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On non-commutative Minkowski spheres

Laszl6é L. Stach6 and Wend Werner

Abstract

The purpose of the following is to try to make sense of the stereo-
graphic projection in a non-commutative setup. To this end, we consider
the open unit ball of a ternary ring of operators, which naturally comes
equipped with a non-commutative version of a hyperbolic metric and
ask for a manifold onto which the open unit ball can be mapped so that
one might think of this situation as providing a noncommutative analog
to mapping the open disk of complex numbers onto the hyperboloid in
three space, equipped with the restriction of the Minkowskian metric.
We also obtain a related result on the Jordan algebra of self-adjoint
operators.

1 Introduction
By definition, the classical Minkowski sphere is the set
M=MR") = {(t,z,y,2) e R*: ? — (2 +¢y* +2%) =1, t > 0}.
It is straightforward to verify that the Hilbert ball
B =B(R?) := {(a1,a2,a3) € R*: a} +a} +a3 =1}
is mapped injectively onto M by the transformation

1
d(a) = P(ay,asz,a3) :=
(@) =l a2 = )

(1 + a% + a% + a?,), 2a1, 2as, 2a3).
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Namely, we have
®:B < M, oMt x) = (1+t)"'x at (t,x) € M.

Notice that, by identifying IR® with E := Mat(1,3,IR) the set of all row 3-
vectors and R* with R x E = Mat(1,1,IR) x Mat(1,3,IR), respectively, in
matrix terms we can write ®(a) = (®o(a), ®1(a)) where

Py(a) = (1 —aa*) " '(1+aa*), ®(a)=2(1—aa*) 'a. (1.1)

It is a more interesting fact that ® lifts the natural hyperbolic geometry of B to
M in a manner such that vector fields corresponding to hyperbolic translation
flows of B will be mapped to restrictions of IR*-vector fields to M depending
linearly on the coordinates ¢,x and the 3 x 3-matrix

t:=(14+a%a)(l+a*a)” at (t,x)=®(a)
of a non-commutative time. That is, for the vector fields
vy(a) :=u—au*a (aeB, ucE) (1.2)

we get

@
dr
= (2ux*,tu—|— ut~> at  (t,x) = ®(a).

[é#vu] (t,x) =

T:O¢ ((I)_l (t, %) + Tv“((b_l(ta X))) =

The appearance of the non-commutative time term suggests that we should re-
gard an embedding of B instead of Mat(1,1) x Mat(1,3) into E := Mat(1,1) x
Mat(3,3) x Mat(1,3) x Mat(3,1) by the mapping

B(a) == (@O(a),éo(a)@l(a),él(a));
%O(a) = t(a) = (1+a%a)(1 +a*a)"!, (1.3)
®y(a) := ®(a)* =2a*(1 —aa*)"! =2(1 —a*a) 'a* .

In this way, the lifted fields ;I;#vu automatically become the restriction of a
real linear vector on M := ran(®) to a real-linear vector field of E, since

[i#vu] (t,1,%,X) = (ux* +xu*, u*x + x*u, tu + ut, u*t + ?u*)
if (t,1,x,%X)=®(a), acB. (1.4)

Our purpose in this note is to generalize the above considerations to the setting
of ternary rings of operators (TRO in the sequel). As a by-product of our
main theorem, we obtain a result of possible independent interest concerning
the Jordan algebra of self-adjoint operators.
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2 Results

Henceforth H, K will stand for two arbitrarily fixed real or complex Hilbert
spaces and E denotes a TRO in £(H, K)( = {bounded linear operators H —
K}) That is E C L(H,K) is a closed linear subspace such that [abc} =
ab*c € E whenever a,b,c € E. We write

AE):={tcL(K): t=t"tECE}, A(E):={tcL(H): i=1", ElCE}

operator ® : B:={ac E: |al| <1} — E:= A(E) x fl(E) x E x E ranging
in the linking algebra [2] by (1.1) and (1.3). Indeed xx* € A(E) and
x*x € A(E) for any x € E whence, with norm-convergence, also

and, by setting also E := E* = {z* : z € E} C £(K,H), we define the

Tola) = lx+2) (aa")" € A(E), Po(a)=1a+2) (a*a)" € A(E),
®i(a) = 2) (aa")"a = [lk + Po(a)la= (2.1)
n=0

= 2 Za(a*a)” =allyg+ %o(a)] € E forany ac B.
n=0

Let us finally define

—

M = {(t,ax,i) cE: te A (E), t? —xx* = 1k, X = x",
TeAL(B), P - %% =1g, (1k +1) 'x = x(1n + Z)-l}.
Our main result reads as follows.

