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THE PERRON-FROBENIUS OPERATOR
ON BV(I)

Ion Colţescu

Abstract

In this paper, we determine the upper bound γn of varUnf/varf,
when f varies in the collection of non-constant monotone functions on
I = [0, 1] .

A very simple proof of a generalization of the Gauss-Kuzmin-Lévy theorem
on continued fractions is given by considering the classical operator U defined
by

Uf(x) =
∑
n≥1

x + 1
(x + i)(x + i + 1)

· f
(

1
x + i

)
, x ∈ I = [0, 1] .

This as an operator on BV (I), the collection of complex-valued functions of
bounded variation defined on I under the supremum norm |f | = sup {|f(x)| , x ∈ I} .

For any n ∈ N∗, we have

Unf(x) =
∑

i1,...,in∈N∗

pi1i2...in
(x)f (uin...i1(x)) , x ∈ I, (1)

where
uin...i1 = uin ◦ ... ◦ ui1 ,

pi1i2...in
(x) = pi1(x)pi2(ui1(x))...pin

(
ui

n−1...i1(x)
)
, n ≥ 2, (2)

and the functions ui and pi, i ∈ N∗ , are defined by

ui(x) =
1

i + x
, (3)

pi(x) =
x + 1

(x + i)(x + i + 1)
, x ∈ I. (4)
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Putting
1

x1 +
.. .

+
1
xr

=
pr(x1, x2, ..., xr)
qr(x1, x2, ..., xr)

, r ∈ N∗,

for arbitrary indeterminates x1, x2, ..., xr, we have

pi1i2...in(x) = (5)

=
x + 1

(qn−1(i2, ..., in)(x+i1)+pn−1(i2, ..., in)) (qn(i2, ..., in,1)(x+i1)+pn(i2, ..., in,1))
,

for all n ≥ 2, i1, i2, ..., in ∈ N∗, and x ∈ I.
Note that, in particular, we can write

pi1i2...in
(0) = (−1)n

 1

i1 +
pn(i2, ..., in,1 )
qn(i2, ..., in,1)

− 1

i1 +
pn−1(i2, ..., in)
qn−1(i2, ..., in)

 , (5′)

for all n ≥ 2 and i1, i2, ..., in ∈ N∗.
To simplify the writing, put

pi1,i2...in(0) = αi1i2...in , ui1i2...in(0) = βi1i2...in.

If n is odd, then, by Proposition 2 of [1] and equations (1), (2), (3) and
(5), we have

varUnf = Unf(0)− Unf(1) =

=
∑

i1,i2,...,in∈N∗

[pi1i2...in
(0)f(uin...i1(0))− pi1i2..in

(1)f (uin...i1(1))] = (6)

=
∑

i2,...,in∈N∗

[
α1i2...inf (βin...i21)−

∑
i1∈N∗

α(i1+1)i2...in
f
(
βin...i2(i1+1)

)]
.

Similarly, if n is even, then we have

varUnf = Unf(1)− Unf(0) = (7)

∑
i2,...,in∈N∗

[ ∑
i1∈N∗

α(i1+1)i2...in
f
(
βin...i2(i1+1)

)
− α1i2...inf (βin ...i21)

]
.

The case n = 1. In this case, writing i for i1, equation (6) yields

varUf = α1f(β1)−
∑

i∈N∗

αi+1f (βi+1) .
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Since
α1 =

∑
i∈N∗

αi+1 =
1
2

and 1 = β1 > β2 > ...,

we deduce that

varUf ≤ 1
2

(
f(1)− f(0) =

1
2
varf.

)
(8)

The case n = 2. Write i for i1 and j for i2.

Then in this case αij =
1

(ij + 1)(i(j + 1) + 1)
, i, j ∈ N∗, and equation (7)

yields

varU2f =
∑

j∈N∗

(∑
i∈N∗

α(i+1)jf
(
βj(i+1)

)
− αijf (βj1)

)
.

Clearly, β(j+1)(i+1) < βj1 for all i, j ∈ N∗. Hence

varU2f ≤ f(1) ·
∑

i∈N∗

α(i+1)1 +
∑

j∈N∗

f(βj1)

(∑
i∈N∗

α(i+1)(j+1) − α1j

)
. (9)

But∑
i∈N∗

α(i+1)((j+1) =
∑

i∈N∗

1
((i + 1)(j + 1)) ((i + 1)(j + 2) + 1)

≤ (10)

≤ 1
(j + 1)(j + 2)

∑
i∈N∗

1
(i + 1)2

< α1j ,

for all j ∈ N∗.
Since f(βj1) ≥ f(0), j ∈ N∗, and

∑
j∈N∗

(∑
i∈N∗

α(i+1)(j+1) − α1j

)
= −

∑
i∈N∗

α(i+1)1,

(9) and (10) imply that

varUf ≤
∑

i∈N∗

α(i+1)

(
f(1) − f(0)

)
=
∑

ij∈N∗

α(i+1)1varf. (11)

Note that, for f defined by f(x) = 0, 0 ≤ x ≤ 1
2

and f(x) = 1,

1/2 < x ≤ 1, we have

varU2f =
∑

i∈N∗

α(i+1)1varf, (12)
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that is the constant∑
i∈N∗

α(i+1)1 =
∑

i∈N∗

1
(i + 2)(2i + 3)

= 2
∑

i∈N∗

(
1

2i + 3
− 1

2i + 4

)
=

= log 4− 7
6

= 0, 21962...

occurring in (11) cannot be lowered.

