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Abstract

We study the nonlinear boundary value problem

− div
(

(

|∇u(x)|p1(x)−2 + |∇u(x)|p2(x)−2
)

∇u(x)
)

=

= λ|u|q(x)−2
u− µ|u|α(x)−2

u

in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in R
N with smooth

boundary, λ, µ are positive real numbers, p1, p2, q and α are a continuous
functions on Ω satisfying appropriate conditions. First result we show
the existence of infinitely many weak solutions for any λ, µ > 0. Second
we prove that for any µ > 0, there exists λ∗ sufficiently small, and
λ∗ large enough such that for any λ ∈ (0, λ∗) ∪ (λ∗,∞), the above
nonhomogeneous quasilinear problem has a non-trivial weak solution.
The proof relies on some variational arguments based on a Z2-symmetric
version for even functionals of the mountain pass theorem, the Ekeland’s
variational principle and some adequate variational methods .
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1 Introduction and preliminary results

In this paper we are concerned with the problem







− div
( (

|∇u(x)|p1(x)−2 + |∇u(x)|p2(x)−2
)

∇u(x)
)

= λ|u|q(x)−2u− µ|u|α(x)−2u,
u 6≡ 0,
u = 0,

(1)
for x ∈ Ω where Ω ⊂ R

N , (N ≥ 3) is a bounded domain with smooth boundary,
λ, µ are positive real numbers, p1, p2, q and α are continuous functions on Ω.

The study of differential equations and variational problems involving oper-
ators with variable exponents growth conditions have received more and more
interest in the last few years. In fact the interest in studying such problems
was stimulated by their application in mathematical physics see [1, 6, 11],
more precisely in elastic mechanics or electrorheological fluids.
Next, we recall that the problem

{

− div
(

|∇u(x)|p(x)−2∇u(x)
)

= f(x, u), for x ∈ Ω
u = 0, for x ∈ ∂Ω.

(2)

where Ω ⊂ R
N is a bounded domain, has been largely considered in literature.

• Fan, Zhang and Zhao [10] established the existence of infinitely many
eigenvalues for problem (2) for f(x, u) = λ|u(x)|p(x)−2u on Ω. They used
an argument based on the Ljusternik-Schnirelmann critical point theory.

• Mihăilescu and Rădulescu [15] used the Ekeland’s variational principle
for f(x, u) = λ|u(x)|q(x)−2u, minΩ q(x) < minΩ p(x) and q(x) has a
subcritical growth to prove the existence of a continuous family of eigen-
values which lies in a neighborhood of the origin.

• Ben Ali and Kefi [4] studied the problem for f(x, u) = λ|u(x)|q(x)−2u−
|u(x)|α(x)−2u where
1 < infΩp(x) ≤ supΩp < N . In a first part they used the mountain pass
theorem to prove that the problem has infinitely many weak solutions

if max(supΩp, supΩα) < infΩq and q(x) < Np(x)
N−p(x) . In a second part

they used the Ekeland’s variational principle to prove that the problem
has a non trivial weak solution, if 1 < infΩq < min(infΩp, infΩα) and

max(α(x), q(x)) < Np(x)
N−p(x) ∀x ∈ Ω.

• Mihăilescu [17] considered the problem

− div
(

(

|∇u(x)|p1(x)−2 + |∇u(x)|p2(x)−2
)

∇u(x)
)

= f(x, u)
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where f(x, u) = ±
(

−λ|u|m(x)−2u+ |u|q(x)−2u
)

and

m(x) = max{p1(x), p2(x)}.

Under the assumption m(x) < q(x) < Nm(x)
N−m(x) , he established in a first

case, using the Mountain pass theorem, the existence of infinitely many
weak solutions. In a second case he used a simple variational argument
for λ large enough to prove that the problem has a weak solution.

• Allegue and Bezzarga [2] studied the problem

− div
(

a(x,∇u)
)

= λuγ−1 − µuβ−1

where λ and µ are positive real numbers, div
(

a(x,∇u)
)

is a p(x)-Laplace
type operator, with 1 < β < γ < infx∈Ω p(x) and

p+ < min
{

N,Np−/(N − p−)
}

.

They proved that if λ is large enough, there exists at least two non-
negative non-trivial weak solutions using the Mountain Pass theorem of
Ambrosetti and Rabinowitz and some adequate variational methods.

In the sequel, we start with some preliminary basic results on the theory of
Lebesgue-Sobolev spaces with variable exponent. We refer to the book of
Musielak [18], the papers of Kovacik and Rakosnik [13] and Fan et al. [7, 9].
Set

C+(Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u : is a Borel real-valued function on Ω :

∫

Ω

|u(x)|p(x) dx <∞}.

