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On the classes of hereditarily ℓp(c0) Banach
spaces

A. A. Ledari

Abstract

Hagler and Azimi introduced a class of hereditarily l1 Banach spaces
which fail the Schur property. Then, Azimi extended these spaces to a
class of hereditarily lp Banach spaces for 1 ≤ p < ∞ and we used these
spaces to introduce a new class of hereditarily lp(c0) Banach spaces
analogous of the space of Popov. In particular, for p = 1 the spaces
are further examples of hereditarily l1 Banach spaces failing the Schur
property. In this paper we show for 1 ≤ p < ∞, these spaces are dual
spaces with nonseparable duals and fail the Dunford-Pettis property.
Also for p = 1, spaces contain asymptotically isometric copies of ℓ1.

1 Introduction

A class of hereditarily l1 Banach spaces has been introduced by Hagler and
Azimi, which among the other interesting properties fails the Schur property
[3]. Then Azimi extended these spaces to a new class of hereditarily lp Banach
spaces, the Xα,p [1]. In 2005, Popov constructed a new class of hereditarily l1
subspace of L1 without the Schur property [9] and generalized his result to a
class of hereditarily lp Banach spaces [10]. In [4] we used the Xα,p spaces to
introduce and study a new class of hereditarily lp spaces, analogous of the space
of Popov. Indeed, if p1 > p2 > ... > 1, the subspace Zp for p ∈ [1,∞) ∪ {0} of
Xp = (

∑∞
i=1 ⊕Xα,pn)p is hereditarily ℓp(c0). In particular, we showed that for

p = 1 the spaces are further examples of hereditarily l1 Banach spaces which
fail the Schur property. This would be the fourth example of this type. The
first was constructed by J. Bourgain [6], the second by Hagler and Azimi, and
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the third by Popov. In [5] we showed the Banach spaces Xα,p for 1 ≤ p < ∞
contains asymptotically isometric copies of ℓp. In this paper we show that Z1

contains asymptotically isometric copies of ℓ1. For p ≥ 1, Zp is a dual space
and fails the Dunford-Pettis property.

Before introducing these new spaces, let us recall the definition of the Xα,p.
Let α = (αi) be a sequence of reals in [0, 1] ( whose terms are used as weighting
factor in the definition of the norm) which satisfies the following properties:

(1) 1 = α1 ≥ α2 ≥ ... > 0,
(2) limi αi = 0,
(3)

∑∞
i=1 αi = ∞.

By a block F we mean an interval (finite or infinite) of integers. For a block
F and x = (t1, t2, ...) a sequence of scalars such that

∑
j tj converges, define

< x,F >=
∑

j∈F tj. A sequence F1, F2, ..., Fn, ...where each Fi is a finite block
is admissible if

maxFi < minFi+1 for i = 1, 2, 3, ...

For x = (t1, t2, ...) a finitely nonzero sequence of scalars, define

∥ x ∥= max (
∑n

i=1 αi |< x,Fi >|p)
1
p ,

where the max is taken over all n, admissible sequences F1, F2, ..., Fn and
1 ≤ p < ∞. Then Xα,p is the completion of the finitely nonzero sequences of
scalars x = (t1, t2, ...) in this norm. For a good information concerning these
spaces, referred to [1] and [3].

Now we go through the construction of the spaces Xp analogous of the
space of Popov. Let α be a fixed sequence, and (Xα,pn)

∞
n=1 a sequence of

Banach spaces as above with ∞ > p1 > p2 > ... > 1. The direct sum of these
spaces in the sense of lp is defined as the linear space

Xp = (
∑∞

i=1 ⊕Xα,pn)p

with p ∈ [1,∞) which is the space of all sequences x =
(
x1, x2, ...

)
, xn ∈

Xα,pn , n = 1, 2, ... with

∥ x ∥p= (
∑∞

n=1 ∥ xn ∥pα,pn
)

1
p < ∞.

