

ON AN INTEGRAL OPERATOR

Virgil PESCAR and Daniel BREAZ

Abstract

In this paper we define a general integral operator for analytic functions in the open unit disk and we determine some conditions for univalence of this integral operator.

1 Introduction

Let \mathcal{A} be the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

normalized by f(0) = f'(0) - 1 = 0, which are analytic in the open unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$.

We consider \mathcal{S} the subclass of \mathcal{A} consisting of functions $f \in \mathcal{A}$, which are univalent in \mathcal{U} .

We denote by \mathcal{P} the class of functions p of the form

$$p(z) = 1 + \sum_{k=1}^{\infty} b_k z^k,$$

which are analytic in \mathcal{U} , with $Re \ p(z) > 0$, for all $z \in \mathcal{U}$.

In this work we introduce a new integral operator defined by

$$V_n(z) = \left\{ \beta \int_0^z u^{\beta - 1} \left(p_1(u) \right)^{\gamma_1} \dots \left(p_n(u) \right)^{\gamma_n} du \right\}^{\frac{1}{\beta}}, \tag{1}$$

for functions $p_j \in \mathcal{P}$ and β , γ_j be complex numbers $\beta \neq 0$ and $j = \overline{1, n}$.

Key Words: Analytic, integral operator, univalence.

2010 Mathematics Subject Classification: Primary 30C45.

Received: May, 2013. Revised: October, 2013. Accepted: November, 2013.

2 Preliminary results

We shall use the following lemmas.

Lemma 2.1. [3]. Let α be a complex number, $Re \ \alpha > 0$ and $f \in \mathcal{A}$. If

$$\frac{1 - |z|^{2Re \ \alpha}}{Re \ \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1,\tag{1}$$

for all $z \in \mathcal{U}$, then for any complex number β , $Re \beta \geq Re \alpha$, the function

$$F_{\beta}(z) = \left[\beta \int_0^z u^{\beta - 1} f'(u)\right]^{\frac{1}{\beta}} \tag{2}$$

is regular and univalent in U.

Lemma 2.2. (Schwarz [1]). Let f be the function regular in the disk $\mathfrak{U}_R = \{z \in \mathbb{C} : |z| < R\}$, with |f(z)| < M, M fixed. If f(z) has in z = 0 one zero with multiply $\geq m$, then

$$|f(z)| \le \frac{M}{R^m} |z|^m, \ (z \in \mathcal{U}_R), \tag{3}$$

the equality (in the inequality (3) for $z \neq 0$) can hold only if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is constant.

Lemma 2.3. [2]. If the function f is regular in \mathbb{U} and |f(z)| < 1 in \mathbb{U} , then for all $\xi \in \mathbb{U}$ and $z \in \mathbb{U}$ the following inequalities hold

$$\left| \frac{f(\xi) - f(z)}{1 - \overline{f(z)}f(\xi)} \right| \le \frac{|\xi - z|}{|1 - \overline{z}\xi|},\tag{4}$$

$$|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2},\tag{5}$$

the equalities hold only in the case $f(z) = \frac{\epsilon(z+u)}{1+\overline{u}z}$, where $|\epsilon| = 1$ and |u| < 1.

Remark 2.4. [2]. For z = 0, from inequality (4)

$$\left| \frac{f(\xi) - f(0)}{1 - \overline{f(0)}f(\xi)} \right| \le |\xi| \tag{6}$$

and, hence

$$|f(\xi)| \le \frac{|\xi| + |f(0)|}{1 + |f(0)||\xi|}. (7)$$

Considering f(0) = a and $\xi = z$, we have

$$|f(z)| \le \frac{|z| + |a|}{1 + |a||z|},$$
 (8)

for all $z \in \mathcal{U}$.

3 Main results

Theorem 3.1. Let α , β , γ_j be complex numbers, $j = \overline{1,n}$, $Re \ \alpha > 0$ and $p_j \in \mathcal{P}$, $p_j(z) = 1 + b_{1j}z + b_{2j}z^2 + \ldots$, $j = \overline{1,n}$.

$$\left| \frac{zp_j'(z)}{p_j(z)} \right| \le \frac{(2Re\ \alpha + 1)^{\frac{2Re\ \alpha + 1}{2Re\ \alpha}}}{2}, \quad (z \in \mathcal{U};\ j = \overline{1, n}), \tag{1}$$

and

$$|\gamma_1| + |\gamma_2| + \ldots + |\gamma_n| \le 1, \tag{2}$$

then for any complex number β , Re $\beta \geq Re \alpha$, the integral operator V_n defined by (1) is in the class S.

