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Abstract

In this paper we present a basic decomposition theorem for matrices

of rank r. Then we use this result to establish interesting properties and

other results regarding the notion of rank of a matrix.

1. Introduction

Here, for sake of simplicity, we often assume that the matrices we are deal-
ing with are square matrices. Indeed, an arbitrary matrix can be transformed
into a square matrix by attaching zero rows (columns), without changing its
rank. Let us consider for the beginning the following operations on a square
matrix, which invariate the rank:

1. permutation of two rows (columns);

2. multiplication of a row (column) with a nonzero real number;

3. addition of row (column) multiplied by a real number to another row
(column).

We will call these operations elementary operations. We set the following
problem: Are these elementary operations of algebraic type? For example, we
ask if the permutation of the rows (columns) i and j of an arbitrary matrix
A is in fact the result of multiplication to left (right) of the matrix A with
a special matrix denoted Uij . If such a matrix Uij does exist, then it should
have the same effect on the identity In. Hence the matrix UijIn is obtained
from the identity matrix by permutation the rows i and j. But UijIn = Uij ,
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Now it can be easily seen that the matrix UijA, respective AUij is the matrix
A with the rows, respective the columns i and j permutated. The matrix Uij

is invertible, because U 2
ij = In. Moreover, det Uij = −1, since the permutation

of two rows (columns) changes the sign of the determinant.

In an analogous way, we search now a matrix Vi(α) for which the multipli-
cation with an arbitrary matrix A leads to the multiplication of the i-th row
(column) of A by a nonzero real α. In particular, Vi(α)In will be the identity
matrix having the i-th row multiplied by α. But Vi(α)In = Vi(α), so we must
have

Vi(α) =
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Now it can be easily seen that the matrix Vi(α)A, respectively AVi(α) is the
matrix A having the i-th row, respectively the i-th column multiplied by α.

Obviously, det Vi(α) = α 6= 0, so the matrix Vi(α) is invertible.

Similarly, let us remark that if we add the j-th row multiplied by λ of the
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identity matrix to the i-th row, we obtain the matrix

Wij(λ) =
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Now, we can easily see that the matrix Wij(λ)A, respective AWij(λ) is ob-
tained from the matrix A by adding the j-th row multiplied by λ to the i-th
row, respectively by adding the j-th column multiplied by λ to the i-th column.

All the matrices Uij , Vij(α), Wij(λ), α ∈ R∗, λ ∈ R, are invertible and
we will call them elementary matrices. Now we can give the following basic
result:

Theorem 1. Each matrix A ∈ Mn(C) can be represented in the form

A = PQR,

where P,R ∈ Mn(C) are invertible and Q =

(

Ir 0
0 0

)

∈ Mn(C), with

r = rank(A).
To prove this, let us remark that every matrix A can be transformed into a

matrix Q by applying the elementary operations 1-3. If for example a11 6= 0,
then multiply the first column by a−1

11 to obtain 1 on the position (1, 1). Then
add the first line multiplied by −ai1 to the i-th row, i ≥ 2 to obtain zeros
on the other places of the first column. Similarly, we can obtain zeros on the
other places of the first row. Finally, a matrix Q is obtained and in algebraic
formulation, we can write

S1...SpAT1...Tq = Q,

where Si, Tj , 1 ≤ i ≤ p, 1 ≤ j ≤ q are elementary matrices. Hence

A = (S1...Sp)
−1Q(T1...Tq)

−1

and we can take

P = (S1...Sp)
−1 , R = (T1...Tq)

−1.

The rank is invariant under elementary operations, so

rank(A) = rank(Q) = r.
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We can see that for every matrix X, the matrix QX, respectively XQ is the
matrix X having all elements of the last n− r rows, respectively the last n− r

columns equal to zero. Theorem 1 is equivalent with the following

Proposition 1. Let there be given A,B ∈ Mn(C). Then rank(A) =
rank(B) if and only if there exist invertible matrices X,Y ∈ Mn(C) such that

A = XBY.

If rank(A) = r, then rank(A) = rank(Q) and according to the proposition,
there exist X,Y invertible such that A = XQY. By multiplication with an
invertible matrix X, the rank remains unchanged. Indeed, this follows from
the proposition and from the relations

XB = XBIn , BX = InBX.

As a direct consequence, we give

Proposition 2. If A,B ∈ Mn(C) then

rank(AB) ≥ rank(A) + rank(B)− n.

