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On the classes of hereditarily /,(c)) Banach
spaces

A. A. Ledari

Abstract

Hagler and Azimi introduced a class of hereditarily /; Banach spaces
which fail the Schur property. Then, Azimi extended these spaces to a
class of hereditarily [, Banach spaces for 1 < p < oo and we used these
spaces to introduce a new class of hereditarily [,(co) Banach spaces
analogous of the space of Popov. In particular, for p = 1 the spaces
are further examples of hereditarily /1 Banach spaces failing the Schur
property. In this paper we show for 1 < p < oo, these spaces are dual
spaces with nonseparable duals and fail the Dunford-Pettis property.
Also for p = 1, spaces contain asymptotically isometric copies of ¢;.

1 Introduction

A class of hereditarily /; Banach spaces has been introduced by Hagler and
Azimi, which among the other interesting properties fails the Schur property
[3]. Then Azimi extended these spaces to a new class of hereditarily [, Banach
spaces, the X, ,, [1]. In 2005, Popov constructed a new class of hereditarily
subspace of L; without the Schur property [9] and generalized his result to a
class of hereditarily {, Banach spaces [10]. In [4] we used the X, , spaces to
introduce and study a new class of hereditarily I, spaces, analogous of the space
of Popov. Indeed, if p; > ps > ... > 1, the subspace Z,, for p € [1,00) U {0} of
X, =2 o Xap, ),, is hereditarily £,(co). In particular, we showed that for
p = 1 the spaces are further examples of hereditarily /; Banach spaces which
fail the Schur property. This would be the fourth example of this type. The
first was constructed by J. Bourgain [6], the second by Hagler and Azimi, and
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the third by Popov. In [5] we showed the Banach spaces X, , for 1 <p < oo
contains asymptotically isometric copies of £,. In this paper we show that Z;
contains asymptotically isometric copies of ¢;. For p > 1, Z, is a dual space
and fails the Dunford-Pettis property.

Before introducing these new spaces, let us recall the definition of the X, ;.
Let o = («;) be a sequence of reals in [0, 1] ( whose terms are used as weighting
factor in the definition of the norm) which satisfies the following properties:
(1) l=a; >2ay>..>0,

(2) hmz a; = O,

(3) 2oi2q @ = oo.

By a block F' we mean an interval (finite or infinite) of integers. For a block
F and z = (t1,ts,...) a sequence of scalars such that Zj t; converges, define
<z F>= ZjeF t;. A sequence F1, Fs, ..., F,, ...where each F; is a finite block
is admissible if

max F; < min F;; for i =1,2,3, ...

For x = (t1,t2,...) a finitely nonzero sequence of scalars, define

=

|2 [l= max (325, i [< @, By >[P)7

where the max is taken over all n, admissible sequences Fy, Fs, ..., F;, and
1 < p < oo. Then X, p is the completion of the finitely nonzero sequences of
scalars = (t1,12,...) in this norm. For a good information concerning these
spaces, referred to [1] and [3].

Now we go through the construction of the spaces X, analogous of the
space of Popov. Let a be a fixed sequence, and (X()LJ[,”)ZO:1 a sequence of
Banach spaces as above with co > p; > pa > ... > 1. The direct sum of these
spaces in the sense of [, is defined as the linear space

Xp = (2 @Xaypn)p

with p € [1,00) which is the space of all sequences z = (z!,22,...), 2™ €
Xap,n=1,2,... with

1
=z I 2" ||1(;,pn)p < 0.
The direct sum of the spaces (Xq,p,) in the sense of ¢y is the linear space

Xo = (X021 ©Xap. )y

of all sequences x = (xl,mz, ) , " € Xap,, n=1,2,. for which

lim, || 2" |la,p,= 0 with the norm
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[ o= max, | 2" [[a,p, -

We follow the same notations and terminology as in [8]. The construction
and idea of the proof follow [10] but the nature of these spaces is different. In
fact these spaces are a rich class of spaces which depend on the sequences ()
and (p,) as above.

Fix a sequence («;) of reals which satisfies the above conditions, and a
sequence (p,) of reals with oo > p; > ps > ... > 1. Consider the sequence
space X, as above. For each n > 1, denote by ( €;,)5°; the unit vector basis
of X p, similar to usual unit vector basis of ¢; and by (eim)zl its natural
copy in X, :

€in = (0, ...0,€; 5,0, .)€ X,.
~——
n—1

Let 6, > 0 and A = (6,,) such that > . 62 =1 if p > 1, and lim,,6, =0
and max, 0, = 1if p=0. For each i > 1 put 2z = > .- 0n€;,. Then

L 1
Iz llp= (Cnts | dnein l15,5,)7 = (Coli08)r = L.
Since || i |lap=1 and
| 2i lo=maxy || dnein [lap,= 1.