Proof. Let's consider the function

$$g_n(z) = \int_0^z (p_1(u))^{\gamma_1} \dots (p_n(u))^{\gamma_n} du, \quad (p_j \in \mathcal{P}; \ j = \overline{1, n}).$$
 (3)

The function g_n is regular in \mathcal{U} and $g_n(0) = g'_n(0) - 1 = 0$.

From (3) we obtain

$$\frac{1 - |z|^{2Re \ \alpha}}{Re \ \alpha} \left| \frac{zg_n''(z)}{g_n'(z)} \right| \le \frac{1 - |z|^{2Re \ \alpha}}{Re \ \alpha} \sum_{j=1}^n |\gamma_j| \left| \frac{zp_j'(z)}{p_j(z)} \right|,\tag{4}$$

for all $z \in \mathcal{U}$.

By (1), applying Lemma 2.2 we have

$$\left| \frac{zp_j'(z)}{p_j(z)} \right| \le \frac{\left(2Re\ \alpha + 1\right)^{\frac{2Re\ \alpha + 1}{2Re\ \alpha}}}{2} |z|, \quad (z \in \mathcal{U};\ j = \overline{1, n}),\tag{5}$$

and hence, by (4) we get

$$\frac{1 - |z|^{2Re \alpha}}{Re \alpha} \left| \frac{zg_n''(z)}{g_n'(z)} \right| \le \frac{1 - |z|^{2Re \alpha}}{Re \alpha} |z| \frac{(2Re \alpha + 1)^{\frac{2Re \alpha + 1}{2Re \alpha}}}{2} \sum_{j=1}^{n} |\gamma_j|, \tag{6}$$

for all $z \in \mathcal{U}$.

Since

$$\max_{|z| \leq 1} \left[\frac{1 - |z|^{2Re \ \alpha}}{Re \ \alpha} |z| \right] = \frac{2}{(2Re \ \alpha + 1)^{\frac{2Re \ \alpha + 1}{2Re \ \alpha}}},$$

from (2) and (6), we obtain

$$\frac{1 - |z|^{2Re \alpha}}{Re \alpha} \left| \frac{zg_n''(z)}{g_n'(z)} \right| \le 1, \quad (z \in \mathcal{U}). \tag{7}$$

From (7) and since $g'_n(z) = (p_1(z))^{\gamma_1} \dots (p_z(u))^{\gamma_n}$, by Lemma 2.1 it results that the integral operator V_n defined by (1) is in the class S.

Theorem 3.2. Let α , β , γ_j be complex numbers, $j = \overline{1,n}$, $Re \ \alpha > 0$, M_j positive real numbers and $p_j \in \mathcal{P}$, $p_j(z) = 1 + b_{1j}z + b_{2j}z^2 + \ldots$, $j = \overline{1,n}$. If

$$\left| \frac{p_j'(z)}{p_j(z)} \right| < M_j, \quad (z \in \mathcal{U}; \ j = \overline{1, n}), \tag{8}$$

$$M_1|\gamma_1| + M_2|\gamma_2| + \dots + M_n|\gamma_n| \le \frac{1}{\max_{|z| \le 1} \left[\frac{1 - |z|^{2Re \, \alpha}}{Re \, \alpha} |z| \frac{|z| + |c|}{1 + |c||z|} \right]},$$
 (9)

where

$$c = \frac{b_{11}\gamma_1 + b_{12}\gamma_2 + \dots + b_{1n}\gamma_n}{M_1|\gamma_1| + M_2|\gamma_2| + \dots + M_n|\gamma_n|},$$
(10)

then for any complex number β , Re $\beta \geq Re \alpha$, the integral operator V_n given by (1) is in the class S.

Proof. We consider the function

$$g_n(z) = \int_0^z (p_1(u))^{\gamma_1} \dots (p_n(u))^{\gamma_n} du,$$
 (11)

which is regular in \mathcal{U} and $g_n(0) = g'_n(0) - 1 = 0$.