We define on Lp(x), the so-called Luxemburg norm, by the formula

|u|p(x) := inf
{

µ > 0;

∫

Ω

∣

∣

u(x)

µ

∣

∣

p(x)
dx ≤ 1

}

.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
aspects: they are separable and Banach spaces [13, Theorem 2.5; Corollary
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2.7] and the Hölder inequality holds [13, Theorem 2.1]. The inclusions between
Lebesgue spaces are also naturally generalized [13, Theorem 2.8]: if 0 < |Ω| <
∞ and r1, r2 are variable exponents so that r1(x) ≤ r2(x) almost everywhere
in Ω then there exists the continuous embedding Lr2(x)(Ω) →֒ Lr1(x)(Ω).

We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1/p(x) +
1/p′(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder type inequal-
ity

∣

∣

∫

Ω

uv dx
∣

∣ ≤
( 1

p−
+

1

p′−
)

|u|p(x)|v|p′(x), (3)

is held.
An important role in manipulating the generalized Lebesgue-Sobolev spaces

is played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) :

Lp(x)(Ω) → R defined by

ρp(x)(u) =

∫

Ω

|u|p(x) dx.

The space W 1,p(x)(Ω) is equiped by the following norm :

‖u‖ = |u|p(x) + |∇u|p(x).

We recall that if (un), u, ∈ W 1,p(x)(Ω) and p+ < ∞ then the following
relations hold

min(|u|p
−

p(x), |u|
p+

p(x)) ≤ ρp(x)(u) ≤ max(|u|p
−

p(x), |u|
p+

p(x)), (4)

min(|∇u|p
−

p(x), |∇u|
p+

p(x)) ≤ ρp(x)(|∇u|) ≤ max(|∇u|p
−

p(x), |∇u|
p+

p(x)), (5)

|u|p(x) → 0 ⇔ ρp(x)(u) → 0,

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)(un − u) = 0,

|un|p(x) → ∞ ⇔ ρp(x)(un) → ∞.

(6)

We define also W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖p(x) = |∇u|p(x).

The space (W
1,p(x)
0 (Ω), ‖.‖) is a separable and reflexive Banach space.

Next, we remember some embedding results regarding variable exponent
Lebesgue-Sobolev spaces. We note that if s(x) ∈ C+(Ω) and s(x) < p∗(x)



ON A CLASS OF NONHOMOGENOUS QUASILINEAR PROBLEM INVOLVING
SOBOLEV SPACES WITH VARIABLE EXPONENT 313

for all x ∈ Ω then the embedding W
1,p(x)
0 (Ω) →֒ Ls(x)(Ω) is compact and

continuous, where p∗(x) = Np(x)/(N − p(x)) if p(x) < N or p∗(x) = +∞
if p(x) ≥ N . We refer to [13] for more properties of Lebesgue and Sobolev
spaces with variable exponent. We also refer to the recent papers [3, 7, 8,
9, 12, 14, 15, 16] for the treatment of nonlinear boundary value problems in
Lebesgue-Sobolev spaces with variable exponent.

Remark 1. Let p1(x), p2(x) ∈ C+(Ω) and m(x) = max{p1(x), p2(x)} for any
x ∈ Ω, then
m(x) ∈ C+(Ω) and p1(x), p2(x) ≤ m(x) for any x ∈ Ω, consequently by The-

orem 2.8, in [13] W
1,m(x)
0 (Ω) is continuously embedded in W

1,pi(x)
0 (Ω) for

i ∈ {1, 2}.

2 Main results

In the following, we consider problem (1). Let p1, p2, q and α ∈ C+(Ω),m(x) =
max{p1(x), p2(x)} for any x ∈ Ω and λ, µ > 0.

Definition 1. We say that u ∈W
1,m(x)
0 (Ω) is a weak solution of (1) if

∫

Ω

((

|∇u|p1(x)−2 + |∇u|p2(x)−2
)

∇u∇v − λ|u|q(x)−2uv + µ|u|α(x)−2uv
)

dx = 0,

for any v ∈W
1,m(x)
0 (Ω).

We prove the following results:

Theorem 1. For any λ, µ > 0 problem (1) has infinitely many weak solutions
provided that

2 ≤ p−i ≤ p+i < N for i ∈ {1, 2}, q− > max(m+, α+) and q+ < Nm−

N−m− .

Theorem 2. (i) For any µ > 0 there exists λ∗ > 0 under which problem (1)
has a nontrivial weak solution, provided that 2 ≤ p−i ≤ p+i < N for i ∈ {1, 2},
q− < min(p−1 , p

−
2 , α

−) and

max(α+, q+) < Nm−

N−m− .

(ii) If 2 ≤ p−i ≤ p+i < N for i ∈ {1, 2}, q+ < α− and α+ < Nm−

N−m− , then for
any µ > 0, there exists also a critical value λ∗ > 0 such that for any λ ≥ λ∗,
problem (1) has a nontrivial weak solution.

