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G-N-QUASIGROUPS

Adrian Petrescu

Abstract. In this paper we present criteria for an n-quasigroup to be
isotopic to an n-group. We call a such n-quasigroup G−n-quasigroup. Appli-
cations to functional equations on quasigroups are presented in a subsequent
paper.
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Some important n-quasigroup classes are the following. An n-quasigroup

(A, α) of the form α(xn
1 ) =

n∑
i=1

fi(xi)+a, where (A, +) is a group, f1, . . . , fn are

some automorphisms of (A, +), a is some fixed element of A is called linear n-
quasigroup (over group (A, +)). A linear quasigroup over an abelian group
is called T − n-quasigroup. An n-quasigroup with identity

α(α(x1n
11 ), . . . , α(xnn

n1 )) = α(α(xn1
11 ), . . . , α(xnn

1n )

is called medial n-quasigroup.
All these quasigroups are isotopic to n-groups. This motivates the pur-

pose of our work to find criteria for an n-quasigroup to be isotopic to an
n-group.

1. Preliminaries

Recall several notions and results which will be used in what follows.
A non-empty set A together with one n-ary operation α : An → A, n > 2

is called n-groupoid and is denoted by (A, α).
We shall use the following abbreviated notation:

• the sequence xi, . . . , xj will be denoted by xj
i . For j < i, xj

i is the empty
symbol;
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• if xi+1 = . . . = xi+k = x then insteed xi+k
i+1 we will write (x)k. For k ≤ 0,

(x)k is the empty symbol.

(A, α) is an n-semigroup if α is associative, i.e.

α(α(xn
1 ), x2n−1

n+1 ) = α(x1, α(xn+1
2 ), x2n−1

n+2 ) = . . . = α(xn−1
1 , α(x2n−1

n ))

holds for all x1, . . . , x2n−1 ∈ A.
An element e ∈ A is called an i-unit if α((e)i−1, x, (e)n−1) = x for all

x ∈ A. If e is an i-unit for all i = 1, 2, . . . , n it is called an unit.
If each equation α(ai−1

1 , x, an
i+1) = b is uniquely solvable with respect to

x, i = 1, 2, . . . , n for all a1, . . . , an, b ∈ A, (A, α) is called n-quasigroup. An
n-quasigroup which has at least one unit is called n-loop.

We introduced in [4] the notion of homotopy of universal algebras. In
particular, for n-groupoids we have the following. Let A = (A, α) and
B = (B, β) be n-groupoids. An ordered system of mappings [fn

1 ; f ] from
A to B such that f(α(an

1 )) = β(f1(a1), . . . , fn(an)) for all an
1 ∈ An is called

a homotopy from A to B. Equality and composition of homotopies are de-
fined componentwise. Composition of homotopies produces a homotopy and
is associative. An isotopy is a homotopy with all components bijections.

In many applications of quasigroups isotopies and homotopies are more
important than isomorphisms and homomorphisms.

Any n-quasigroup is isotopic to an n-loop (see [1]).
Let (A, α) be an n-quasigroup and a = an

1 ∈ An. The mapping
Ti : A → A, Ti(x) = α(ai−1

1 , x, an
i+1) is called the i-th translation by a,

i = 1, 2, . . . , n. Let α : An → A defined by α(xn
1 ) = α(T−1

1 (x1), . . . , T
−1
n (xn)).

Then (A, α) is an n-loop (e = α(an
1 ) is a unit) and [T n

1 ; 1A] is an isotopy from
(A, α) to (A, α).

(A, α) is called a LP -isotope of (A, α) and [T n
1 ; 1A] a LP -isotopy.

In [4] we proved the following. Let (A, α) and (B, β) be n-quasigroups and
[fn

1 ; f ] : (A, α) → (B, β) a homotopy (isotopy), a = an
1 ∈ An, b = bn

1 ∈ B, bi =
fi(ai), Ti translations by a and Ui translations by b, i = 1, 2, . . . , n. Then the
following diagram is commutative and f is a homomorphism (isomorphism).
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(A, α)
[fn

1 ; f ]
- (B, β)

(A, α)

[T n
1 ; 1A]

? f
- (B, β)

[Un
1 ; 1B]

?