Let's consider the function

$$h(z) = \frac{1}{M_1|\gamma_1| + M_2|\gamma_2| + \ldots + M_n|\gamma_n|} \frac{g_n''(z)}{g_n'(z)}, \quad (z \in \mathcal{U})$$
 (12)

and from (11) we get

$$h(z) = \frac{\gamma_1}{M_1|\gamma_1| + \ldots + M_n|\gamma_2|} \frac{p'_1(z)}{p_1(z)} + \ldots + \frac{\gamma_n}{M_1|\gamma_1| + \ldots + M_n|\gamma_2|} \frac{p'_n(z)}{p_n(z)},$$
(13)

for all $z \in \mathcal{U}$.

From (8) and (13) we obtain |h(z)| < 1, $z \in \mathcal{U}$.

We have

$$h(0) = \frac{b_{11}\gamma_1 + b_{12}\gamma_2 + \dots + b_{1n}\gamma_n}{M_1|\gamma_1| + M_2|\gamma_2| + \dots + M_n|\gamma_n|} = c$$

and by applying the Remark 2.4 we get

$$|h(z)| \le \frac{|z| + |c|}{1 + |c||z|}, \quad (z \in \mathcal{U}),$$
 (14)

where

$$|c| = \frac{|b_{11}\gamma_1 + b_{12}\gamma_2 + \ldots + b_{1n}\gamma_n|}{M_1|\gamma_1| + M_2|\gamma_2| + \ldots + M_n|\gamma_n|},$$

From (12), (14) we obtain

$$\frac{1-|z|^{2Re\;\alpha}}{Re\;\alpha}\left|\frac{zg_n''(z)}{g_n'(z)}\right| \le$$

$$\leq (M_1|\gamma_1| + \ldots + M_n|\gamma_n|) \max_{|z| \leq 1} \left[\frac{1 - |z|^{2Re \ \alpha}}{Re \ \alpha} |z| \frac{|z| + |c|}{1 + |c||z|} \right]$$
(15)

for all $z \in \mathcal{U}$.

From (9) and (15) we have

$$\frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha} \left| \frac{zg_n''(z)}{g_n'(z)} \right| \le 1, \quad (z \in \mathcal{U}). \tag{16}$$

From (16) and since $g'_n(z) = (p_1(z))^{\gamma_1} \dots (p_n(z))^{\gamma_n}$, by Lemma 2.1, it results that the integral operator V_n given by (1) belongs to the class \mathcal{S} . \square

Theorem 3.3. Let α , γ_j be complex numbers, $j = \overline{1,n}$, $Re \ \alpha > 0$ and $p_j \in \mathcal{P}$, $p_j(z) = 1 + b_{1j}(z) + b_{2j}(z) + \dots$, $j = \overline{1,n}$.

$$|\gamma_1| + |\gamma_2| + \ldots + |\gamma_n| \le \frac{Re \ \alpha}{2}, \quad (0 < Re \ \alpha \le 1),$$
 (17)

or

$$|\gamma_1| + |\gamma_2| + \ldots + |\gamma_n| \le \frac{1}{2}, \quad (Re \ \alpha > 1),$$
 (18)

then for any complex number β , Re $\beta \geq Re \alpha$, the integral operator $V_n \in S$.

Proof. Since $p_j \in \mathcal{P}$, $j = \overline{1, n}$, we have

$$\left|\frac{zp_j'(z)}{p_j(z)}\right| \le \frac{2|z|}{1-|z|^2}, \quad (z \in \mathcal{U}). \tag{19}$$

We consider the function

$$g_n(z) = \int_0^z (p_1(u))^{\gamma_1} \dots (p_n(u))^{\gamma_n} du.$$
 (20)

From (19) and (20) we obtain

$$\left|\frac{1-|z|^{2Re\;\alpha}}{Re\;\alpha}\left|\frac{zg_n''(z)}{g_n'(z)}\right|\leq$$

$$\leq \frac{1-|z|^{2Re \alpha}}{Re \alpha} \cdot \frac{2|z|}{1-|z|^2} \sum_{j=1}^{n} |\gamma_j|, \quad (z \in \mathcal{U}). \tag{21}$$