We mention that Theorem 1 and theorem 2 still remain valid for more
general classes of differential operators. For example, we can replace the p(x)-
Laplace type operator div

((

|∇u|p1(x)−2 + |∇u|p2(x)−2
)

∇u
)

by the generalized

mean curvature operator div
((

(

1 + |∇u|2
)(p(x)−2)/2

∇u
))

.
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3 Proof of Theorem 1

The proof of theorem 1 is based on a Z2-symmetric version for even functionals
of the Mountain pass Theorem (see Theorem 9.12 in [19]).
Mountain Pass Theorem. Let X be an infinite dimensional real Banach
space and let I ∈ C1(X,R) be even satisfying the Palais-Smale condition and
I(0) = 0. Suppose that
(I1) There exist two contants ρ, a > 0 such that I(x) ≥ a if ‖x‖ = ρ.
(I2) For each finite dimensional subspace X1 ⊂ X, the set {x ∈ X1; I(x) ≥ 0}
is bounded.
Then I has an unbounded sequence of critical values.

Let E denote the generalized Sobolev space W
1,m(x)
0 (Ω) and ‖.‖ denote

the norm ‖.‖m(x). Let λ and µ be arbitrary but fixed. The energy functional

corresponding to the problem (1) is defined as Jλ,µ : E → R,

Jλ,µ(u) :=

∫

Ω

1

p1(x)
|∇u|p1(x)dx+

∫

Ω

1

p2(x)
|∇u|p2(x)dx− λ

∫

Ω

1

q(x)
|u|q(x)dx+

+µ

∫

Ω

1

α(x)
|u|α(x)dx,

Proposition 1. The functional Jλ,µ is well-defined on E and Jλ,µ ∈ C1(E,R).

Proof. A simple calculation based on Remark 1, relation (3) and the compact
embedding of E into Ls(x)(Ω) for all s ∈ C+(Ω) with s(x) < m∗(x) on Ω shows
that Jλ,µ is well-defined on E and Jλ,µ ∈ C1(E,R) with the derivate given by

〈dJλ,µ(u), v〉 =

∫

Ω

(

|∇u|p1(x)−2∇u∇v + |∇u|p2(x)−2∇u∇v − λ|u|q(x)−2uv+

+µ|u|α(x)−2uv
)

dx, ∀ v ∈ E.

In order to use the mountain pass theorem, we need the following lemmas.

Lemma 1. For any λ, µ > 0 there exists r, a > 0 such that Jλ,µ(u) ≥ a > 0
for any u ∈ E with ‖u‖ = r.

Proof. Since m(x) = max{p1(x), p2(x)} for any x ∈ Ω then

|∇u|p1(x) + |∇u|p2(x) ≥ |∇u|m(x) ∀x ∈ Ω, (7)

On the other hand q(x) < m∗(x) for all x ∈ Ω, then E is continuously em-
bedded in Lq(x)(Ω). So there exists a positive constant C such that, for all
u ∈ E,

|u|q(x) ≤ C‖u‖. (8)
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Suppose that ‖u‖ < min(1, 1
C ), then for all u ∈ E with ‖u‖ = ρ we have

|u|q(x) < 1.

Furthermore, relations (4) yields for all u ∈ E with ‖u‖ = ρ we have

∫

Ω

|u|q(x)dx ≤ |u|q
−

q(x).

The above inequality and relation (8) imply that for all u ∈ E with ‖u‖ = ρ,
we have

∫

Ω

|u|q(x)dx ≤ Cq−‖u‖q
−

. (9)

On the other hand we have
∫

Ω

|∇u|m(x)dx ≥ ‖u‖
m+

. (10)

Then using relations (7), (9) and (10), we deduce that, for any u ∈ E with
‖u‖ = ρ, the following inequalities hold true

Jλ,µ(u) ≥
1

m+

∫

Ω

|∇u|m(x)dx−
λ

q−

∫

Ω

|u|q(x)dx,

≥
1

m+
‖u‖m

+

−
λ

q−
Cq−‖u‖q

−

.

Let hλ(t) =
1

m+
tm

+

−
λ

q−
Cq−tq

−

, t > 0. It is easy to see that hλ(t) > 0 for

all t ∈ (0, t1), where t1 <

(

q−

λm+Cq−

)
1

q−−m+

.

So for any λ, µ > 0 we can choose r, a > 0 such that Jλ,µ(u) ≥ a > 0 for all
u ∈ E with ‖u‖ = r. The proof of Lemma 1 is complete.

Lemma 2. If E1 ⊂ E is a finite dimensional subspace, the set S = {u ∈
E1; Jλ,µ(u) ≥ 0} is bounded in E.

