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Abstract

This paper presents a method for the evaluation of the compound

Generalized Poisson distribution, based on the recursive evaluation of

two other distributions.

1. Introduction
In the univariate case, a compound distribution is the distribution of a

sum of independent and identically distributed (i.d.) random variables (r.v.-
s). The number of terms is itself a r.v. assumed to be independent of the
terms. Denoting by p the distribution of the number of terms (the counting
distribution), by h the distribution of the terms (the severity distribution) and
by g then the compound distribution, then we have

g(x) =

∞∑

n=0

p (n) hn∗ (x) .

An important attention was paid lately in actuarial mathematics to the
recursive evaluation of bi and multivariate compound distributions. When
extending the concept of compound distribution to the multivariate case, we
have two directions:

A. The counting distribution is still univariate, but the severities are in-
dependent and i.d. random vectors of dimension m. For this case recursions
have been studied in [2] and [16].

B. The counting distribution is multivariate and the severities are one-
dimensional. See [1], [11], [20] and [22].
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The two approaches can be combined.
In this paper we present a method for the evaluation of the bivariate com-

pound Generalized Poisson distribution obtained when the counting distribu-
tion is the Bivariate Generalized Poisson distribution (BGPD) and the sever-
ities are one-dimensional.

Consul and Jain [5] provided an alternative to the standard Poisson distri-
bution by introducing the univariate Generalized Poisson distribution (GPD).
Details on this distribution can be found in Consul’s book [4]. From its appli-
cations in the actuarial literature we note [3], [10], [12] etc.

The GPD was extended to the bivariate case and was applied in the insur-
ance field in [9], [14], [19]. A multivariate generalization of the GPD was also
studied in [21].

Section 2 of this paper recalls the form of the GPD and BGPD.
In section 3 we present a recursive formula for a multivariate compound dis-

tribution obtained when the counting distribution is the univariate GPD and
the severity distribution is multivariate. Such multivariate compound distri-
butions were already studied in [2] and [16], but with the counting distribution
satisfying Panjer’s relation [13], p(n) = (a + b/n) p(n− 1), n ≥ 1. In section 4
we derive a recursion for a bivariate compound distribution with the bivariate
counting distribution given by (N1, N2), where N1, N2 are independent and
each one follows an univariate GPD (e.g. Ni is the number of claims of type
i). The bivariate compound GPD is evaluated in section 5 as the convolution
of two bivariate compound distributions which can be recursively calculated
as in section 3 and 4. Since the complexity of the calculations required for this
method is quite important, we also present a criterion for choosing between the
bivariate compound GPD and the bivariate compound Poisson distribution.

In the following we will use the notations x = (x1, ..., xm)
′
, u = (u1, ..., um)

′
.

By u ≤ x we mean that uj ≤ xj for j = 1, ...,m and by u < x that
uj ≤ xj , j = 1, ...,m, with at least one strict inequality. By 0 we denote
the m× 1 vector consisting of only zeros and by ej the jth m× 1 unit vector.

We make the convention
∑d

i=c = 0 when d < c.

2. The Bivariate Generalized Poisson Distribution (BGPD)
2.1 The univariate Generalized Poisson Distribution (GPD)
The GPD has two parameters λ and θ, with λ > 0 and max(−1,−λ/q) ≤

θ < 1, where q ≥ 4 is the largest positive integer for which λ + θq > 0 when
θ < 0. The probability function (p.f.) of N ∼ GPD(λ, θ) is given in [6]:

p(n) = P (N = n) =

{
1

n!
λ(λ + nθ)n−1 exp{−λ − nθ} , n = 0, 1, ...

0 , otherwise
. (2.1)

The GPD reduces to the Poisson distribution for θ = 0. When θ is negative,
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the GPD model includes a truncation due to the fact that p(n) = 0 for all n >
q. In the following we will consider only the case when λ > 0, 0 ≤ θ < 1 and
q = ∞, situation which gives convenient explicit expressions for the moments
(see [4]). The p.f. (2.1) can also be recursively evaluated from

p(n;λ, θ) =
λ

λ + θ

(
θ +

λ

n

)
p(n − 1;λ + θ, θ), n ≥ 1. (2.2)

