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Abstract

Our aim is to present a numerical method for solving elliptical prob-
lems by theoretical discretization. In order to do it, a complete system
of eigenfunctions of the Laplacean and the compact imbedding of H* ()

in L?(Q) are used in the paper.
Let © be a bounded domain in RM, with a quite smooth boundary such
that we can apply the Green’s formula and the Sobolev-Kondrashov imbedding
theorem (see [PS]). Consider the following mixed problem:

Lu = finQ,

u = ugonl CoN meas(T) >0 (1)
ou M u
5 i:18—xi1/ifgon8(2\lj,

where L is a linear elliptic operator of divergence form:

M
Lu(x)::—u 8;; (a”(x)g—;i(xo +c(z) - u(z), v,

and v is the versor of the exterior normal to 0f2.
Suppose that L satisfies the conditions:

ai; € CHQ),ce C(Q),c>0,
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M
> ()& = AP, A >0, e Rz e,
ij=1
where by |-| we denote the euclidean norm on RM.
We want to find the weak solution of the problem (1), namely a function
u € V such that

M

> oy (@) g (1) 22 () + (@) u ) o (@) | do = (£, ) oy o € V
Q L=l ’ /
2

where V := {u € H'(Q)lu=0on I' C 9Q}.

We have supposed, without losing the generality, that ug = 0, because
making the translation v — ug, we arrive to homogeneous conditions on I'.

Also, we have supposed that g = 0 on 92 — I, since in the contrary case,
we define f € V* by (f,¢) = (f,0)r20) + faﬂ\l“ geds,Yp € V.

It is known that this problem has a unique solution in V' (see [SM]).

We shall find this solution using a discretization of the problem. For this,
we need the following result (see [SM]):

Theorem 1. Let V and H be two real Hilbert spaces, V' being compactly
imbedded in H. Then there exist the sequences {p,} in V and {\,} in (0, 00)
such that:

(i) {on} is an orthogonal basis in V;

(it) {\/Anen} is an orthogonal basis in H;

(11i) {Anen} is an orthogonal basis in V*;

(iv) {\n} is a monotone increasing sequence that diverges to +0o.

From the proof of this theorem (see [SM]), we know that A, are the eigen-
values of the duality mapping J : V — V*, and ¢, are the corresponding
eigenfunctions.

We denote by < -,- >y and ||[|;, the inner product and respectively the
norm on V.

Remember the following well-known results:

Lemma 1. If V, is a finite dimensional subspace of V  with the basis
01, ey P, then for any w € V, there exists an unique u,, € V,, satisfying:

<U—Up,p >y=0,Vp € V,. (3)

Uy, 1s called the orthogonal projection of w on V,.
Equivalently, we say that u,, is the best approximation of u in V,, in the
norm of V', i.e.

—uplly = inf [Ju—o|, . 4
[l — unlly wlgvn\lu elly (4)
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Taking H = L?(Q) and V = {u € H'(Q)|u = 0 on T' C 9Q}, we obtain
the system {¢,} from the Theorem 1, formed by the eigenfunctions of the
Laplacean.

Denote by
M ou Ov
a(u,v) = / Z a;j (z) p. (x) E () +ec@) u(x)v(z)]| dz, u,v € V.
o |ia=1 v J

(5)

We easily see that a (u, v) is a scalar product on V', and denote this product
by (-,-)y, and the induced norm by ||| - |||v.

Let N € N* and Sy () be the space generated by the functions 1, @2, ..., o

Consider now instead of Vx from the above theorem, the space Sy (2).
In this case, the matrix A = (A;;), Aij =< @i, ; >v is the unity matrix,
because {¢;},_, , y form an orthonormal system.

Denote by Ty : V — Sx () the operator which satisfies:

(u—Tnu, ), =0, Vo € Sy () (6)

or equivalently,
-T = inf — . 7
e~ Twvully = _inf = ol g

Now we state the approximation problem corresponding to the problem

(1):
Find uy € Sy () such that:

(un, )y = (f @) for any ¢ € Sy (). (8)

Because uy € Sy (£2), we have that

N
UN = Z aiPi (9)
i=1

and the relations (8) and (9) lead us to the algebraic system:

N
Zai (%‘,%‘)V = (faSDj>L2 ,j=1,2,..., N,
=1

where a; are not known and must be determined.
Further, we shall prove the existence, the uniqueness and the estimation
of the errors for the approximation problem (8).