Proof. We have

∫

Ω

1

pi(x)
|∇u|pi(x)dx ≤ Ki(‖u‖

p−
i + ‖u‖p

+
i ) ∀u ∈ E i = {1, 2}, (11)
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where Ki (i ∈ {1, 2}) are positive constants. Indeed, using relation (4) we
have
∫

Ω

|∇u|pi(x)dx ≤ |∇u|
p−
i

pi(x)
+ |∇u|

p+
i

pi(x)
= ‖u‖

p−
i

pi(x)
+ ‖u‖

p+
i

pi(x)
∀u ∈ E i = {1, 2}

(12)
On the other hand, using Remark 1 there exists a positive constant Ci such
that

‖u‖pi(x)
≤ Ci ‖u‖ ∀u ∈ E i ∈ {1, 2}. (13)

The last two inequality yield

∫

Ω

|∇u|pi(x)dx ≤ C
p−
i

i ‖u‖
p−
i + C

p+
i

i ‖u‖p
+
i ∀u ∈ E i = {1, 2}, (14)

and thus (11) holds true. Also we have

∫

Ω

|u|α(x)dx ≤ |u|
α−

α(x) + |u|
α+

α(x) ∀u ∈ E. (15)

The fact that E is continuously embedded in Lα(Ω) assures the existence of a
positive constant C3 such that

|u|α(x) ≤ C3 ‖u‖ ∀u ∈ E. (16)

The last two inequalities show that there exists a positive constant K3(µ) such
that

µ

∫

Ω

1

α(x)
|u|α(x)dx ≤

µ

α−

(

Cα−

3 ‖u‖
α−

+ Cα+

3 ‖u‖α
+
)

≤

≤ K3(µ)
(

‖u‖
α−

+ ‖u‖
α+

)

∀u ∈ E. (17)

By inequality (11) and (17) we get

Jλ,µ(u) ≤ K1(‖u‖
p−
1 + ‖u‖p

+
1 ) +K2(‖u‖

p−
2 + ‖u‖p

+
2 )+

+K3(µ)
(

‖u‖
α−

+ ‖u‖
α+

)

−
λ

q+

∫

Ω

|u|q(x)dx, (18)

for all u ∈ E.
Let u ∈ E be arbitrary but fixed. We define

Ω< = {x ∈ Ω; |u(x)| < 1}. Ω≥ = Ω\Ω<.
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Then we have

Jλ,µ(u) ≤ K1(‖u‖
p−
1 + ‖u‖p

+
1 ) +K2(‖u‖

p−
2 + ‖u‖p

+
2 ) +

+ K3(µ)
(

‖u‖
α−

+ ‖u‖
α+

)

−
λ

q+

∫

Ω

|u|q(x)dx ≤

≤ K1(‖u‖
p−
1 + ‖u‖p

+
1 ) +K2(‖u‖

p−
2 + ‖u‖p

+
2 ) +

+ K3(µ)
(

‖u‖
α−

+ ‖u‖
α+

)

−
λ

q+

∫

Ω≥

|u|q(x)dx ≤

≤ K1(‖u‖
p−
1 + ‖u‖p

+
1 ) +K2(‖u‖

p−
2 + ‖u‖p

+
2 ) +

+ K3(µ)
(

‖u‖
α−

+ ‖u‖
α+

)

−
λ

q+

∫

Ω≥

|u|q
−

dx ≤

≤ K1(‖u‖
p−
1 + ‖u‖p

+
1 ) +K2(‖u‖

p−
2 + ‖u‖p

+
2 ) +

+ K3(µ)
(

‖u‖
α−

+ ‖u‖
α+

)

−
λ

q+

∫

Ω

|u|q
−

dx+
λ

q+

∫

Ω<

|u|q
−

dx.

But for each λ > 0 there exists positive constant K4(λ) such that

λ

q+

∫

Ω<

|u|q
−

dx ≤ K4(λ) ∀u ∈ E.

The functional |.|q− : E → R defined by

|u|q− =

(
∫

Ω

|u|q
−

dx

)1/q−

,

is a norm in E. In the finite dimensional subspace E1 the norm |u|q− and ‖u‖
are equivalent, so there exists a positive constant K = K(E1) such that

‖u‖ ≤ K|u|q− ∀u ∈ E1.

So that there exists a prositive constant K5(λ) such that

Jλ,µ(u) ≤ K1(‖u‖
p−
1 +‖u‖p

+
1 )+K2(‖u‖

p−
2 +‖u‖p

+
2 )+K3(µ)

(

‖u‖
α−

+ ‖u‖
α+

)

+

+K4(λ)−K5(λ) ‖u‖
q−

∀u ∈ E1.
Hence

K1(‖u‖
p−
1 + ‖u‖p

+
1 ) +K2(‖u‖

p−
2 + ‖u‖p

+
2 ) +K3(µ)

(

‖u‖
α−

+ ‖u‖
α+

)

+
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+K4(λ)−K5(λ) ‖u‖
q−

≥ 0

∀u ∈ S
. And since q− > max(m+, α+), we conclude that S is bounded in E.

Lemma 3. If {un} ⊂ E is a sequence which satisfies the properties

|Jλ,µ(un)| < C4, (19)

dJλ,µ(un) → 0 as n→ ∞, (20)

where C4 is a positive constant, then {un} possesses a convergent subsequence.

Proof. First we show that {un} is bounded in E. If not,we may assume that
‖un‖ → ∞ as n → ∞. Thus we may consider that ‖un‖ > 1 for any integer
n. Using (20) it follows that there exists N1 > 0 such that for any n > N1 we
have

‖dJλ,µ(un)‖ ≤ 1.