2.2 Theorem. In the TRO-setting established above, we have ?:Bo M
with

(I)il(tjivxﬂ?) = (1 + t)ilx =x"(1n +E’)717 ((t7t~aX, X) € ﬁ)

The vector fields vy of infinitesimal hyperbolic parallel shifts on B defined by
(1.2) are lifted to restrictions of linear maps on M of the form (1.4).

As it is well-known [3], the integration of a vector field v,, provides the flow
[M7 : 7 € IR] of Potapov-Mébius transformations

MI(a): = (lk —wul) Y2(a+u,)(lg + wia) (I — uiu,)/2 =

= (Ig —uw,u?) Y21k 4+ au’) Ya+u,)(lg — u'u,)/?, (aeB)
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where, in terms of Kaup’s odd functional calculus [1],
o0
u, := tanh(7u) Z a, 7" (uu*)"u = Z " T u(utu)”
n=0

o0
with the constants ag,ag,... € IR of the expansion tanh(¢) = Y. «a, &2

On the other hand, linear vector fields are integrated simply l:?y Ec)aking the
exponentials of their multiples with the virtual time parameter 7. Taklng into
account that (1.4) can be written in the matrix form ®#u, : M > (t,t,%x,%X) —
(t,t,%x, X)Ly with

0 0 (u) L(u*)
Lo | 0 0 L(u) R(u*) _[ 0 S(u)}
v R(u*) L(u*) 0 0 S(u*) 0
L(u) R(u) 0 0

where L(-) and R(-) denote left and right multiplication as usually, we get
the following.

2.3 Corollary. M (a) = ! ((I;(a) exp (TLU)), (reR, a€B).

Let us restrict ourselves to the case E=£L(H)( = £(H,H)) and consider
the behavior of ® on the unit ball B(*) of the self-adjoint part £(*)(H) := {a €
L(H): a=a*}. Then ¢y(a) = do(a) = (1g +a2)(1g — a2)~! € L&) (H) and
$1(a) = ¢1(a) = 2a(lg — a2)~! € L) (H). From (1.4) we see also that

[(f)#vu] (t,x,t,x) =2(xou,xeu,teu,teu) if ({,x,tx)= &)(a), acB®

(2.4)
in terms of the Jordan product x ey := %(xy + yx) on £)(H). We get the
following explicit linear representation for the Jordan manifold structure of
the unit ball of £(9)(H) discussed in Theorem 2.6 of our paper [4].

2.5 Corollary. For the transformation ® := [®q, ®1] we have & : B®) «
M® = {(t,x) € LEOMH)?: t >0, t? —x*> = 1u}. The Mébius transfor-
mations M7 (u € £&)(H) map B®) onto itself and, in terms of the Jordan
multiplication J(u) := $[L(u) + R(u)],

Mj(a) = @' <@<a)exp(27[‘é(‘;)(ﬂ)>:

(e gu(a) + o1 @)™ + €7 go(a) — dx (@)™,

= ¢!
e™[go(a) + 91 (a))e™ — e [o(a) — 61 (a)]e™)
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3 Proof of Theorem 2.2

Theorem 2.2 is an immediate consequence of the following substatements.

3.1 Lemma. The component ®, of ® is injective. Moreover ®; : B + E
with

—1 -1
<I>1_1(c)=[1K—|—\/1K+cc*} c:c[1H+\/1H+c*c , (c € E).

3.2 Lemma. For any a € B, ¢o(a)? — ¢1(a)d1(a)* = 1k and ¢o(a)? —
¢1(a)*¢1(a) = 1a.

3.3 Lemma. Letx € E, t € £ (K) andt € Z+(H) be so given that t?> —xx* =
1k and £ — x*x = lu. Thent € A (E), t € A, (E) = (A4 (E) := E*) and
(1 +t) " 'x = x(1g +1)~! € B. By writing a := (1g +t)~'x for the common,
value, we have t = ®y(a), L = Dy(a), x = ¢1(a), x* = ¢1(a).