Proposition 1.1. For any n ≥ 3 and i2, ..., in ∈ N∗, we have∑
i1∈N∗

α(i1+1)(i2+1)i3...in
≤ α1i2i3...in

.

Proof. As
pn−1(i2 + 1, i3, ..., in)
qn−1(i2 + 1, i3, ..., in)

=

1

1 +
qn−1(i2, ..., in)
pn−1(i2, ..., in)

=
pn−1(i2, .., in)

pn−1(i2, ..., in) + qn−1(i2, ..., in)
,

we have pn−1(i2 + 1, i3, ..., in) = pn−1(i2, ..., in) and

qn−1(i2+1, i3, ..., in) = pn−1(i2, ..., in) + qn−1(i2, ..., in).

Consequently, putting for brevity

p1
n−1 = pn−1(i2, ..., in), p11

n = pn(i2, ..., in, 1)

q1
n−1 = qn−1(i2, ..., in), and q11

n = qn(i2, ..., in, 1),

by (5), we obtain ∑
i1∈N∗

α(i1+1)(i2+1)i3...in
=

=
∑

i1∈N∗

1(
(i1 + 1)(p1

n−1 + q1
n−1) + p1

n−1

)
((i1 + 1) (p11

n + q11
n ) + p11

n )
≤

≤ 1(
p1

n−1 + q1
n−1

)
(p11

n + q11
n )

·
∑

i1∈N∗

1
(i1 + 1)2

< α1i2i3...in.

Next, to make a choice, assume n is odd. It is easy to see that

βin...(i2+1)(i1+1) > βin...i3i21, βin...i31(i1+1) > βin...i31, βin...i3i21 < βin...i3 ,
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for all i1, i2, ...in ∈ N∗. Then by (6) we have

varV nf ≤
∑

i3,...,in∈N∗

[
−
∑

i1∈N∗

α(i1+1)1i2...in
f
(
βin...i31(i1+1)

)
+

+
∑

i2∈N∗

(
α1i2i3...in

−
∑

i1∈N∗

α(i1+1)(i2+1)i3...in

)
f (βin...i3i21)

]
≤ (13)

≤
∑

i3,...,in∈N∗

[ ∑
i2∈N∗

(
α1i2i3...in −

∑
i1∈N∗

α(i1+1)i2,...,in

)
f (βin...i3) +

+

( ∑
i1∈N∗

α(i1+1)i3...in

)
(f (βin...i3)− f (βin...i31))

]
.

Put δi3...in
= (−1)n−1

∑
i2∈N∗

(
α1i2...in −

∑
i1∈N∗

α(i1+1)i2...in

)
for all i3, ..., in ∈ N∗. Note that

∑
i3,...,in∈N∗

δi3...in
= (−1)n−1

(
α1 −

∑
i1∈N∗

αi1+1

)
= 0. (14)

Now, the problem is to find the best upper bound for

δ(n)f =
∑

i3,...,in∈N

δi3...in
f (βin...i3) .

First, note that, by (14), we have

δnf ≤ 1
2

∑
i3,...,in∈N∗

|δi3...in
|
(
f(1) − f(0)

)
. (15)

Having in view that
1
2

∑
i3,...,in∈N∗

|δi3...in
| = sup

∑
i3,...,in∈A

δi3...in
, where

the supremum is taken over all A ⊂ (N∗)n−2, it follows that
1
2

∑
i3,...,in∈N∗

|δi3...in
| ≥ 1

2
∑

i∈N∗
|δi| .

Hence the right-hand side (15) does not have the limit 0 as n →∞. Thus
(15) is useless for n > 3.

As a matter of fact, it is a general result which does not take into account
that f is non-descreassing

δ(n)f ≤ δn(fn)(f(1) − f(0) n ≥ 3, (16)
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where

f2m+1(x) =
{

1, if c2m/c2m+1 ≤ x ≤ 1
0, if 0 ≤ x < c2m/c2m+1

and

f2m+2(x) =
{

1, if c2m+1/c2m+2 < x ≤ 1
0, if 0 ≤ x < c2m+1/c2m+2,

for all m ∈ N∗. Here cn, n ∈ N are the Fibonacci numbers defined by

c0 = c1 = 1, cn = cn−1 + cn−2, n ≥ 2.

We now can state:

Theorem 1.1. If (16) holds, then, for any monotone function f, we have

varUnf ≤ γnvarf for any n ≥ 3, (17)

where γn = δ(n)(fn) +
∑

i1∈N∗
α(i1+1)1...1.

The constant γn cannot be lowered.

The proof is immediate using (13) on account of the fact that α(i1+1)1i3...in
<

α(i1+1)1...1 for all (i3, ..., in) 6= (1, 1, ..., 1), which follows from (5). Finally, us-
ing (6) and (7), it is easy to check that

varUnfn = γnvarfn.
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