It is clear that for any sequence (¢;);~, of scalars,

1325 bz = 3202 0% Il 2o ticin (15, if 1 < p < o0

and

I 2211 tizi [lo= maxdy, || 27;1 li€in ||a,pn if p=0.

Let Z, be the closed linear span of (z;);~,. For each I C N the projection
Pr denotes the natural projection of X, onto [e; » : ¢ € N,n € I]. Denote also

Qn = P{n,n+1,...}~
Definition 1.1. A Banach space X is hereditarily [, if every infinite dimen-
sional subspace of X contains a subspace isomorphic to .

A Banach space X has the Schur property if norm convergence and weak
convergence coincide. It is well known that [y has the Schur property.

Here is the main result of [4].

Theorem 1.2. (i) the Banach space Z,, is hereditarily l,, for p > 1.
(ii) for p =1 the space Z; is hereditarily Iy and fails the Schur property.
(iii) The space Zy is hereditarily co.



130 A. A. LEDARI

2 The results

Definition 2.1. We say that a Banach space X contains asymptotically iso-
metric copies of ¢ if for some sequence €, | 0 (0 < €, < 1), there is a norm-one
sequence (x,) in X such that for all m and scalars (¢, : 0 < n <m)

Zl—én [tn |<\|Zt fﬂn\|<2|t , (tn) € 41

In [5], we showed the Banach space X, contains asymptotically isometric
copies of £,. Now, we show Z; contains asymptotically isometric copies of ¢;.
First, we recall the following lemma that obtained of proof of theorem 2.7 of
[4](which is similar to proof of theorem 2.5 of [10]).

Lemma 2.2. Let {e,} be a real decreasing sequence such that 0 < g4 < 1
for all s. There exist a sequence {us} of S(Z1) and a sequence of integers
1 <ny <ng < ... such that

() [us = Qn, us|| < 5

(”) HQnsHUs ‘ < EZ

Theorem 2.3. Z; contains asymptotically isometric copies of 1.

Proof. Let {5} be a real decreasing sequence such that for all s, 0 < e, < 1.
Using the previous lemma, we have a {us} C S(Z1) and a sequence of integers
1 < ny < ng < ... such that
(4) [us — Qn,usl] < 5
Put vy = Qu,us — Qn,, ,us for s € N. Since vy = us — (us — Qn us +
Qn., Us), then [|vg|| > 1 — 5. Then for each scalars {a,}7; one has

m m

z(l — el € X lalllnl = | el < Z ]

But
m m m
I ZGS(US —vg)|[ <] Zas(us — Qn us|| + || ZasQns+1USH =

s=1 s=1 s=1
m m m €

| < Z |as|[[(us — Qn us|| + Z |as]||@n,pyus|| < Z |as|§
s=1 s=1 s=1

Then

m m m
||Zasu5|| 2 HZGSUSH - ||Za5(us — )|
s=1 s=1 s=1
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>3 (1= Sl =Y Flad = (1 -e)lal.

O

Remark 2.4. Recall by [7, p. 80] that for any family of Banach spaces {X,, :
neN} Ifp>1, (3, @Xn); = (22, ®Xy), where % + % =1, and If p=0,
(3, &Xn)y = (22, ©X5), -

We know the Banach spaces X, ,, are dual spaces([1]). LetY,, be the predual
of Xap,, that is, Y} = Xop,. Then (3, @Y")Z = (X0 ®Xap,), That
is, (3on, ®Xap, ), for 1 < p < oo, is a dual space with predual (32, ®Y),),
where % + % =1.

Now we show that the subspace Z,, of (3, ®Xa p, ), is a dual space.

Theorem 2.5. The sequence (z;) is a normalized boundedly complete basis
for Z,(1 < p < o0). Thus Z, is a dual space.

Proof. Suppose that (t;) is a sequence of scalars such that, for each inte-
ger n, sup, || 37, t;z|| = A, for some A € R. we know that the basis
of Z, is (strictly) monotone. Then for any integers n and m with n > m,
|| S0 tizil] < || >, tizi||. In the other word, (|| Y0, tizi||)52, is a strictly
increasing and bounded sequence of real numbers. That is, A = || 3272, t;2;].
Then Z;‘;l t;z; converge and by [8, 1.b.4] Z, is a dual space. O

Note: Here, strictly is necessary. A simple example is the Banach space c¢y.
We know that for any integer n, sup,||>-7_, ;|| = 1 but 3272, e; ¢ co.

Definition 2.6. We say that a Banach space X has Dunford- Pettis prop-
erty if, for each couple weakly null sequences (x,) and (z}) in X and X*,
respectively, we have limpx} (x,) = 0.

Azimi in [3] showed that for p > 1, the Banach space X, , fails the Dunford
Pettis property. Now, we show the Banach space Z, (1 < p < oo) fails the
Dunford Pettis property.

Theorem 2.7. The Banach space Z, (1 < p < c0) fails the Dunford Pettis
property.