On the other hand, for all n > N1 fixed, the application E ∋ v → 〈dJλ,µ(un), v〉
is linear and continuous. The above information yield that

|〈dJλ,µ(un), v〉| ≤ ‖dJλ,µ(un)‖ ‖v‖ ≤ ‖v‖ v ∈ E, n > N1.

Setting v = un we have

−‖un‖ ≤

∫

Ω

|∇un|
p1(x)dx+

∫

Ω

|∇un|
p2(x)dx−λ

∫

Ω

|un|
q(x)dx+µ

∫

Ω

|un|
α(x)dx ≤ ‖un‖ ,

for all n > N1.
We obtain

−‖un‖ −

∫

Ω

|∇un|
p1(x)dx−

∫

Ω

|∇un|
p2(x)dx− µ

∫

Ω

|un|
α(x)dx ≤ −λ

∫

Ω

|un|
q(x)dx,

(21)
for all n > N1. Provided that ‖un‖ > 1 relation (7), (19) and (21) imply

C4 > Jλ,µ(un) ≥ (
1

m+
−

1

q−
)

[
∫

Ω

|∇un|
p1(x)dx+

∫

Ω

|∇un|
p2(x)dx

]

+

+ µ(
1

α+
−

1

q−
)

∫

Ω

|un|
α(x)dx−

1

q−
‖un‖ ≥

≥ (
1

m+
−

1

q−
)

∫

Ω

|∇un|
m(x)dx−

1

q−
‖un‖ ≥

≥ (
1

m+
−

1

q−
) ‖un‖

m−

−
1

q−
‖un‖ .
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Letting n→ ∞ we obtain a contradiction. It follows that {un} is bounded in
E. And we deduce that there exists a subsequence, again denoted by {un},
and u ∈ E such that {un} converges weakly to u in E. Since E is compactly
embedded in Lq(x)(Ω) and Lα(x)(Ω), then {un} converges strongly to u in
Lq(x)(Ω) and Lα(x)(Ω) respectively. The above information and relation (20)
imply

|〈dJλ,µ(un)− dJλ,µ(u), un − u〉| −→ 0 as n −→ ∞.

On the other hand we have
∫

Ω

(|∇un|
p1(x)−2∇un + |∇un|

p2(x)−2∇un − |∇u|p1(x)−2∇u−

−|∇u|p2(x)−2∇u)(∇un −∇u)dx = 〈dJλ,µ(un)−

−dJλ,µ(u), un − u〉+ λ

∫

Ω

(

|un|
q(x)−2un − |u|q(x)−2u

)

(un − u) dx−

−µ

∫

Ω

(

|un|
α(x)−2un − |u|α(x)−2u

)

(un − u) dx. (22)

Now we need the following proposition:

Proposition 2. Let r ∈ C+(Ω) such that r(x) < m∗(x) ∀x ∈ Ω then

lim
n→∞

∫

Ω

|un|
r(x)−2un(un − u)dx = 0.

Proof. Using (3) we have

∫

Ω

|un|
r(x)−2un(un−u)dx ≤ ||un|

r(x)−2un| r(x)
r(x)−1

|un−

u|r(x). Then if ||un|
r(x)−2un| r(x)

r(x)−1

> 1, by (4), there exists C > 0 such that

||un|
r(x)−2un| r(x)

r(x)−1

≤ |un|
C
r(x) and this ends the proof.

Combining proposition 2, and the relation (22) we deduce that

lim
n→∞

∫

Ω

(|∇un|
p1(x)−2∇un + |∇un|

p2(x)−2∇un − |∇u|p1(x)−2∇u

− |∇u|p2(x)−2∇u) (∇un −∇u) dx = 0. (23)

It is known that

(

|ξ|
r−2

ξ − |ψ|
r−2

ψ
)

(ξ − ψ) ≥

(

1

2

)r

|ξ − ψ|
r
, ∀r ≥ 2, ξ, ψ ∈ R

N . (24)
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From (23) and (24) it follows that

lim
n→∞

∫

Ω

|∇un −∇u|p1(x)dx+

∫

Ω

|∇un −∇u|p2(x)dx = 0.

Using relation (7) we get

lim
n→∞

∫

Ω

|∇un −∇u|m(x)dx = 0.

That fact and the relation (6) imply ‖un − u‖ → 0 as n → ∞. The proof of
Lemma 3 is complete.

Proof of Theorem 1. It is clear that the functional Jλ,µ is even and
verifies Jλ,µ(0) = 0. Lemma 1 and lemma 2 show that conditions (I1) and (I2)
are satisfied. Lemma 3 implies that Jλ,µ satisfies the Palais- Smale condition.
Thus the Mountain Pass Theorem can be applied to the functional Jλ,µ. We
conclude that problem (1) has infinitely many weak solutions in E. The proof
of theorem 1 is complete.