3.4 Proposition. Let M := {(t,x) € A (E)xE: t?—xx* =1k } and letu €
E be fized arbitrarily. Then the submap ® := [g, P4] of<I>( = [Dg, Dy, D1, <I>1])
lifts the vector field vy to (t,x) — (ux* +xu*, tu + uf) with t := /T + xX*x

on M. That is, given (t,x) € M and, by setting a := ®~1(¢t,x) = (1x +t) " 'x,
we have

[@#vy] (t,%) P(a+7(u—au‘a)) = (ux* + xu*, tu + utN).

T dr

7=0

3.5 Corollary. If M := {({,X) € A; (E*) xE*: I —XX* = I} andu € E

1s arbitrarily fized then the submap P = [;ISQ, &)1] of(/I; lifts the vector field vy
to (t,X) (u*i* +Xu, tu* +u*t> with t := \/Tg + X% to M.. That is, given
(1,X) € M and, by setting a := & 1({,X) = X*(1g + £)~*, we have

[E)#vu] (t,X) = 4 ®(a+7(u—au‘a)) = <u*§* + Xu, tu* + u*t).

dr

=0

Proof of 3.1. Given any c € E let tg(c) := t)p(cc*) with the continuous real
function ¥o(7) := 14++/1 + 7. By the Spectral Mapping Theorem, Sp(to(c)) =
Yo (Sp(cc*)) > 0. Hence t(c) : 2[1k + V1 + cc*| = 2to(c)™! is well-defined
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and, by Sinclair’s Theorem*, [[t(c)c||* = [|t(c)cc*t(c)|| = max {y(7)*7: T €
Sp(ce*)} < 4fcl?/1 + /1 + HCHQ}2 < 1. To see that t(c)c € E and hence
also € B, notice that, by Weierstrass’” Approximation Theorem, there is a
sequence 71, Ta, . . . of real polynomials converging uniformly to 1 on Sp(cc*).
By Sinclair’s Theorem again, 7, (cc*) — t(c¢) in norm. However cc* € A(E),
whence also 7, (cc*) € A(E) entailing t(c) € A(E) and t(c)c € B.

To complete the proof, we show that ¢(¢g(a))¢o(a) = a for any a € B.
Given a€ B, we have 1k +¢o(a)po(a)* = 1K+4(1Kfaa*)*1aa*(1I¢aa*)’1 =
(lx— aa*)2[(1x— aa*)? + 4aa* ] (1x— aa ) 2(1g+ aa*)?. It follows 1k +
V1k + ¢o(a)go(a)* = (lK aa*)"![(lx— aa*) + lx+ aa*| = 2(1x— aa*)"!
entailing ¢(¢o(a))¢o(a) = 3 (1k— aa*)[2(1k— aa*) 'a] = a.

Proof of 3.2. Given any operator a € B, we have

$o(a)” — ¢1(a)¢i(a) =
1k —aa* 1

1k —aa*) ' [lk + 2aa* + (aa*)® — 4aa*|(1x —aa*) ' =

( )~ (
( )
(lx —aa*) ' [l — 2aa* + (aa*)?](1lx —aa®) "' =
(lx —aa*) ' [l — 2aa* + (aa*)?](1lx —aa*) ™' =
( )" (Ik

! =1k .

-1

1k —aa* —aa*)?(1g — aa®)

The proof of the relationship ¢o(a)? — ¢1(a)*¢1(a) = 1y is analogous with
terms a*a replacing aa* and 1y instead of 1k.

Proof of 3.3. Since xx* € A, (E, by Sinclair’s and Weierstrass’ Theo-
rems (as in the proof of 3.1), t = /Ix +xx* € A4 (E). Similarly ¢ =
VIa +xx € A (E). By Lemma 3.1, (Ix+t)'x = [Ik +V1k +xx*| x=
o7l (x) = x[lg + \/M] = x(1g + t)~'. Hence the definition of a
ensures that x = ®1(a) = ®(a )* Thus, by Lemma 3.2, t = /I + xx* =
V1K + @1 (a)@1(a)* = ®o(a) and t=Ig +xx = /g + ®:1(a)*®,(a) =
<I>0(a).