If (B, β) is an n-loop and [fn
1 ; f ] an isotopy, choosing ai such that fi(ai) = u,

u a unit in (B, β) we obtain that f : (A, α) → (B, β) is an isomorphism.
An n-semigroup which is also an n-quasigroup is called n-group (see [2]).
Let (A, α) be an n-group. By Hosszu theorem (see [5]), α(xn

1 ) = x1 ·f(x2)·
f 2(x3) · . . . · fn−1(xn) · u, where (A, ·) is a binary group (called a creating
group), x · y = α(x, (a)n−2, y), a ∈ A a fixed element, f(x) = α(a, x, (a)n−2)
an automorphism of (A, ·) and u = α((a)n), a the skew element to a. Based
on this result Belousov [1] proved that every LP -isotope (A, β) of (A, α) is
an n-group derived from a binary group (A, ◦), i.e. β(xn

1 ) = x1 ◦ x2 ◦ . . . ◦ xn

where x ◦ y = xe−1y, e = α(an
1 ).

We introduce the following.

Definition 1. An n-quasigroup is called G− n-quasigroup (or shortly
G-quasigroup) if it is isotopic to an n-group.

From the above results if follows.

Theorem 1. Every n-loop isotopic to a G-quasigroup is an n-group
derived from a binary group.

An n-group can also be defined as an algebra (A, α,−), α : An → A,
− : A → A such that α is associative and the following identities are satisfied:
α(x, (x)n−2, y) = y, α(y, (x)n−2, x) = y (see [2]). In [2] was proved that
(A, α,−) is an abelian algebra (in the sense of general algebras - see [3]) iff
α is semicommutative, i.e. α(x1, x

n−1
2 , xn) = α(xn, x

n−1
2 , x1).

Definition 2. An n-quasigroup is called Ga − n-quasigroup (shortly
Ga-quasigroup) if it is isotopic to an abelian n-group.

Theorem 2. Every n-loop isotopic to a Ga-quasigroup is an n-group
derived from a binary commutative group.
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Proof. We proved in [5] that an n-group (A, α) is abelian iff any of
its creating groups (A, ·) (see above) is commutative. Therefore every LP -
isotope (A, β) of (A, α) is derived from a commutative binary group. Indeed,
(A, ◦) is isomorphic to (A, ·), h(x ◦ y) = h(x)h(y), h(x) = xe−1.

2. G− n-quasigroups

In this section we present criteria for an n-quasigroup to be isotopic to an
n-group. We finish this section showing that G-3-quasigroups are connected
with the functional equation of generalized associativity.

Let (A, α) be an n-quasigroup.

Definition 3. (see [1]). We say that in (A, α) condition Di,j, 1 ≤ i <
j ≤ n, holds if α(ai−1

1 , uj
i , a

n
j+1) = α(ai−1

1 , vj
i , a

n
j+1) implies α(xi−1

1 , uj
i , x

n
j+1) =

α(xi−1
1 , vj

i , x
n
j+1) for all xn

1 ∈ An.
It is obvious that condition Di,j is isotopic invariant.

Theorem 3. (see [1]). In (A, α) condition Di,j holds iff there exists
quasigroups (A, β) of arity j − i + 1 and (A, γ) of arity n − j + i such that
α(xn

1 ) = γ(xi−1
1 , β(xj

i ), x
n
j+1).

Proof. Choose ai, . . . , aj−1 ∈ A. For any xn
1 ∈ An there exists only one

b ∈ A such that α(xn
1 ) = α(xi−1

1 , aj−1
i , b, xn

j+1). By condition Di,j we obtain

α(yi−1
1 , xj

i , y
n
j+1) = α(yi−1

1 , aj−1
i , b, yn

j+1), i.e. b depends only of xj
i : b = β(xj

i ),

β : Aj−i+1 → A. Therefore we have α(xn
1 ) = α(xi−1

1 , aj−1
i , β(xj

i ), x
n
j+1) =

γ(xi−1
1 , β(xj

i ), x
n
j+1), where γ(xn−j+i

1 ) = α(xi−1
1 , aj−1

i , xn−j+i
i ) is a retract of α.

It is easy to prove that (A, β) and (A, γ) are quasigroups.
The converse is trivial.
We focus on conditions Di,i+1.

Theorem 4. Condition Di,i+1 holds in (A, α) iff for each unit e of any n-
loop (B, β) isotopic to (A, α) β(xi−1

1 , e, xn−1
i ) = β(xi

1, e, x
n−1
i+1 ) for all xn

1 ∈ Bn.
Proof. Suppose that in (A, α) condition Di,i+1 holds and let (B, β) be

isotopic to (A, α). Condition Di,i+1 holds in (B, β) too. Let be e a unit
in (B, β). From β((e)i−1, e, xi, (e)

n−i−1) = β((e)i−1, xi, e, (e)
n−i−1) we get

β(xi−1
1 , e, xi, x

n−1
i+1 ) = β(xi−1

1 , xi, e, x
n−1
i+1 ).