For $0 < Re \ \alpha \le 1$ we have $1 - |z|^{2Re \ \alpha} \le 1 - |z|^2$, for all $z \in \mathcal{U}$. By (17) and (21) we get

$$\frac{1 - |z|^{2Re \ \alpha}}{Re \ \alpha} \left| \frac{zg_n''(z)}{g_n'(z)} \right| \le 1, \quad (z \in \mathcal{U}; \ 0 < Re \ \alpha \le 1).$$
 (22)

For $Re \ \alpha > 1$ we obtain $\frac{1-|z|^{2Re \ \alpha}}{Re \ \alpha} \le 1-|z|^2$, for all $z \in \mathcal{U}$. By (18) and (21) we get

$$\frac{1 - |z|^{2Re \ \alpha}}{Re \ \alpha} \left| \frac{zg_n''(z)}{g_n'(z)} \right| \le 1, \quad (z \in \mathcal{U}; \ Re \ \alpha > 1). \tag{23}$$

From (22), (23) and Lemma 2.1 we obtain that $V_n \in \mathcal{S}$.

4 Corollaries

Corollary 4.1. Let α , γ_j be complex numbers, $j = \overline{1,n}$ $0 < Re \ \alpha \le 1$ and $p_j \in \mathcal{P}$, $p_j(z) = 1 + b_{1j}(z) + b_{2j}(z) + \ldots$, $j = \overline{1,n}$.

$$\left|\frac{zp_j'(z)}{p_j(z)}\right| \le \frac{(2Re\ \alpha+1)^{\frac{2Re\ \alpha+1}{2Re\ \alpha}}}{2}, \quad (z \in \mathcal{U};\ j=\overline{1,n}), \tag{1}$$

$$|\gamma_1| + |\gamma_2| + \ldots + |\gamma_n| \le 1,\tag{2}$$

then the integral operator defined by

$$K_n(z) = \int_0^z (p_1(u))^{\gamma_1} \dots (p_n(u))^{\gamma_n} du$$
 (3)

is in the class S.

Proof. For $\beta = 1$, from Theorem 3.1, we obtain the Corollary 4.1.

Corollary 4.2. Let α , γ_j be complex numbers, $j = \overline{1, n}$, $0 < Re \ \alpha \leq 1$, M_j positive real numbers and $p_j \in \mathcal{P}$, $p_j(z) = 1 + b_{1j}z + b_{2j}z^2 + \ldots$, $j = \overline{1, n}$.

$$\left| \frac{p_j'(z)}{p_j(z)} \right| \le M_j, \quad (z \in \mathcal{U}; \ j = \overline{1, n}), \tag{4}$$

$$|M_1|\gamma_1| + M_2|\gamma_2| + \ldots + M_n|\gamma_n| \le \frac{1}{\max_{|z| \le 1} \left\lceil \frac{1 - |z|^{2Re} \alpha}{Re \alpha} |z| \frac{|z| + |c|}{1 + |c||z|} \right\rceil},$$
 (5)

where

$$c = \frac{b_{11}\gamma_1 + b_{12}\gamma_2 + \dots + b_{1n}\gamma_n}{M_1|\gamma_1| + M_2|\gamma_2| + \dots + M_n|\gamma_n|},$$
(6)

then the integral operator K_n defined by (3) belongs to the class S.

Proof. We take
$$\beta = 1$$
 in Theorem 3.2.

Corollary 4.3. Let α , β , γ_j be complex numbers, $j = \overline{1,n}$, $Re \ \beta \ge Re \ \alpha > 0$, M_j positive real numbers and $p_j \in \mathcal{P}$, $p_j(z) = 1 + b_{1j}z + b_{2j}z^2 + \ldots$, $j = \overline{1,n}$.

If

$$\left| \frac{p_j'(z)}{p_j(z)} \right| \le M_j, \quad (z \in \mathcal{U}, \ j = \overline{1, n}), \tag{7}$$

$$|b_{11}\gamma_1 + b_{12}\gamma_2 + \dots + b_{1n}\gamma_n| \le \frac{(2Re\ \alpha + 1)^{\frac{2Re\ \alpha + 1}{2Re\ \alpha}}}{2},$$
 (8)

$$|b_{11}\gamma_1 + b_{12}\gamma_2 + \ldots + b_{1n}\gamma_n| = M_1|\gamma_1| + M_2|\gamma_2| + \ldots + M_n|\gamma_n|, \tag{9}$$

then the integral operator $V_n \in S$.