4 Proof of Theorem 2

First, we prove the assertion (i) in Theorem 2. We show that for any µ > 0
there exists λ∗ > 0 such that for every λ ∈ (0, λ∗) the problem (1) has a
nontrivial weak solution. The key argument in the proof is related to Ekeland’s
variational principle.
In order to apply it we need the following lemmas:

Lemma 4. For all µ > 0 and all ρ ∈ (0, 1) there exist λ∗ > 0 and b > 0 such
that, for all u ∈ E with ‖u‖ = ρ, Jλ,µ(u) ≥ b > 0 for any λ ∈ (0, λ∗).

Proof. Since q+ < Nm−

N−m− for all x ∈ Ω, we have the continuous embedding

E →֒ Lq(x)(Ω). This implies that there exists a positive constant M such that

|u|q(x) ≤M‖u‖ ∀u ∈ E. (25)

We fix ρ ∈ (0, 1) such that ρ < min (1, 1/M). Then for all u ∈ E with
‖u‖ = ρ we deduce that

|u|q(x) < 1.

Furthermore, relations (4) yield for all u ∈ E with ‖u‖ = ρ, we have
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∫

Ω

|u|q(x)dx ≤ |u|q
−

q(x).

The above inequalitiy and relations (25) imply, for all u ∈ E with ‖u‖ = ρ,
that

∫

Ω

|u|q(x)dx ≤Mq−‖u‖q
−

. (26)

Using relations (7) and (26) we deduce that, for any u ∈ E with ‖u‖ = ρ,
the following inequalities hold true.

Jλ,µ(u) ≥
1

p+1

∫

Ω

|∇u|p1(x)dx+
1

p+2

∫

Ω

|∇u|p2(x)dx−
λ

q−

∫

Ω

|u|q(x)dx+

+
µ

α+

∫

Ω

|u|α(x)dx ≥
1

max(p+1 , p
+
2 )

[
∫

Ω

|∇u|p1(x)dx+

∫

Ω

|∇u|p2(x)dx

]

−

−
λ

q−

∫

Ω

|u|q(x)dx ≥
1

m+

∫

Ω

|∇u|m(x)dx−
λ

q−

∫

Ω

|u|q(x)dx,

≥
1

m+
‖u‖

m+

−
λ

q−
Mq− ‖u‖

q−
,

≥
1

m+
ρm

+

−
λ

q−
Mq−ρq

−

= ρq
−

(

1

m+
ρm

+−q− −
λ

q−
Mq−

)

.

By the above inequality we remark that for

λ∗ =
q−

2m+Mq−
ρm

+−q− , (27)

and for any λ ∈ (0, λ∗), there exists b =
ρm

+

2m+
> 0 such that

Jλ,µ(u) ≥ b > 0, ∀µ > 0; ∀u ∈ E with ‖u‖ = ρ.

The proof of Lemma 4 is complete.

Lemma 5. There exists φ ∈ E such that φ ≥ 0, φ 6= 0 and Jλ,µ(tφ) < 0, for
t > 0 small enough.

Proof. Let l = min{p−1 , p
−
2 , α

−}. Since q− < l, then let ǫ0 > 0 be such that
q− + ǫ0 < l. On the other hand, since q ∈ C(Ω) it follows that there exists
an open set Ω0 ⊂⊂ Ω such that |q(x) − q−| < ǫ0 for all x ∈ Ω0. Thus, we
conclude that q(x) ≤ q− + ǫ0 < l for all x ∈ Ω0.
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Let φ ∈ C∞
0 (Ω) be such that supp(φ) ⊃ Ω0, φ(x) = 1 for all x ∈ Ω0 and

0 ≤ φ ≤ 1 in Ω. Then using the above information for any t ∈ (0, 1) we have

Jλ,µ(tφ) =

∫

Ω

tp1(x)

p1(x)
|∇φ|p1(x)dx+

∫

Ω

tp2(x)

p2(x)
|∇φ|p2(x)dx−

− λ

∫

Ω

tq(x)

q(x)
|φ|q(x)dx+ µ

∫

Ω

tα(x)

α(x)
|φ|α(x)dx ≤

≤
tp

−
1

p−1

∫

Ω

|∇φ|p1(x)dx+
tp

−
2

p−2

∫

Ω

|∇φ|p2(x)dx−

−
λ

q+

∫

Ω

tq(x)|φ|q(x) + µ
tα

−

α−

∫

Ω

|φ|α(x)dx ≤

≤
tl

l

[
∫

Ω

(

|∇φ|p1(x) + |∇φ|p2(x)
)

dx+ µ

∫

Ω

|φ|α(x)dx

]

−

−
λtq

−+ǫ0

q+

∫

Ω0

|φ|q(x)dx =

=
tl

l

[
∫

Ω

(

|∇φ|p1(x) + |∇φ|p2(x)
)

dx+ µ

∫

Ω

|φ|α(x)dx

]

−

−
λtq

−+ǫ0

q+
|Ω0|.