Theorem 2. In the above conditions, we have that
(i) For any f € L?(Q), there exists an unique un € Sn (Q) satisfying (8);



190 C. SBURLAN AND S. FULINA

(i1) If w satisfies (1) and uy € Sy () satisfies (8), then u — un satisfies the
relation (6), i. e. uy = Tnu and we have:

uU—1u = inf U — . 10
i ~I| @ESN(Q)||| olll (10)

Proof. (i) As Sy (2) C V, (+,-) is also a scalar product on Sy (£2). For a
fixed f in L2 (Q), f () := (/, ©)12(0) is a linear and continous functional on
Sn, and by the Riesz-Frechet theorem, it results that the equation (8) has a
unique solution in Sy (), for any f € L% ().

(ii) By (1) and (8), uy satisfies:

(u—un,p) =0, Vp € Sy (Q) (11)

We have that
llw—un|* = (u—uy,u—uy) .

From (11), for any ¢ € Sy (), we have:

|||u—uN|||2:(u—uN,u—<,0+<p—uN):(u—uN,u—ap)—i-(u—uN,ap—uN).

But (v —un,p —un) =0, because ¢ —uy € Sy () (see relation (10) ).
So,
2
llw = unl” = (u—un,u =) < |lu—unll] - [[lu =l

from the Cauchy-Buniakowski-Schwartz inequality. From this it results that
Hw = unl < lllw— ¢l

i.e. (10), so uy = Tyu.

Now we can estimate the error as follows:

Theorem 3. For any € > 0, there exists N. € N* such that for any
N > N., then
2 2
lu = Tnullf2q) < € llullgq) -

Proof. From the Theorem 1, we have
Jon = Ann, J V= V™ (12)

We have that {\/)\ngon} is an orthonormal basis in H := L? (), so in
L? () we can write:

u = i Cn\/xtpna
n=1



191

A NUMERICAL METHOD FOR ELLIPTIC PROBLEMS

where ¢, =< U, VAnn >12(0)= VAn < U, ©n >12(Q) -
We have, using (12):

< U, Pn >L2(Q):/U($)S@n = _/ Anpn () do =
= x)J -1 /Ju (z)dz
1
oo / e
nQ

n=1 n

— 1 — 1
= Z . /Ju (@) VAnn (x) dz | / Anpn = Z T < Ju, A/ Anon >r200) *On -
n=1"" Q

N
Because Tyu = Y ¢/ An@n, we obtain:
n=1
=1
u—Tyu= Z . < Ju, \ Anon >r2(9) *V AnPn-
n=N+1 n

It results from this that:

o0 1 o
2
u— TNUHLz(Q) = Z 2 < Ju, \/Ansﬁn >%2(Q) :
n=N+1"T"
Let now be € > 0 arbitrary fixed. Because A,, /" oo, we have that there
exists V. € N such that /\L <+/e,Vn > N..
If N > N,, then:

lu _TNU||2L2 Q) <€ Z < Juy V AnPn >T2(0) <
(©) ()
n=N+1

<e < Ju A Ann >T2i0y= € [ Jull 2

n=1

SO
2 2 2
[u—Tnullz0) < ellJullze@q) = € llullgq) -



192 C. SBURLAN AND S. FULINA

Remark. This method can easily be generalized to the case where u is
a vectorial function, u = (uy,us, ..., u,) and belongs to the space V := {u €
[HY(Q)]P|u; = 0 on T C Q,meas(T") > 0}.

Application - The linear system of elasticity in the static case.

The deformation of a body that occupies a bounded region €2 in the space
RP, (p =2 or 3), is characterized by the displacement vector v : @ — RP and
the strain tensor € = e(u). In the case of small (infinitesimal) deformation,
¢(u) has the form: e(u) := {e;;(u)}1<i,j<p, Where €;;(u) = %(g; + gzz ).

The constitutive relation that characterizes the elasticity in the static case
is a dependence of the stress tensor

o = {0ij}1<i,j<ps Tij = Tji,
namely:

p
O’ij = Z aijklskl(u) in Q7

k=1
p

O+
SN f=0,1<i<p. (13)
= (%cj

The coefficients a;;1; satisfy the symmetry conditions
Qijkl = Qjikl = Qklij,
and the ellipticity conditions
P
> aiuéeé = MEP A > 0,6 € RP, 1<, <p.
k=1
The boundary conditions are:

u; = U; on T' C 09,

P
Zaijuj = F; on 0Q\T',meas(I") > 0.
j=1
Here f = {fi}1<i<p is the vector of the density of the volume forces given on
Q, U is the field of the displacement given on I', and F' is the vector of the
surface forces, given on 90\ I.
Denote by

Lu:i=—Y" 8% (u) = —i[ aighiei ()]
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Then, the system (13) becomes: Lu = f in Q,where L is an elliptic
operator of divergential form, and we can apply the above theory, and find the
weak solution.
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