Proof. By (10), from Theorem 3.2 and (9) we have |c| = 1. Using the inequality (9) we obtain

$$M_1|\gamma_1| + M_2|\gamma_2| + \dots + M_n|\gamma_n| \le \frac{1}{\max_{|z| \le 1} \frac{1 - |z|^{2Re \alpha}}{Re \alpha}|z|}.$$
 (10)

We have

$$\max_{|z| \le 1} \left[\frac{1 - |z|^{2Re \alpha}}{Re \alpha} |z| \right] = \frac{2}{(2Re \alpha + 1)^{\frac{2Re \alpha + 1}{2Re \alpha}}}$$
(11)

and from (9), (10) and (11) we obtain (8). The conditions of Theorem 3.2 are satisfied. \Box

Corollary 4.4. Let α , β , γ_j be complex numbers, $j = \overline{1,n}$, $Re \ \beta \ge Re \ \alpha > 0$, M_j positive real numbers and $p_j \in \mathcal{P}$, $p_j(z) = 1 + b_{1j}z + b_{2j}z^2 + \ldots$, $j = \overline{1,n}$, $b_{11}\gamma_1 + b_{12}\gamma_2 + \ldots + b_{1n}\gamma_n = 0$.

$$\left| \frac{p_j'(z)}{p_j(z)} \right| \le M_j, \quad (z \in \mathcal{U}, \ j = \overline{1, n}), \tag{12}$$

$$M_1|\gamma_1| + M_2|\gamma_2| + \ldots + M_n|\gamma_n| \le (Re \ \alpha + 1)^{\frac{Re \ \alpha + 1}{Re \ \alpha}},\tag{13}$$

then the integral operator $V_n \in S$.

Proof. From (10) we have c = 0 and using the inequality (9) we obtain

$$M_1|\gamma_1| + M_2|\gamma_2| + \dots + M_n|\gamma_n| \le \frac{1}{\max_{|z| \le 1} \frac{1 - |z|^{2Re \, \alpha}}{Re \, \alpha} |z|^2}.$$
 (14)

Since

$$\max_{|z| \le 1} \left[\frac{1 - |z|^{2Re \, \alpha}}{Re \, \alpha} |z|^2 \right] = \frac{1}{(Re \, \alpha + 1)^{\frac{Re \, \alpha + 1}{Re \, \alpha}}}$$

from (14) we have the inequality (13).

The conditions of Theorem 3.2 are verified and hence, we obtain $V_n \in \mathcal{S}.$

Corollary 4.5. Let α , β , γ_j be complex numbers, $j = \overline{1, n}$, $0 < Re \ \alpha \le 1$ and $p_j \in \mathcal{P}$, $p_j(z) = 1 + b_{1j}z + b_{2j}z^2 + \ldots$, $j = \overline{1, n}$.

$$|\gamma_1| + |\gamma_2| + \ldots + |\gamma_n| \le \frac{Re \ \alpha}{2}, \quad (0 < Re \ \alpha \le 1), \tag{15}$$

then the integral operator K_n given by (3) is in the class S.

Proof. We take
$$\beta = 1$$
 in Theorem 3.3.

References

- [1] Mayer, O., The Functions Theory of One Variable Complex, Bucureşti, 1981.
- [2] Nehari, Z., Conformal Mapping, Mc Graw-Hill Book Comp., New York, 1952 (Dover. Publ. Inc., 1975).
- [3] Pascu, N. N., An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow (Braşov), Preprint (1987), 43-48.

Virgil PESCAR,

Department of Mathematics,

"Transilvania" University of Braşov,

Faculty of Mathematics and Computer Science, 500091 Braşov, Romania

 $Email: \ virgilpescar@unitbv.ro$

Daniel BREAZ,

Department of Mathematics,

"1 Decembrie 1918" University of Alba Iulia,

Faculty of Science, 510009 Alba Iulia, Romania.

Email: dbreaz@uab.ro