Proof of 3.4. Notice that, by 3.3 we have M = range(®). Let any point
(t,x) € M and u € E be fixed arbitrarily and write

a:=dt,x) = (I +1) " 'x, v:=1v,(a) = a—au*a. (3.6)

*The norm of a self-adjoint operator coincides with its spectral radius.

1k +aa*)?(1x —aa*) "' — (1 — aa*) " !(4aa*)(1x — aa*)"*
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Then, in terms of the M&bius transformations M| := exp(7Tv,) we have

[é#vu] (t,x) = %

d
T -1 _ T — &
T:0<I> o M] o® ' (t,x) = . 7:0@ o M} (a) = ®'(a)v.

We calculate both ®'(a) and v in terms of ¢, 2. For the first component of ®,

Po(a) = (lx —aa*) '(lk +aa*) = (Ix —aa*) '[(lx — aa*) + 2aa*] =
= 1k +2(1x —aa*)laa* = 1x + ®;(a)a* .

Since, by definition ®;(a) = x, hence we get

d o o N
e T:O<I>1(a+7'v)(a+7'v) =¢1(a)v* + [¢)(a)v]a* =

= xv'+ [¢)(a)v]a*.

Py(a)v =

We can express @) (a)v in algebraic terms of a, v as follows:

d Oi(atTV) = Ik +(a+7v)(a+rv) ] Ha+Tv) =

d
il B
dr lr=0 dr ’7‘:0 [
[l —aa*]"'v + 2[lx —aa*] ! (av* + va*)[lgx —aa*] 'a .

dl(a)v =

Since a = & 1(¢,x) = (1x +t) "'x and since xx* =t? —1x = (t— 1k ) (1k +1),
here we have

Ik —aa* = 1x — (Ix +t) 'xx*(Ig + 1) =1 — (Ix+t) ' ({t—1k) =
=k +1) lx +t) = (t - 1) =2(1x + )",

(I +1) .

DN | =

[l —aa*] ™' =

Hence and with (3.6) we conclude

1

o) (a)v (1 +t)v + 2[lx —aa*] 'av*[1x —aa*]~

[l —aa*] 'va*[lx —aa*] 'a =

a+

_l_

1 1
(I +t)v + ixv*x + 5(11( +t)yvx*(1g +1) " 'x .
We can express v in terms of ¢,x as

v=u—-auta=u— (Ig +t) 'xu*(lg +1) " 'x.
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Thus

1(a)v

1)
—_—~—

(2)

(1 +t)u—xu*(1x +t) " 'x+

(3)
—~

1
2

(4)

1
Foxutx ——xx*(Ig + ) Tux* (1 + ) " 'x +

2
(5) (6)

1 1
+§(1K +thux*(1g + 1) 'x —§xu*(1K + ) Ixx*(1g +1) 7 'x .

The sum (2)4(3)+(6) vanishes because xx* = (1 + t)(t — 1k ) and hence

(2) +(3) + (6)

1 1
xu* |:_(]-K +t)71 + 5 lg — 5(15}{ . 1)(]—K + t)1:| X =

1 1 1 1
-1 ~.1 “t—t+=--1xl (1 Hlx=0.
xu[ K+2 K+2 2+2 K](KJF) x=0

The sum (4)4(5) can also be simplified as

4)+06) =

Summing up (1) + - --

o (a)v

D (a)v

(1x+t)(tx—1)

1 =~
3= I H ™S (k4 0] we (4 )7 =
% [—(t—1k) + (Ix + )] ux*(1k + 1) 'x =

ux*(lg +t) " 'x .

+ (6), we get

(Ig +thu+ux*(Ig + ) 'x =u+tu+ux*x(1g + 1) =
uttutu®—lg)(lag+t) ' =uttutult—1g) =
tu—i—uf,

xv* + [®](a)v]a* =

xu*

— (g +t) tux* (g + 1)1 +

—l—[(lK +tHu+ux"(1k + t)_lx} x*(lg +t)7 ! =

(1)
~~

()

xu* —xx*(1g +t) tux*(1x +t) 7' +

(3) (4)

+(1g +thux* (1 + 1) +ux*(1g + ) Ixx*(1g + 1) .
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Using again the identity xx* = (1 + t)(t — 1k ), here we can write

2)+@B) = [-(Uxk+t) "Ik +0)tk — 1)+ (Ik +)]ux*(Ax + )" =
= 2ux*(lx +t)7 ',
(4) = ux*(lK + t)_l(lK + t)(tK — 1)(1}( + t)_l = UX*(tK - 1)(1 + tK)_l
= —ux*(lx +t) '[(Ix +t) — 2t] = —ux* + 2ux"t(lx +1) " .
Therefore
@)y = [(D+@D]+I[2)+0B) =

= xu* —ux* 4 2ux*t(lg + )7+ 2ux*(1g +1) "' =
xu* +ux*[— (Ig +t) +2t+2-1g|(Ix +t)"" =

= xu* +ux”. Qu.e.d.