2.2 The BGPD
Studied in [9] and [19], the BGPD is obtained by the trivariate reduction

method as N1 = M1+M3, N2 = M2+M3, where M1,M2,M3 are independent
r.v.-s and Mj ∼ GPD(λj , θj), j = 1, 2, 3. Then the common p.f. of (N1, N2)
is given by (see [19])

p(n1, n2) = P (N1 = n1, N2 = n2) = λ1λ2λ3 exp{−(λ1+λ2+λ3)−n1θ1−n2θ2}×

min(n1,n2)∑

k=0

exp{k(θ1 + θ2 − θ3)}

(n1 − k)!(n2 − k)!k!
(λ1+(n1−k)θ1)

n1−k−1(λ2+(n2−k)θ2)
n2−k−1×

(λ3 + kθ3)
k−1, n1, n2 = 0, 1, .... (2.3)

If θi = 0, i = 1, 2, 3, (2.3) becomes the usual bivariate Poisson distribution.

3. A multivariate recursion
In the following we will generalize the recursion of [3] for the compound

generalized Poisson distribution to a multivariate situation where each claim
event generates a random vector.

Let N denote the number of claim events and let Xi = (Xi1, ..., Xim)
′

be the m-dimensional claim vector generated by the ith of these events, i =

1, 2, .... Then S = (S1, ..., Sm)
′
=

N∑
i=1

Xi is the random vector of the aggregate

claims.
As in the univariate case, we assume that X1,X2, ... are mutually indepen-

dent and i.d. with p.f. f , and also independent of N . In addition, we assume
that the Xij ’s are non-negative, but f(0) = 0. Let p and g denote the p.f.-s
of N and S, respectively. Then

g =

∞∑

n=0

p(n) f∗n. (3.1)

Theorem 3.1. Under the assumption that N ∼ GPD(λ, θ), the p.f. g satisfies
the recursion

g(0;λ, θ) = p(0) = e−λ, (3.2)
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xk g(x;λ, θ) =
λ

λ + θ

∑

0<u≤x

(θxk + λuk) f(u)g(x − u;λ+θ, θ), x > 0, k = 1, ...,m.

(3.3)
Proof. Formula (3.2) follows from (3.1) and from

f∗n(0) =

{
1, n = 0
0, n 6= 0

. In order to prove (3.3) we will use conditional ex-

pectations as in the proof of Panjer’s formula in [15]. When x > 0, considering
(3.1) and the recursion (2.2) of the GPD, we have

xk g(x;λ, θ) =
λ

λ + θ

∞∑

n=1

xk

(
θ +

λ

n

)
p(n − 1;λ + θ, θ) f∗n(x) =

λ

λ + θ

∞∑

n=1

p(n − 1;λ + θ, θ)E

[
θxk + λX1k

∣∣∣∣∣

n∑

i=1

Xi = x

]
f∗n(x) =

λ

λ + θ

∞∑

n=1

p(n − 1;λ + θ, θ)
∑

0≤u≤x

(θxk + λuk) f(u) f∗(n−1)(x − u) =

λ

λ + θ

∑

0<u≤x

(θxk + λuk) f(u)
∞∑

n=1

p(n − 1;λ + θ, θ) f∗(n−1)(x − u) =

λ

λ + θ

∑

0<u≤x

(θxk + λuk) f(u)g(x − u;λ + θ, θ). 2

Rem. When xk > 0, dividing (3.3) by xk gives

g(x;λ, θ) =
λ

λ + θ

∑

0<u≤x

(
θ + λ

uk

xk

)
f(u)g(x − u;λ + θ, θ), x ≥ ek. (3.4)

Starting with (3.2) and using (3.4) we can recursively evaluate g.

Corollary 3.1. Under the assumptions of Theorem 3.1, if c is an m × 1
constant vector, then for x > 0

g(x;λ, θ) c′x =
λ

λ + θ

∑

0<u≤x

(θ c′x + λ c′u) f(u) g(x − u;λ + θ, θ). (3.5)

Proof. Formula (3.5) can be obtained if we multiply (3.3) by ck and sum over
k. 2
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Corollary 3.2. Under the assumptions of Theorem 3.1 we also have

g(x;λ, θ) =
λ

λ + θ

∑

0<u≤x


θ + λ

(
m∑

k=1

uk

)(
m∑

k=1

xk

)−1

×

×f(u) g(x − u;λ + θ, θ), x > 0. (3.6)

Proof. In Corollary 3.1 we take cj = 1, j = 1, ...,m. Then c′x =
∑m

k=1 xk > 0
for x > 0 and we can divide (3.5) by c′x to get (3.6). 2

Particular cases
1. When θ = 0, the GPD becomes the standard Poisson distribution, i.e.