The direct sum of the spaces (Xα,pn) in the sense of c0 is the linear space

X0 = (
∑∞

n=1 ⊕Xα,pn)0

of all sequences x =
(
x1, x2, ...

)
, xn ∈ Xα,pn , n = 1, 2, ...for which

limn ∥ xn ∥α,pn
= 0 with the norm
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∥ x ∥0= maxn ∥ xn ∥α,pn
.

We follow the same notations and terminology as in [8]. The construction
and idea of the proof follow [10] but the nature of these spaces is different. In
fact these spaces are a rich class of spaces which depend on the sequences (αi)
and (pn) as above.

Fix a sequence (αi) of reals which satisfies the above conditions, and a
sequence (pn) of reals with ∞ > p1 > p2 > ... > 1. Consider the sequence
space Xp as above. For each n ≥ 1, denote by ( ei,n)

∞
i=1 the unit vector basis

of Xα,pn similar to usual unit vector basis of ℓ1 and by (ei,n)
∞
i=1 its natural

copy in Xp :

ei,n = (0, ...0︸ ︷︷ ︸
n−1

, ei,n, 0, ...) ∈ Xp.

Let δn > 0 and ∆ = (δn) such that
∑∞

i=1 δ
p
n = 1 if p ≥ 1, and limnδn = 0

and maxn δn = 1 if p = 0. For each i ≥ 1 put zi =
∑∞

n=1 δnei,n. Then

∥ zi ∥p=
(∑∞

n=1 ∥ δnei,n ∥pα,pn

) 1
p = (

∑∞
n=1 δ

p
n)

1
p = 1.

Since ∥ ei,n ∥α,p= 1 and

∥ zi ∥0= maxn ∥ δnei,n ∥α,pn= 1.

It is clear that for any sequence (ti)
m
i=1 of scalars,

∥
∑m

i=1 tizi ∥pp=
∑∞

n=1 δ
p
n ∥

∑m
i=1 tiei,n ∥pα,pn

if 1 ≤ p < ∞

and

∥
∑m

i=1 tizi ∥0= max δn ∥
∑m

i=1 tiei,n ∥α,pn if p = 0.

Let Zp be the closed linear span of (zi)
∞
i=1. For each I ⊆ N the projection

PI denotes the natural projection of Xp onto [ei,n : i ∈ N, n ∈ I]. Denote also
Qn = P{n,n+1,...}.

Definition 1.1. A Banach space X is hereditarily lp if every infinite dimen-
sional subspace of X contains a subspace isomorphic to lp.

A Banach space X has the Schur property if norm convergence and weak
convergence coincide. It is well known that l1 has the Schur property.

Here is the main result of [4].

Theorem 1.2. (i) the Banach space Zp is hereditarily lp for p > 1.
(ii) for p = 1 the space Z1 is hereditarily l1 and fails the Schur property.
(iii) The space Z0 is hereditarily c0.
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2 The results

Definition 2.1. We say that a Banach space X contains asymptotically iso-
metric copies of ℓ1 if for some sequence εn ↓ 0 (0 < ϵn ≤ 1), there is a norm-one
sequence (xn) in X such that for all m and scalars (tn : 0 ≤ n ≤ m)

m∑
n=0

(1− εn)|tn| ≤ ∥
m∑

n=0

tnxn∥ ≤
m∑

n=0

|tn|, (tn) ∈ ℓ1.

In [5], we showed the Banach space Xα,p contains asymptotically isometric
copies of ℓp. Now, we show Z1 contains asymptotically isometric copies of ℓ1.
First, we recall the following lemma that obtained of proof of theorem 2.7 of
[4](which is similar to proof of theorem 2.5 of [10]).

Lemma 2.2. Let {εs} be a real decreasing sequence such that 0 < εs ≤ 1
for all s. There exist a sequence {us} of S(Z1) and a sequence of integers
1 ≤ n1 < n2 < ... such that

(i) ||us −Qnsus|| ≤ εs
4 ;

(ii) ||Qns+1us|| ≤ εs
4 .