Proof of 3.5. By Lemmas 3.1-3 it suffices to see that we have [&)’(a)] vy(a) =
(W*X*+Xu, tu*+u*t) whenever t = ®y(a), t = Pg(a) and x := X* = ®;(a).
Let ¢ := ®y(a), ¢ := Po(a), x := X* := ®1(a). By 3.3 and since &; = [®4]*
we have indeed

)

[Ef)’l(a)}vu(a) = leT ®i(a+7(u—au'a))| =[tu+ uﬂ * = utt + tu*.

=0

We can deduce the expression of [:136(a)] vu(a) by reversing the order of opera-
tor multiplications during the proof of the relation [®f(a)]vy(a) = ux* +xu*.
Hence we get _

[@h(a)]vu(a) = x"u+u'x = Xu+ u*x*

4 Proof of Corollary 2.5

Henceforth assume H = K and consider any a € B(*), u € E®) := £)(H).
By definition a = a* and u = u* whence both the operators

t = ®pa)=(lu+a’)(lg —a*) "' = (Iu —a?)~'(In +a?)( = Bo(a)),
x = ®(a=2(lg—a’) 'a=2a(lg—a’) "' (= il(a))
are self-adjoint. Thus, since ® : B <+ M, also ® : B®) + M(®). On the

other hand, the vector field vy : b — u — bu*b = u — bub is complete in
B and ranges in E(®) when restricted to B(®) = BN E(®). That is for the
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Mébius transformations M = exp (Tvy) we have M7 : B®)) «+» B (1 € R)
and there lifting ®#* M7 = ® o M7®~ " : M®) < M) can be calculated
by taking the exponentials of the vector fields 7®#v, which are complete in
M®) = E() N M. By 3.4 we have

[@%v,](t,x)= (ux + xu,ut + tu) =(t,x) [

03500 = @) 7 [ Ly 5] )

L(u)+R(u)] ’

Straightforward calculations with the power series

‘n! | L(u)+R(u) 0

exp (10%v,) = 3 T {0 L(U)+R(U)r
n=0

yield the following:

b (T {L(u —?—R(u) L(u>gR(u)D = i %7: {L (u) 40—R(u) L(u)JSR(u)]n =

n=

)
B g 0 L(u)+R(u 0 L(u)+R(u)
=2 (2k)! [L(U)+R(u) ] +Z (2k + 1)! [ (u)+R(u) 0 } =

2k 2k oo 2k+1 2k+1
k=0
B e 7_2Ic [L(u)—l—R( )]2k O > 2k+1 0 [ 2k+1
_kZ_O(Qk:)![ 0 [L(w)+ ]*kzo 2+ 1)! [ ()+R()2k+1o }
{cosh(T[L(u)—I—R(u)]) } [ sinh (7[L( u)])
0 cosh(r[L sinh(r )+R( ))

Since left and right multiplications commute (that is L(g)R(h)z = g(zh) =
(gz)h = R(h)L(g)z for g, h,z € E), it follows

)

cosh(7[L(u)+R(u)]) = 1 exp (7[L(u)+R(u)]) + 1 exp (— 7[L(u)+R(u)]) =

2 2
= % exp (TL(u)) exp (TR(u)) + % exp ( — TL(u)) exp ( — TR(u)) =

= %L(exp(Tu))R(exp(Tu)) + %L(exp(—Tu))R(eXp(—Tu))
with the effect cosh(7[L(unR(u)]) : z — % exp(tu)z exp(Tu)+1 exp(—7u)z exp(—

Similarly sinh(7[L(upR(u)]) : z — % exp(Tu)zexp(ru)—3 exp(—7u)z exp(—7u).
Q.e.d.

Tu).
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