N ∼ P(λ). Then Theorem 3.1 becomes a particular case of Theorem 1 in [16]
for f(0) = 0.

2. When m = 1, (3.4) reduces to the univariate recursion (see [3])

g(x;λ, θ) =
λ

λ + θ

x∑

u=1

(
θ + λ

u

x

)
f(u) g(x − u;λ + θ, θ), x > 0, (3.7)

3. When m = 2, (3.4) gives for x1 ≥ 1, x2 ≥ 0,

g(x1, x2;λ, θ) =
λ

λ + θ

x1∑

u1=0

(
θ + λ

u1

x1

) x2∑

u2=0

f(u1, u2) g(x1−u1, x2−u2;λ+θ, θ),

(3.8)
and a similar formula for x1 ≥ 0, x2 ≥ 1. For (x1, x2) 6= (0, 0), from (3.6) we
also have

g(x1, x2;λ, θ) =
λ

λ + θ

x1∑

u1=0

x2∑

u2=0

(
θ + λ

u1 + u2

x1 + x2

)
f(u1, u2) g(x1−u1, x2−u2;λ+θ, θ).

(3.9)
The fact that we have included (u1, u2) = (0, 0) in these formulas in order to
simplify their display does not create any problem since we have assumed that
f(0, 0) = 0.

In table 1 we present the order of the recursive evaluation based on (3.2)
and e.g. (3.9). The columns are labeled with the parameters of the distribution
of (S1, S2) and the evaluation must be done line by line.

TABLE 1. Recursive evaluation of g
∆1 = (λ, θ) ∆2 = (λ + θ, θ) ∆3 = (λ + 2θ, θ) ∆4 = (λ + 3θ, θ)

g(0, 0; ∆1) g(0, 0; ∆2) g(0, 0; ∆3) g(0, 0; ∆4)
g(0, 1; ∆1); g(1, 0; ∆1) g(0, 1; ∆2); g(1, 0; ∆2) g(0, 1; ∆3); g(1, 0; ∆3)
g(0, 2; ∆1); g(2, 0; ∆1) g(0, 2; ∆2); g(2, 0; ∆2)

g(1, 1; ∆1) g(1, 1; ∆2)
g(0, 3; ∆1); g(3, 0; ∆1)
g(1, 2; ∆1); g(2, 1; ∆1)
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4. A bivariate recursion
We will now present a recursion for the bivariate compound distribution

with bivariate counting distribution obtained for example when the policies
of a portfolio are submitted to claims of two kinds, whose frequencies are
independent. Let Ni denote the number of claims of type i, i = 1, 2, and
(Xj)j≥1 , (Yj)j≥1 the amounts of type 1 and type 2 claims, respectively. Then
denoting by S1, S2 the corresponding aggregate amounts of the claims of type
1 and 2, we have

S = (S1, S2) =




N1∑

j=1

Xj ,

N2∑

j=1

Yj


 . (4.1)

We consider the following hypotheses for this model:
(H1) The r.v.-s (Xj)j≥1 are independent, i.d. and defined only on positive

integers, with the common p.f. f1. Same hypotheses for (Yj)j≥1 , but their
common p.f. is f2.

(H2) The r.v.-s (Xj)j≥1 and (Yj)j≥1 are independent.

(H3) For i = 1, 2, the r.v.-s Ni and (Xj)j≥1 are independent, and so are

Ni and (Yj)j≥1 .

(H4) The r.v.-s N1, N2 are independent and Ni ∼ GPD(λi, θi), i = 1, 2.

Denoting the p.f. of S by g and of Si by gi, i = 1, 2, from the independence
assumptions we have for Λ = (λ1, λ2) ,Θ = (θ1, θ2) ,

g(x1, x2; Λ,Θ) = g1(x1;λ1, θ1) g2(x2;λ2, θ2). (4.2)

It is easy to see that Si follows an univariate compound GPD, so gi can be
recursively calculated using (3.7), i = 1, 2. The following theorem gives a
recursion for g which avoids the evaluation of gi.

