=1

ϕ

(
(yi − µ1) α1

θ − µ1

) n∏

j=m+1

ϕ

(
(yj − µ2) α2

θ − µ2

)
.

Denoting by

u (µ1, µ2, α1, α2, θ) = α2 (θ − µ1) ϕ (α2) Φ (α1)+α1 (θ − µ2) ϕ (α1) (1 − Φ(α2)) ,
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the likelihood system becomes






(1◦) 0 = ∂ ln L
∂µ1

= nα2ϕ(α2)Φ(α1)
u(µ1,µ2,α1,α2,θ) −

α2

1

(θ−µ1)
3

∑m
i=1 (yi − µ1) (yi − θ)

(2◦) 0 = ∂ ln L
∂µ2

= nα1ϕ(α1)(1−Φ(α2))
u(µ1,µ2,α1,α2,θ) − α2

2

(θ−µ2)
3

∑n
j=m+1 (yj − µ2) (yj − θ)

(3◦) 0 = ∂ ln L
∂α1

= n
α1

− (n − m) α1 −
nϕ(α1)(α2(θ−µ1)ϕ(α2)+(1−α2

1)(θ−µ2)(1−Φ(α2)))
u(µ1,µ2,α1,α2,θ) −

− α1

(θ−µ1)
2

∑m
i=1 (yi − µ1)

2

(4◦) 0 = ∂ ln L
∂α2

= n
α2

− mα2 −
nϕ(α2)((1−α2

2)(θ−µ1)Φ(α1)−α1(θ−µ2)ϕ(α1))
u(µ1,µ2,α1,α2,θ) −

− α2

(θ−µ2)
2

∑n
j=m+1 (yj − µ2)

2

(5◦) 0 = ∂ ln L
∂θ = −n(α2ϕ(α2)Φ(α1)+α1ϕ(α1)(1−Φ(α2)))

u(µ1,µ2,α1,α2,θ) +
α2

1

(θ−µ1)
3

∑m
i=1 (yi − µ1)

2
+

+
α2

2

(θ−µ2)
3

∑n
j=m+1 (yj − µ2)

2

.

(16)
By adding the first two equations of this system with the last one we obtain
a simpler equation

0 =
α2

1

(θ − µ1)
2

(
m∑

i=1

yi − mµ1

)
+

α2
2

(θ − µ2)
2




n∑

j=m+1

yj − (n − m) µ2



 , (17)

that can be used to replace any of the added equations. Even so, the resulting
system is very complex and it requires again numerical methods. Moreover,
we must check that the solution for θ satisfies the condition xm ≤ θ < xm+1.
Therefore, we adopted the following algorithm:

Step 1. Take as initial values the ones resulting from the previous method
(based on moments and quantiles) and find the corresponding m.

Step 2. For the current m, find the solution µ̂i, σ̂i, i = 1, 2, and θ̂ of system
(16), eventually with one equation replaced with (17). If the resulting θ̂
is situated in the interval [xm, xm+1) then keep the new found solution;
otherwise, go to Step 3.

Step 3. Find the new m such that xm ≤ θ̂ < xm+1, then resume Step 2 with
this m and initial values µ̂i, σ̂i, i = 1, 2, and θ̂.

Remark 4. The original algorithm described in Teodorescu and Vernic
(2009) executes Step 2 for each m = 1, 2, ..., n − 1, solving system (16) until
a correct solution is found. Because we have a large amount of data and
this could take too long, we preferred to transform the original algorithm as
above, including thus the available data information and the results from the
first method.
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Remark 5. To execute Step 2, we needed to specify starting values to the
mathematical software we used. This is why we indicated how to take these
values at Steps 1 and 3.

An ECM (Expectation Conditional Maximization) algorithm. Demp-
ster et al. (1977) provided a good description of the EM method, and since
1977 a number a papers suggested various other ways to perform the compu-
tations involved, enlarging the applicability of the EM algorithm to different
kinds of models and distributions. For example, Meng and Rubin (1993) in-
troduced the ECM algorithm in which they suggested a component-wise max-
imization of the loglikelihood function, that sometimes simplifies the maxi-
mization problem.