Proof. Let u; = z9;— 22,1 and f; : Z, — R such that for any z = (21, x2,...) €
Zy with z; = (2,1, %2, ...) € Xa,p,, we have f;(x) = x1,; for integers i. Then
for g, = fon — fon—1, we have g, (u,) = 26;. To complete the proof we need
to show that u,, — 0 weakly, and g,, — 0 weakly. The first one follows from
the fact that, for every increasing sequence (ny) of integers, we have
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>y 52(2?21 ai)ﬁ)%

lim |[tn, + Uny + o + Un, ||

ko0 k o klggo k
k 1
ol Zam BT )
T k—oo k
2k oo 1
k—o0 k
2k
— i =LY
k— o0 k

It remains to show that g, — 0 weakly. If not there are F' € Z;* with || F|| = 1,
0 > 0 and a subsequence (g, ) such that F(g,,) > J for all integers k. So for
integer N we have Zgzl F(gn,) > N6 and hence

N
I ol
~ .
This implies that for any integer N, there exist 2V = (2,2, ...) € Z, with

N = (xf.\fl,x%, ...) € Xq p, such that

L
i Zgnk(a:N) > 4.
k=1

We have lim,,_, o0 x{vn = 0 for integer N, since Y =, a; = co. Therefore

1Y 1
5 g™ = Y@, — 71200
N N
k=1 k=1
1 & 1 &
< N| Z |5U11ank| + N Z |x{\f2nk71‘ =0
k=1 k=1
as N — oo which is a contradiction. O

3 The dual and predual of X, ,,.

Some properties of the dual and predual of X, ; and X, , have been studied
in [2] and [5]. We give now a direct proof to show X7  is nonseperable.

Theorem 3.1. For1<p <oo, X = (372, @Xayp"); is nonseparable.
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Proof. Let {F;} be a sequence of blocks of integer such that maxF; < minF;;q
and F = (F1,Fs,...). Now, for z = (21,22,...) € Z,, we define the linear

functional —
fp(x):: }:::E: < xn,lﬁ >

n=1i=1
on Z,.
Let Fy4 be a finite block of integer and x4 be a corresponding unit vector in
Zp such that 1 = ||z4|| and x4 is normed by Fy. We know, (z4), is normed by
Fy. Now, select blocks Fy and F disjoint from each other and disjoint from
Fy such that mazF, < minkFy and maxFy < minF;. Now, we select o and
z1 in Z, such that

L=lzoll 1=l

and x( is normed by Fy and z7 is normed by F}
We select Fyg and Fp; disjoint from each other and disjoint from Fy such
that
maxFy < minFyg , maxFy < minFp;.

select xgg and xg1 such that
1= [lzool 1 = [lzo1]]-

and xgg is normed by Fyg and xp; is normed by Fy;. We select Fig and Fiy
disjoint from each other and disjoint from F; such that

maxFy < minFig , maxFy < minkFiy.
select x19 and x11 such that
1=zl 1= [J@11]].

and x1g is normed by Fig and x1; is normed by Fi;. In an obvious way we
correspond to the dyadic tree, T = |, ,{0,1}" disjoint sets

Fio, F11, Fooo, Foors Foro, Foit, -

of integers and corresponding sequences Zig,T11,Z000;L001, L0105 L011,--- aS
above.

Since for any two branches F! = (Fy, Fy, Foo, ...) and F? = (Fy, Fy, Fog, ...)
we have

Jri(woo) =1 ) Jr2(x00) =0

hence ||fp — fpz|| > 1.

Assertion of theorem follows from the fact that the set of all branches is
uncountable. so Z is not separable. O
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Definition 3.2. Let X be a linear space and C be a convex subset of X.
A point z € C is said to be an extreme point of C if and only if C\{z} is
still convex, that is, if any time z = Ax; + (1 — A\)xe where z1,29 € C and
0 < A < 1, then it must be that x = 21 = z3. Given such a set C, ext(C) will
denote the set of all extreme points of C.

Definition 3.3. Let L be a linear space and A C L. By convex hull of
A, which we will denote by co(A), we mean the smallest convex subset of L
containing A.

We will use the following theorem of Krein-Milman :

Theorem 3.4. Let X be a locally convex linear topological space and C be a
compact, convex subset of X . Then C contains extreme points. Moreover,
C =vco(ext(C)). That is, any closed convex set is the closed convex hull of its
extreme points.

By use of Banach-Alaoglu theorem, the unit ball of (3.7, ©Xap,), is

weak*-compact set in (372, ©Xa,p,),. Since this set is obviously convex as
well, we have

Theorem 3.5. The closed unit ball of the dual space of a normed linear space
1s the weak*-closed convex hull of its extreme points.

Since (3.2, ®Xap,), » (p 2 1) is a dual space, by using the previous
theorem we have

Theorem 3.6. The closed unit ball of (30, &Xap,), » (p = 1) is the weak”-
closed convex hull of its extreme points.

Dedicated to: the memory of professor Parviz Azimi
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