Theorem 4.1. Under the assumptions (H1)-(H4) we have

g(0, 0; Λ,Θ) = e−(λ1+λ2), (4.3)

g(x1, 0; Λ,Θ) =
λ1e

θ2

λ1 + θ1

x1∑

y1=1

(
θ1 + λ1

y1

x1

)
f1(y1) g(x1−y1, 0; Λ+Θ,Θ), x1 ≥ 1,

(4.4)

g(0, x2; Λ,Θ) =
λ2 eθ1

λ2 + θ2

x2∑

y2=1

(
θ2 + λ2

y2

x2

)
f2(y2) g(0, x2−y2; Λ+Θ,Θ), x2 ≥ 1,

(4.5)

g(x1, x2; Λ,Θ) =
λ1λ2

(λ1 + θ1) (λ2 + θ2)

x1∑

y1=1

x2∑

y2=1

(
θ1 + λ1

y1

x1

)(
θ2 + λ2

y2

x2

)
×
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f1(y1) f2(y2) g(x1 − y1, x2 − y2; Λ + Θ,Θ), x1, x2 ≥ 1. (4.6)

Proof. (4.3) is immediate from (4.2) and (3.2). In order to prove (4.4)-(4.6)
we will use (4.2) and (3.7):

g(x1, 0; Λ,Θ) = g1(x1;λ1, θ1) e−λ2 =

=
λ1e

θ2

λ1 + θ1

x1∑

y1=1

(
θ1 + λ1

y1

x1

)
f1(y1) g1(x1 − y1;λ1 + θ1, θ1) g2(0;λ2 + θ2, θ2) =

=
λ1e

θ2

λ1 + θ1

x1∑

y1=1

(
θ1 + λ1

y1

x1

)
f1(y1) g(x1 − y1, 0; Λ + Θ,Θ).

Similarly for (4.5). For the last recursion we have

g(x1, x2; Λ,Θ) =

=
λ1λ2

(λ1 + θ1) (λ2 + θ2)

[
x1∑

y1=1

(
θ1 + λ1

y1

x1

)
f1(y1) g1(x1 − y1;λ1 + θ1, θ1)

]
×

[
x2∑

y2=1

(
θ2 + λ2

y2

x2

)
f2(y2) g2(x2 − y2;λ2 + θ2, θ2)

]
=

λ1λ2

(λ1 + θ1) (λ2 + θ2)

x1∑

y1=1

x2∑

y2=1

(
θ1 + λ1

y1

x1

)(
θ2 + λ2

y2

x2

)
f1(y1) f2(y2)×

g1(x1 − y1;λ1 + θ1, θ1) g2(x2 − y2;λ2 + θ2, θ2),

and using (4.2) once more we get (4.6). 2

In table 2 we present the order of the recursive evaluation based on (4.3)-
(4.6). The columns are labeled with the parameters of the distribution of
(S1, S2) and the evaluation must be done line by line.

TABLE 2. Recursive evaluation of g
∆1 = (Λ, Θ) ∆2 = (Λ + Θ, Θ) ∆3 = (Λ + 2Θ, Θ) ∆4 = (Λ + 3Θ, Θ)

g(0, 0; ∆1) g(0, 0; ∆2) g(0, 0; ∆3) g(0, 0; ∆4)
g(0, 1; ∆1); g(1, 0; ∆1) g(0, 1; ∆2); g(1, 0; ∆2) g(0, 1; ∆3); g(1, 0; ∆3)

g(1, 1; ∆1) g(1, 1; ∆2) g(1, 1; ∆3)
g(0, 2; ∆1); g(2, 0; ∆1) g(0, 2; ∆2); g(2, 0; ∆2)
g(1, 2; ∆1); g(2, 1; ∆1) g(1, 2; ∆2); g(2, 1; ∆2)

g(2, 2; ∆1) g(2, 2; ∆2)
g(0, 3; ∆1); g(3, 0; ∆1)
g(3, 1; ∆1); g(1, 3; ∆1)
g(3, 2; ∆1); g(2, 3; ∆1)

g(3, 3; ∆1)
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5. A method for the evaluation of the bivariate compound GPD
5.1 The method
We consider the bivariate compound distribution given in (4.1), but we

replace the hypothesis (H4) by
(H4’) The random vector (N1, N2) ∼ BGPD (λ1, λ2, λ3; θ1, θ2, θ3) .

The other hypotheses are the same, and so are the notations. From section
2 it follows that N1 = M1 + M3 and N2 = M2 + M3, with M1,M2,M3

independent and Mj ∼ GPD(λj , θj), j = 1, 2, 3.
The example 3.1 in [2] gives a method for the evaluation of a bivariate

compound distribution whose counting distribution is obtained as above. The
method consists in writting S = U1+U2, where:

- U1 is a bivariate compound random vector as in section 4, having the
counting distribution given by (M1,M2) and the claim sizes p.f.-s fX and fY ,
respectively;

- U2 is also a bivariate compound random vector, but as in section 3, with
the univariate counting distribution given by the r.v. M3 and same claim sizes
as U1, so that f(x1, x2) = fX(x1) fY (x2).