Therefore
Jλ,µ(tφ) < 0,

for t < δ1/(l−q−−ǫ0) with

0 < δ < min

{

1,
lµ|Ω0|

q+
[∫

Ω

(

|∇φ|p1(x) + |∇φ|p2(x)
)

dx+ µ
∫

Ω
|φ|α(x)dx

]

}

.

Finally, we point out that
∫

Ω

(

|∇φ|p1(x) + |∇φ|p2(x)
)

dx+ µ
∫

Ω
|φ|α(x)dx > 0.

In fact if
∫

Ω

(

|∇φ|p1(x) + |∇φ|p2(x)
)

dx+µ
∫

Ω
|φ|α(x)dx = 0, then

∫

Ω
|φ|α(x)dx =

0. Using relation (4), we deduce that |φ|α(x) = 0 and consequently φ = 0 in Ω
which is a contradiction. The proof of lemma is complete.

Proof of (i)
Let µ > 0, λ∗ be defined as in (27) and λ ∈ (0, λ∗). By Lemma 4 it follows

that on the boundary of the ball centered at the origin and of radius ρ in E,
denoted by Bρ(0), we have

inf
∂Bρ(0)

Jλ,µ > 0. (28)
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On the other hand, by Lemma 5, there exists φ ∈ E such that Jλ,µ(tφ) < 0,
for all t > 0 small enough. Moreover, relations (4), (7) and (25) imply, that
for any u ∈ Bρ(0), we have

Jλ,µ(u) ≥
1

m+
‖u‖m

+

−
λ

q−
Mq−‖u‖q

−

.

It follows that

−∞ < c := inf
Bρ(0)

Jλ,µ < 0.

We let now 0 < ǫ < inf∂Bρ(0) Jλ,µ − infBρ(0) Jλ,µ. Using the above infor-

mation, the functional Jλ,µ : Bρ(0) −→ R, is lower bounded on Bρ(0) and

Jλ,µ ∈ C1(Bρ(0),R). Then by Ekeland’s variational principle there exists

uǫ ∈ Bρ(0) such that

{

c ≤ Jλ,µ(uǫ) ≤ c+ ǫ,
0 < Jλ,µ(u)− Jλ,µ(uǫ) + ǫ· ‖ u− uǫ ‖, u 6= uǫ.

Since

Jλ,µ(uǫ) ≤ inf
Bρ(0)

Jλ,µ + ǫ ≤ inf
Bρ(0)

Jλ,µ + ǫ < inf
∂Bρ(0)

Jλ,µ,

we deduce that uǫ ∈ Bρ(0).

Now, we define Iλ,µ : Bρ(0) −→ R by Iλ,µ(u) = Jλ,µ(u) + ǫ· ‖ u − uǫ ‖ . It is
clair that uǫ is a minimum point of Iλ,µ and thus

Iλ,µ(uǫ + t · v)− Iλ,µ(uǫ)

t
≥ 0,

for small t > 0 and any v ∈ B1(0). The above relation yields

Jλ,µ(uǫ + t · v)− Jλ,µ(uǫ)

t
+ ǫ· ‖ v ‖≥ 0.

Letting t → 0 it follows that < dJλ,µ(uǫ), v > +ǫ· ‖ v ‖≥ 0 and we infer that
‖ dJλ,µ(uǫ) ‖≤ ǫ.
We deduce that there exists a sequence {wn} ⊂ Bρ(0) such that

Jλ,µ(wn) −→ c and dJλ,µ(wn) −→ 0E∗ . (29)

It is clair that {wn} is bounded in E. Thus, there exists a subsequence again
denoted by {wn}, and w in E such that, {wn} converges weakly to w in E.
Since E is compactly embedded in Lq(x)(Ω) and in Lα(x)(Ω), then {wn} con-
verges strongly in Lq(x)(Ω) and Lα(x)(Ω). Using similar arguments than those
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used in proof of lemma 3 we deduce that {wn} converges strongly to w in E.
Since Jλ,µ ∈ C1(E,R), we conclude

dJλ,µ(wn) → dJλ,µ(w), as n→ ∞. (30)

Relations (28) and (29) show that dJλ,µ(w) = 0 and thus w is a weak solution
for problem (1). Moreover, by relation (29) it follows that Jλ,µ(w) < 0 and
thus, w is a nontrivial weak solution for (1).
The proof of (i) in theorem 2 is complete.
Now we need to prove (ii) in theorem 2. For this purpose, we will show that
Jλ,µ possesses a nontrivial global minimum point in E. With that end of view
we start by proving two auxiliary results.

Lemma 6. The functional Jλ,µ is coercive on E.

Proof. For any a, b > 0 and 0 < k < l the following inequality holds (see
lemma 4 in [17])

a.tk − b.tl ≤ a.
(a

b

)k/l−k

, ∀t ≥ 0.