Now suppose that in every n-loop (B, β) isotopic to (A, α)
β(xi−1

1 , e, xn−1
i ) = β(xi

1, e, x
n−1
i+1 ) holds for each unit e. We prove that in
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(A, α) condition Di,i+1 holds. Let be

α(ai−1
1 , ui, ui+1, a

n
i+2) = α(ai−1

1 , vi, vi+1, a
n
i+2) (1)

Define a∗ = (a∗1, . . . , a
∗
n) as follows: a∗j = aj for j ∈ {1, . . . , n} − {i, i + 1},

a∗i = ui, a∗i+1 = vi+1. Using translations Ti by a∗ we define the LP -isotope
(A, β) of (A, α). Equality (1) can be written

Ti+1(ui+1) = Ti(vi) (2)

Note that e = α(a∗1, . . . , a
∗
n) = Ti(ui) = Ti+1(vi+1) is a unit in (A, β). Now

α(xi−1
1 , ui, ui+1, x

n
i+1) =

= β(T1(x1), . . . , Ti−1(xi−1), e, Ti+1(ui+1), Ti+2(xi+2), . . . , Tn(xn)) =

= β(T1(x1), . . . , Ti−1(xi−1), Ti+1(ui+1), e, Ti+2(xi+2), . . . , Tn(xn)) =

= β(T1(x1), . . . , Ti−1(xi−1), Ti(vi), Ti+1(vi+1), Ti+2(xi+2), . . . , Tn(xn)) =

= α(xi−1
1 , vi, vi+1, x

n
i+2).

Based on Theorem 4 we prove the following criterion for an n-quasigroup
to be a G-quasigroup.

Theorem 5. (A, α) is a G-quasigroup if and only if condition
D1,2&D2,3& . . . &Dn−1,n holds.

Proof. Let (A, β) be an n-loop isotopic to (A, α) and e a unit in (A, β).
In (A, β) condition D1,2& . . . &Dn−1,n holds too. By Theorem 4 e is in the
center of (A, β). Define x · y = β(x, y, (e)n−2). It is obvious that (A, ·) is a
binary quasigroup. From β(x1, x2, (e)

n−2) = β(β(x1, x2, (e)
n−2), e, (e)n−2) by

D1,2 we get
β(xn

1 ) = β(x1x2, e, x
n
3 ). (3)

Analogously, from β((e)n−2, xn−1, xn) = β((e)n−2, e, β((e)n−2, xn−1, xn)) by
Dn−1,n we have

β(xn
1 ) = β(xn−2

1 , e, xn−1xn). (4)

Taking into account (3),

β(x1, x2, x3, (e)
n−3) = β(x1x2, e, x3, (e)

n−3) = β(x1x2, x3, (e)
n−2) =

= β((x1x2)x3, (e)
n−1) = (x1x2)x3.
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Analogously, using (4) we get β((e)n−3, x1, x2, x3) = x1(x2x3). Therefore
(x1x2)x3 = x1(x2x3) (e is in the center), i.e. (A, ·) is a binary group.

Continuing the above procedure we obtain β(xn
1 ) = x1x2 . . . xn.

The converse statement is obvious. In any n-group derived from a binary
group any condition Di,j holds.

From the above results we obtain the following characterization of
G-3-quasigroups.

Theorem 6. A 3-quasigroup (A, α) is a G-quasigroup iff there exist four
binary quasigroups (A, αi), such that

α1(α2(x, y), z) = α3(x, α4(y, z)) = α(x, y, z)

for all x, y, z ∈ A.
Proof. Suppose (A, α) be a G-quasigroup. By Theorem 5 in (A, α) con-

dition D1,2&D2,3 holds. By Theorem 3 condition D1,2 implies α(x, y, z) =
α1(α2(x, y), z) and condition D2,3 implies α(x, y, z) = α3(x, α4(y, z)).

The converse statement is clear.

Remark 1. The functional equation of generalized associativity on quasi-
groups: find the set of all solutions of the functional equation α1(α2(x, y), z) =
α3(x, α4(y, z)), over the set of quasigroup operations on an arbitrary set A.
Theorem 6 suggests a possibility to solve this equation using G-3-quasigroups.

2. Ga − n-quasigroups

In this section we present criteria for an n-quasigroup to be a
Ga-quasigroup. We finish this section showing that Ga-4-quasigroups are
connected with the functional equation of generalized bisymmetry.

Let (A, α) be an n-quasigroup.