Let r1 = rank(A), r2 = rank(B) and let us consider the decompositions

A = P1Q1R1 , B = P2Q2R2,

with Pi, Ri invertible, rank(Qi) = ri, i = 1, 2. Then

AB = P1 (Q1R1P2Q2) R2,

so

rank(AB) = rank (Q1R1P2Q2) .

The matrix Q1R1P2Q2 is obtained from the (invertible) matrix R1P2 by re-
placing the last n−r1 rows and last n−r2 columns with zeros. In consequence,

rang(AB) ≥ n− (n− r1)− (n− r2) = r1 + r2 − n.

2. Applications

Now we can show how the above the theoretical results can be applied in
concrete cases.

A1. Let A ∈ Mn(C) be singular. Then the rank of the adjoint matrix A∗

is equal to 0 or 1.
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If rank(A) ≤ n − 2, then A∗ = 0n, since all minors of order n − 1 of the
matrix A are equal to zero. If rank(A) = n− 1, then

rang(AA∗) ≥ rang(A) + rang(A∗)− n

and from AA∗ = 0n, we derive rank(A∗) ≤ 1.

A2. Let A ∈ Mn(C) be with rank(A) = r, 1 ≤ r ≤ n − 1. Then there

exists B ∈ Mn,r(C), C ∈ Mr,n(C) with rank(B) = rank(C) = r, such that

A = BC. Deduce that A satisfies a polynomial equation of order r + 1.

Let A = PQR, where P,R are invertible and Q =

(

Ir 0
0 0

)

. We can

assume without loss of generality that the first r rows of P are linear inde-
pendent and the first r columns of R are linear independent. Indeed, we can
have this situation by permutation of rows, respective columns, thus by ex-
tramultiplication to left (right) of matrices P,Q, respectively with elementary
matrices of the form Uij . Remark that Q2 = Q, so we have

A = (PQ)(QR).

The matrix PQ has the last n− r columns equal to zero and the matrix QR

has the last n− r rows equal to zero. If denote by B ∈ Mn,r(C), C ∈ Mr,n(C)
the matrices obtained by ignoring the last n − r columns of PQ, respective
the last n− r rows of QR, then

PQ =
(

B 0
)

, QR =

(

C

0

)

and consequently
A = BC.

As we have assumed, rank(B) = r and rank(C) = r. For the second part we
use Cayley-Hamilton theorem. For the matrix A = CB ∈ Mr(C), we can find
complex numbers a1, ..., ar such that

A
r
+ a1A

r−1
+ ... + arI = 0.

By multiplying with B to the left and with C to the right, we obtain

BA
r
C + a1BA

r−1
C + ... + arBC = 0.

Now, BA
k
C = (BC)k+1 = Ak+1, 1 ≤ k ≤ r, so

Ar+1 + a1A
r + ... + arA = 0.
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A3. If A = (aij)1≤i,j≤n ∈ Mn(C) is a matrix with rank(A) = 1, then

aij = xiyj , ∀ 1 ≤ i, j ≤ n,

for some complex numbers x1, ..., xn, y1, ..., yn.

Indeed, there exist matrices

B =




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...
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
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)
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A4. Let A be of rank(A) = 1. Then det(In + A) = 1 + Tr(A). Moreover,

det(λIn + A) = λn + λn−1 · Tr(A),

for all complex numbers λ.

With the previous notations, we also have A = B ′C ′, where

B′ =
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Then

det(In + A) = det(In + B′C ′) = det(In + C ′B′) =

=
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xkyk = 1 + Tr(A).

The other equality can be obtained by changing A with λ−1A.

A5. Let there be given A ∈ Mn(C). Denote by B a matrix obtained by

permutation of the rows of the matrix A. Then det(A+B) = 0 or det(A+B) =
2r · det A, for some nonnegative integer r.
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As we have already seen, we have B = UA, where U is obtained by per-
mutating the rows of the identity matrix. Thus

det(A + B) = det(A + UA) = det(I + U) · det A

and we will prove that det(I + U) ∈ {0, 2r}. To do this, remind that the
determinant of a matrix is equal to the product of all its eigenvalues so the
problem is solved if we prove that the eigenvalues of the matrix I +U are 0 or
2. Let us suppose that λ ∈ C satisfies (I +U)x = λx, for some nonzero vector
x = (x1, ..., xn)

t
∈ Rn. This system can be written as

Ux = (λ− 1)x.

In the left hand of the system the unknowns x1, ..., xn appear in some order.
By squaring the equations and then adding, we obtain

x2
1 + ... + x2

n = (λ− 1)2
(

x2
1 + ... + x2

n

)

,

so (λ− 1)
2

= 1 ⇒ λ ∈ {0, 2}.
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