Theorem 2.3. Z1 contains asymptotically isometric copies of ℓ1.

Proof. Let {εs} be a real decreasing sequence such that for all s, 0 < εs ≤ 1.
Using the previous lemma, we have a {us} ⊂ S(Z1) and a sequence of integers
1 ≤ n1 < n2 < ... such that

(i) ||us −Qnsus|| ≤ εs
4 ;

(ii) ||Qns+1us|| ≤ εs
4 .

Put vs = Qnsus − Qns+1us for s ∈ N. Since vs = us − (us − Qnsus +
Qns+1us), then ||vs|| ≥ 1− εs

2 . Then for each scalars {as}ms=1 one has

m∑
s=1

(1− 2εs)|as| ≤
m∑
s=1

|as|||vs|| = ||
m∑
s=1

asvs|| ≤
m∑
s=1

|as|.

But

||
m∑
s=1

as(us − vs)|| ≤ ||
m∑
s=1

as(us −Qnsus||+ ||
m∑
s=1

asQns+1us|| ≤

|| ≤
m∑
s=1

|as|||(us −Qns
us||+

m∑
s=1

|as|||Qns+1
us|| ≤

m∑
s=1

|as|
εs
2
.

Then

||
m∑
s=1

asus|| ≥ ||
m∑
s=1

asvs|| − ||
m∑
s=1

as(us − vs)||
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≥
m∑
s=1

(1− εs
2
|as| −

m∑
s=1

εs
2
|as| ≥

m∑
s=1

(1− εs)|as|.

Remark 2.4. Recall by [7, p. 80] that for any family of Banach spaces {Xn :
n ∈ N}, If p ≥ 1, (

∑
n ⊕Xn)

∗
p = (

∑
n ⊕X∗

n)q where 1
p + 1

q = 1, and If p = 0,

(
∑

n ⊕Xn)
∗
0
= (

∑
n ⊕X∗

n)1 .
We know the Banach spaces Xα,pn are dual spaces([1]). Let Ypn be the predual
of Xα,pn , that is, Y ∗

pn
= Xα,pn . Then (

∑
n ⊕Ypn)

∗
q
= (

∑
n ⊕Xα,pn)p. That

is, (
∑

n ⊕Xα,pn)p, for 1 ≤ p < ∞, is a dual space with predual (
∑

n ⊕Ypn)q
where 1

p + 1
q = 1.

Now we show that the subspace Zp of (
∑

n ⊕Xα,pn)p is a dual space.

Theorem 2.5. The sequence (zi) is a normalized boundedly complete basis
for Zp(1 ≤ p < ∞). Thus Zp is a dual space.

Proof. Suppose that (tj) is a sequence of scalars such that, for each inte-
ger n, supn ||

∑n
j=1 tjzj || = A, for some A ∈ R. we know that the basis

of Zp is (strictly) monotone. Then for any integers n and m with n > m,
||
∑m

i=1 tizi|| < ||
∑n

i=1 tizi||. In the other word, (||
∑n

i=1 tizi||)∞n=1 is a strictly
increasing and bounded sequence of real numbers. That is, A = ||

∑∞
j=1 tjzj ||.

Then
∑∞

j=1 tjzj converge and by [8, 1.b.4] Zp is a dual space.

Note: Here, strictly is necessary. A simple example is the Banach space c0.
We know that for any integer n, supn||

∑n
j=1 ej || = 1 but

∑∞
j=1 ej /∈ c0.

Definition 2.6. We say that a Banach space X has Dunford- Pettis prop-
erty if, for each couple weakly null sequences (xn) and (x∗

n) in X and X∗,
respectively, we have limnx

∗
n(xn) = 0.

Azimi in [3] showed that for p ≥ 1, the Banach space Xα,p fails the Dunford
Pettis property. Now, we show the Banach space Zp (1 ≤ p < ∞) fails the
Dunford Pettis property.