Definition 4. We say that in (A, α) condition Di−j, 1 ≤ i, j ≤ n,
i + 1 < j, holds if α(ai−1

1 , ui, a
j−1
i+1 , uj, a

n
j+1) = α(ai−1

1 , vi, a
j−1
i+1 , vj, a

n
j+1) implies

α(xi−1
1 , ui, x

j−1
i+1 , uj, x

n
j+1) = α(xi−1

1 , vi, x
j−1
i+1 , vj, x

n
j+1) for all xn

1 ∈ An.
It is easy to prove that condition Di−j is isotopic invariant.

Theorem 7. In (A, α) condition Di−j holds iff there exist two quasi-
groups, (A, γ) of arity n− 1 and a binary quasigroup (A, β) such that

α(xn
1 ) = γ(xi−1

1 , β(xi, xj), x
j−1
i+1 , xn

j+1).
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Proof. We arbitrary choose aj ∈ A. For any xn
1 ∈ An there exists exactly

one b ∈ A such that α(xn
1 ) = α(xi−1

1 , b, xj−1
i+1 , aj, x

n
j+1). By condition Di−j we

get α(yi−1
1 , xi, y

j−1
i+1 , xj, y

n
j+1) = α(yi−1

1 , b, yj−1
i+1 , aj, y

n
j+1). Hence b depends only

of xi and xj. Putting b = β(xi, xj) we obtain

α(xn
1 ) = α(xi−1

1 , β(xi, xj), x
j−1
i+1 , aj, x

n
j+1) = γ(xi−1

1 , β(xi, xj), x
j−1
i+1 , xn

j+1)

where γ(xn−1
1 ) = α(xj−1

1 , aj, x
n
j+1) is a retract of α.

Theorem 8. In (A, α) condition Di−j holds iff for every n-loop (B, β)
isotopic to (A, α), β(xi−1

1 , e, xn−1
i ) = β(xi−1

1 , xj, x
j−1
i+1 , e, xn

j+1) for each unit e
and all xn

1 ∈ B.
Proof. Similar to the proof of Theorem 4.

Theorem 9. (A, α) is a Ga-quasigroup iff it is a G-quasigroup and a
condition Di−j holds.

Proof. We prove that (A, ·) (see the proof of Theorem 5) is commutative:
xy = β((e)i−1, x, y, (e)n−i−1) = β((e)i−1, e, y, (e)j−i−2, x, (e)n−j) = yx.

If n > 3 we can replace a condition Di,i+1, 1 < i < n − 1 by conditions
D(i−1)−(i+1) and Di−(i+2).

Theorem 10. An n-quasigroup (A, α), n > 3 is a Ga-quasigroup iff con-
dition D1,2& . . . &D(i−1),i&D(i−1)−(i+1)&Di−(i+2)&Di+1,i+2& . . . &Dn−1,n holds.

Proof. The proof is analogous to the proof of Theorem 5.
We finish by a characterization of Ga-4-quasigroups.

Theorem 11. A 4-quasigroup (A, α) is a Ga-quasigroup iff there exist
six binary quasigroups (A, αi) such that

α1(α2(x, y), α3(u, v)) = α4(α5(x, u), α6(y, v)) = α(x, y, u, v).

Proof. By Theorem 10 (A, α) is a Ga-quasigroup iff D12&D1−3&D2−4&D34

holds.
By Theorem 3 condition D1,2 implies α(x, y, u, v) = β(α2(x, y), u, v) where

β(x, y, z) = α(a, x, y, z), a ∈ A. It is easy to prove that if in (A, α) condition
D3,4 holds then in (A, β) condition D2,3 holds too. Again by Theorem 3 we ob-
tain β(x, y, z) = α1(x, α3(y, z)) and then α(x, y, u, v) = α1(α2(x, y), α3(u, v)).

Now by Theorem 7 condition D1−3 implies α(x, y, u, v) = γ(α5(x, u), y, v)
where γ(x, y, z) = α(x, y, a, z), a ∈ A. It is not difficult to prove if in
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(A, α) condition D2−4 holds then condition D2,3 holds in (A, γ). Apply-
ing Theorem 3 we have γ(x, y, z) = α4(x, α6(y, z)). Hence α(x, y, u, v) =
α4(α5(x, u), α6(y, v)).

The converse is obvious.

Remark 2. The functional equation of generalized bisymmetry on quasi-
groups: find the set of all solutions of the functional equation α1(α2(x, y), α3(u, v)) =
α4(α5(x, u), α6(y, v)) over the set of quasigroup operations on an arbitrary
set A.

Theorem 11 suggests a possibility to solve this equation using
Ga-4-quasigroups.
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