We adapted the ECM algorithm to our composite model as follows: let Θ =
(µ1, µ2, α1, α2) , and, being an iterative algorithm, we denote by

(
θ(0),Θ(0)

)
,(

θ(1),Θ(1)
)
, ... the sequence of provisional values that converges to the optimal

solution. Then the algorithm repeats the following step:

Step k. Determine Θ(k−1) that maximizes ln L subject to the constraint
θ = θ(k−1) by solving equations (1◦-4◦) from system (16); then determine
θ(k) that maximizes ln L subject to the constraint Θ = Θ(k−1) by solving
equation (5◦) from the same system.

The algorithm starts with an initial value for θ(0) and stops when the
differences between

(
θ(k−1),Θ(k−1)

)
and

(
θ(k),Θ(k)

)
are small enough.

This algorithm simplifies the solving of system (16), but still needs numer-
ical methods.

3.3 Numerical results

We applied all three methods described above on our log-data set. For the
first method, the needed empirical values are

ȳ = 6.64286, y2 = 47.73630, q0.03 = 2.35213, q2 = 6.74524, q3 = 7.75043.

As already mentioned, we chose α = 0.03 because q0.03 is smaller than the
initial value of θ, i.e. smaller than 3. To solve the complex system (14), we
implemented in SciLab 5.1.1 (an open source platform for numerical computa-
tion, for details see http://www.scilab.org/), the trust-region-dogleg algorithm
(see Conn et al. 2000, Nocedal and Wright 1999, Powell 1970). The starting
values µi, σi, i = 1, 2, were taken from the estimated two components mixture
model, and a particular choice of θ = 3. The resulting solution is

µ̆1 = 0.1357, µ̆2 = 6.9223, σ̆1 = 1.1700, σ̆2 = 1.3467, θ̆ = 2.5896, r̆ = 0.0417.
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This solution was then considered as starting value for the algorithm based
on the ML method and for the ECM algorithm, both algorithms being im-
plemented in SciLab 5.1.1. Initially, we had m = 34, but after performing
the described algorithms, they both ended with m = 31 and the improved
solutions
ML based algorithm

µ̂1 = 0.25984, µ̂2 = 6.83586, σ̂1 = 1.00141,

σ̂2 = 1.54832, θ̂ = 2.09384, r̂ = 0.02984.

ECM algorithm

̂̂µ1 = 0.25985, ̂̂µ2 = 6.83586, ̂̂σ1 = 1.00142,

̂̂σ2 = 1.54832,
̂̂
θ = 2.09385, ̂̂r = 0.02984.

The values of the loglikelihood function are

Moments and quantiles method : − 2068.280

ML based method and ECM algorithm : − 2044.378.

Therefore, the solutions obtained by the ML based method and by the ECM
algorithm are indeed better and there is no significant difference between them
(i.e. the difference is eventually at the 5th decimal). The most important
difference that we noticed when performing these two algorithms is that the
ML based algorithm converges faster than the ECM one. More precisely, the
ML based algorithm needed only 4 iterations to give the solution, while the
ECM one needed about 40 iterations.

We mention that the Kolmogorov distance for the ML based method
is 0.0357131. Hence, this distribution is also accepted by the Kolmogorov
goodness-of-fit test, and based on this criterion, it is in-between the mixture
models from Section 2.2. Note that the number of estimated parameters is the
same for both composite and mixture models, so by comparing the loglikeli-
hood values we can conclude that for these data, the composite model fits a
bit better.

4 Conclusions

In this paper we introduced two lognormal models to model a set of real
data from fire and allied perils insurance. The models were chosen based on
the shape of the log-data histogram. The first model is a two components
lognormal mixture, while the second one is a composite lognormal-lognormal
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model. Some properties of both models are given, with accent on parameters
estimation. Then the models were fitted to the data. For the parameters
of each model, two and respectively three sets of solutions were obtained,
depending on the starting values or on the estimation method. Both models
fit the data and the race is very close.
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