Theorem 2.7. The Banach space Zp (1 ≤ p < ∞) fails the Dunford Pettis
property.

Proof. Let ui = z2i−z2i−1 and fi : Zp → R such that for any x = (x1, x2, ...) ∈
Zp with xi = (xi,1, xi,2, ...) ∈ Xα,pi , we have fi(x) = x1,i for integers i. Then
for gn = f2n − f2n−1, we have gn(un) = 2δ1. To complete the proof we need
to show that un → 0 weakly, and gn → 0 weakly. The first one follows from
the fact that, for every increasing sequence (nk) of integers, we have
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lim
k→∞

||un1 + un2 + ...+ unk
||

k
= lim

k→∞

(
∑∞

n=1 δ
p
n(
∑2k

i=1 αi)
p
pn )

1
p

k

≤ lim
k→∞

(
∑∞

n=1 δ
p
n(
∑2k

i=1 αi)
p)

1
p

k

= lim
k→∞

(
∑2k

i=1 αi)(
∑∞

n=1 δ
p
n)

1
p

k

= lim
k→∞

∑2k
i=1 αi

k
= 0.

It remains to show that gn → 0 weakly. If not there are F ∈ Z∗∗
p with ||F || = 1,

δ > 0 and a subsequence (gnk
) such that F (gnk

) > δ for all integers k. So for

integer N we have
∑N

k=1 F (gnk
) > Nδ and hence

||
∑N

k=1 gnk
||

N
> δ.

This implies that for any integer N , there exist xN = (xN
1 , xN

2 , ...) ∈ Zp with
xN
i = (xN

i,1, x
N
i,2, ...) ∈ Xα,pi such that

1

N

N∑
k=1

gnk
(xN ) > δ.

We have limn→∞ xN
1,n = 0 for integer N , since

∑∞
i=1 αi = ∞. Therefore

| 1
N

N∑
k=1

gnk
(xN )| =

1

N
|

N∑
k=1

(xN
1,2nk

− x1,2nk−1)
N |

≤ 1

N
|

N∑
k=1

|xN
1,2nk

|+ 1

N

N∑
k=1

|xN
1,2nk−1| → 0

as N → ∞ which is a contradiction.

3 The dual and predual of Xα,p.

Some properties of the dual and predual of Xα,1 and Xα,p have been studied
in [2] and [5]. We give now a direct proof to show X∗

α,p is nonseperable.

Theorem 3.1. For 1 ≤ p < ∞, X∗
p = (

∑∞
i=1 ⊕Xα,pn)

∗
p
is nonseparable.
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Proof. Let {Fi} be a sequence of blocks of integer such thatmaxFi < minFi+1

and F = (F1, F2, ...). Now, for x = (x1, x2, ...) ∈ Zp, we define the linear
functional

fF (x) =
∞∑

n=1

∞∑
i=1

< xn, Fi >

on Zp.
Let Fϕ be a finite block of integer and xϕ be a corresponding unit vector in

Zp such that 1 = ∥xϕ∥ and xϕ is normed by Fϕ. We know, (xϕ)n is normed by
Fϕ. Now, select blocks F0 and F1 disjoint from each other and disjoint from
Fϕ such that maxFϕ < minF0 and maxFϕ < minF1. Now, we select x0 and
x1 in Zp such that

1 = ∥x0∥ , 1 = ∥x1∥.
and x0 is normed by F0 and x1 is normed by F1

We select F00 and F01 disjoint from each other and disjoint from F0 such
that

maxF0 < minF00 , maxF0 < minF01.

select x00 and x01 such that

1 = ∥x00∥ , 1 = ∥x01∥.

and x00 is normed by F00 and x01 is normed by F01. We select F10 and F11

disjoint from each other and disjoint from F1 such that

maxF1 < minF10 , maxF1 < minF11.

select x10 and x11 such that

1 = ∥x10∥ , 1 = ∥x11∥.

and x10 is normed by F10 and x11 is normed by F11. In an obvious way we
correspond to the dyadic tree, T =

∪∞
n=0{0, 1}n disjoint sets

F10, F11, F000, F001, F010, F011, ...

of integers and corresponding sequences x10, x11, x000, x001, x010, x011, ... as
above.