Using the above inequality we deduce that for any x ∈ Ω and u ∈ E we have

λ

q−
|u|

q(x)
−

µ

α+
|u|

α(x)
≤

λ

q−

(

λα+

µq−

)q(x)/α(x)−q(x)

≤
λ

q−

[

(

λα+

µq−

)q+/α−−q+

+

(

λα+

µq−

)q−/α+−q−
]

= C,

where C is a positive constant independent of u and x. Integrating the above
inequality over Ω we obtain

λ

q−

∫

Ω

|u|q(x)dx−
µ

α+

∫

Ω

|u|α(x)dx ≤ D. (31)

Where D is a positive constant independent of u.
Using inequalities (5), (7) and (31) we obtain that, for any u ∈ E with ‖u‖ > 1,
we have

Jλ,µ(u) ≥
1

m+

∫

Ω

|∇u|m(x)dx−
λ

q−

∫

Ω

|u|q(x)dx+
µ

α+

∫

Ω

|u|α(x)dx,

≥
1

m+
‖u‖

m−

−D.

Then Jλ,µ is coercive and the proof of lemma is complete.
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Lemma 7. The functional Jλ,µ is weakly lower semicontinuous.

Proof. Since the functionals Λi : E → R,

Λi =

∫

Ω

1

pi(x)
|∇u|pi(x)dx, ∀i ∈ {1, 2}

is convex (see lemma 5 in [17]), it follows that Λ1+Λ2 is convex. Thus to show
that the functional Λ1 +Λ2 is weakly lower semicontinuous on E, it is enough
to show that Λ1+Λ2 is strongly lower semicontinuous on E (see corollary III.8
in [5]).
We fix u ∈ E and ǫ > 0 and let v ∈ E be arbitrary.
Since Λ1 + Λ2 is convex and inequality (3) holds true, we have

Λ1(v) + Λ2(v), ≥ Λ1(u) + Λ2(u) +
〈

Λ
′

1(u) + Λ
′

2(u), v − u
〉

,

≥ Λ1(u) + Λ2(u)−

∫

Ω

|∇u|
p1(x)−1

|∇(v − u)| dx−

−

∫

Ω

|∇u|
p2(x)−1

|∇(v − u)| dx ≥

≥ Λ1(u) + Λ2(u)−D1

∣

∣

∣
|∇u|

p1(x)−1
∣

∣

∣

p1(x)

p1(x)−1

|∇(v − u)|p1(x)
−

− D2

∣

∣

∣
|∇u|

p2(x)−1
∣

∣

∣

p2(x)

p2(x)−1

|∇(v − u)|p2(x)
≥

≥ Λ1(u) + Λ2(u)−D3 ‖u− v‖m(x) ≥

≥ Λ1(u) + Λ2(u)− ǫ,

for all v ∈ E with ‖u− v‖ < ǫ/

[

∣

∣

∣
|∇u|

p1(x)−1
∣

∣

∣

p1(x)

p1(x)−1

+
∣

∣

∣
|∇u|

p2(x)−1
∣

∣

∣

p2(x)

p2(x)−1

]

.

We denote by D1, D2 and D3 three positive constants. It follows that Λ1+Λ2

is strongly lower semicontinuous and since it is convex we obtain that Λ1+Λ2

is weakly lower semicontinuous.
Finally, if {wn} ⊂ E is a sequence which converges weakly to w in E then
{wn} converges strongly to w in Lq(x)(Ω) and Lα(x)(Ω) thus, Jλ,µ is weakly
lower semicontinuous. The proof of lemma is complete.

Proof of (ii)

Proof. By lemmas 6 and 7 we deduce that Jλ,µ is coercive and weakly lower
semicontinuous on E. Then Theorem 1.2 in [20] implies that there exists
uλ,µ ∈ E a global minimizer of Jλ,µ and thus a weak solution of problem.
We show that uλ,µ is not trivial for λ large enough. Indeed, letting t0 > 1
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be a fixed real and Ω1 be an open subset of Ω with |Ω1| > 0 we deduce that
there exists u0 ∈ C∞

0 (Ω) ⊂ E such that u0(x) = t0 for any x ∈ Ω1 and
0 ≤ u0(x) ≤ t0 in Ω\Ω1. We have

Jλ,µ(u0) =

∫

Ω

1

p1(x)
|∇u0|

p1(x)dx+

∫

Ω

1

p2(x)
|∇u0|

p2(x)dx−

− λ

∫

Ω

1

q(x)
|u0|

q(x)dx+ µ

∫

Ω

1

α(x)
|u0|

α(x)dx ≤

≤ L(µ)−
λ

q+
tq

−

0 |Ω1| .

where L(µ) is a positive constant.
Thus there exists λ∗ > 0 such that Jλ,µ(u0) < 0 for any λ ∈ [λ∗,∞). It follows
that Jλ,µ(u0) < 0 for any λ ≥ λ∗ and thus uλ,µ is a nontrivial weak solution
of problem (1) for λ large enough. The proof of the assertion (ii) is complete.
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[14] M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear
degenerate problem arising in the theory of electrorheological fluids, Proc.
Roy. Soc. London Ser. A 462 (2006), 2625-2641.
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