We denote the p.f. of Uj by gUj
, j = 1, 2. Then gS = gU1

∗ gU2
, i.e.

gS(x1, x2) =

(x1,x2)∑

(y1,y2)=(0,0)

gU1
(y1, y2) gU2

(x1 − y1, x2 − y2),

where gU1
can be recursively evaluated as in Theorem 4.1 and the same for

gU2
, using (3.8) or (3.9).

5.2 A criterion for choosing between the bivariate compound
GPD and the bivariate compound Poisson distribution

It is easy to see that the complexity of the calculations involved in the
evaluation of the bivariate compound GPD as described before is quite im-
portant. Since the bivariate compound Poisson distribution can be recursively
evaluated with less calculations (see [11], [19]), it is natural to try to find out if
there is an important difference between the two distributions before starting
the evaluation of the bivariate compound GPD. In order to do this, we propose
a criterion based on the distance between two bivariate distributions g and h,
distance defined in [17] as

ε(g, h) =
∑

x1,x2

|g(x1, x2) − h(x1, x2)| .

Let gS be the p.f. of the bivariate compound GPD as above and hS′ the p.f. of

the bivariate compound Poisson distribution given by S′ =

(
N ′

1∑
j=1

Xj ,
N ′

2∑
j=1

Yj

)
,
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with (N ′
1, N

′
2) following a bivariate Poisson distribution with parameters

(
λ′

1, λ
′
2, λ

′
3

)
.

Its p.f. is then given by

P (N ′
1 = n1, N

′
2 = n2) = e−(λ1+λ2+λ3)

min{n1,n2}∑

k=0

λn1−k
1 λn2−k

2 λk
3

(n1 − k)!(n2 − k)!k!
, n1, n2 ≥ 0.

Since the bivariate Poisson distribution can also be obtained by the trivariate
reduction method from three independent r.v.-s M ′

1,M
′
2,M

′
3, M ′

j ∼ P(λ′
j), j =

1, 2, 3, then we can apply Theorem 3.1 in [18], special case (ii), which together
with Theorem 4.1 same paper gives

ε (gS, hS′) ≤

3∑

i=1

ε
(
pMi

, pM ′

i

)
, (5.1)

where by pM we denoted the p.f. of the r.v. M . It is interesting that the
upper bound does not depend on the severity distribution.

Imposing now the usual condition of equal means E(Mi) = E(M ′
i), i =

1, 2, 3, since the GPD is infinitely divisible, we have from [8]

ε
(
pMi

, pM ′

i

)
≤ 2

(
λ′

i −
pMi

(1)

pMi
(0)

)
. (5.2)

From E(Mi) = E (M ′
i) we obtain λ′

i = λi (1 − θi)
−1

and pMi
(1)/pMi

(0) =
λi e−θi , so that (5.1) becomes

ε (gS, hS′) ≤ 2

3∑

i=1

λi

(
1

1 − θi

− e−θi

)
. (5.3)

Then the criterion consists in evaluating an upper bound for ε (gS, hS′) from
(5.3) and decide wether it is little enough, so that we can take the standard
bivariate Poisson as counting distribution.

Numerical example
Since the upper bound in (5.3) does not depend on the severity distri-

bution, we will consider only a numerical data set for the bivariate counting
distribution of (N1, N2) .

Vernic [21] fitted the BGPD to the accident data of [7], with N1 as the
accidents in the first period and N2 in a second period. The parameters
estimates obtained by the method of moments are

λ̃1 = 0.6206, λ̃2 = 0.8653, λ̃3 = 0.2987; θ̃1 = 0.1057, θ̃2 = 0.1200, θ̃3 = 0.0286,
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and from (5.3) we have ε (gS, hS′) ≤ 0.737. In [21] is also considered the
situation when θ1 = θ2 = θ3 = θ and in this case the parameters estimates

are λ̃
′

1 = 0.6300, λ̃
′

2 = 0.8925, λ̃
′

3 = 0.2778; θ̃ = 0.0935. The upper bound in
(5.3) becomes ε (gS, hS′) ≤ 0.6927. Both distributions fit the data and since
the bivariate Poisson distribution is not adequate, we should use one of the
BGPD-s.
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