Since for any two branches F 1 = (Fϕ, F0, F00, ...) and F 2 = (Fϕ, F0, F01, ...)
we have

fF 1(x00) = 1 , fF 2(x00) = 0

hence ∥fF 1 − fF 2∥ ≥ 1.
Assertion of theorem follows from the fact that the set of all branches is

uncountable. so Z∗
p is not separable.
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Definition 3.2. Let X be a linear space and C be a convex subset of X.
A point x ∈ C is said to be an extreme point of C if and only if C\{x} is
still convex, that is, if any time x = λx1 + (1 − λ)x2 where x1, x2 ∈ C and
0 < λ < 1, then it must be that x = x1 = x2. Given such a set C, ext(C) will
denote the set of all extreme points of C.

Definition 3.3. Let L be a linear space and A ⊆ L. By convex hull of
A, which we will denote by co(A), we mean the smallest convex subset of L
containing A.

We will use the following theorem of Krein-Milman :

Theorem 3.4. Let X be a locally convex linear topological space and C be a
compact, convex subset of X . Then C contains extreme points. Moreover,
C = co(ext(C)). That is, any closed convex set is the closed convex hull of its
extreme points.

By use of Banach-Alaoglu theorem, the unit ball of (
∑∞

i=1 ⊕Xα,pn)p is

weak∗-compact set in (
∑∞

i=1 ⊕Xα,pn)p. Since this set is obviously convex as
well, we have

Theorem 3.5. The closed unit ball of the dual space of a normed linear space
is the weak∗-closed convex hull of its extreme points.

Since (
∑∞

i=1 ⊕Xα,pn)p , (p ≥ 1) is a dual space, by using the previous
theorem we have

Theorem 3.6. The closed unit ball of (
∑∞

i=1 ⊕Xα,pn)p , (p ≥ 1) is the weak∗-
closed convex hull of its extreme points.

Dedicated to: the memory of professor Parviz Azimi

References

[1] P. Azimi, A new class of Banach sequence spaces, Bull. of Iranian Math
Society, 28 (2002), 57-68

[2] P. Azimi, On geometric and topological properties of the classes of hered-
itarily ℓp Banach spaces, Taiwanese Journal of Math., 10(3) (2006), 713-
722.

[3] P. Azimi, J. Hagler, Examples of hereditarily ℓ1 Banach spaces failing the
Schur property, Pacific J. of Math., 122 (1986), 287-297.

[4] P. Azimi, A. A. Ledari, A class of Banach sequence spaces analogous to
the space of Popov, Czech. Math. J., 59(3)(2009), 573-582.



On the classes of hereditarily ℓp(c0) Banach spaces 135

[5] P. Azimi, A. A. Ledari, On the classes of hereditarily ℓp Banach spaces,
Czech. Math. J., 56(3)(2006), 1001-1009.

[6] J. Bourgain, ℓ1-subspace of Banach spaces. Lecture notes. Free University
of Brussels.

[7] J. B. Conway, A course in Functional Analysis, Springer, New York, 1985.

[8] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, Vol I sequence
Spaces, Springer Verlag, Berlin, 1979.

[9] M. M. Popov,A hereditarily ℓ1 subspace of L1 without the schur property,
Proc. Amer. Math. Soc. 133 (2) (2005), 2023-2028.

[10] M. M. Popov, More example of hereditarily ℓp Banach spaces, Ukrainian
Math. Bull. 2(2005), 95-111.



136 A. A. Ledari

University of Sistan and Baluchestan
Department of mathematics
Zahedan, Iran
e-mail: ahmadi@hamoon.usb.ac.ir


