INTEGRAL MEANS FOR CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION

M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb

Abstract. We introduce some generalized subclasses $T S_{\gamma}(f, g ; \alpha, \beta)$ of uniformly starlike and convex functions, we settle the Silverman's conjecture for the integral means inequality. In particular, we obtain integral means inequalities for various classes of uniformly β-starlike and uniformly β-convex functions in the unit disc.

2000 Mathematics Subject Classification: 30C45.

1.Introduction

Let S denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

that are analytic and univalent in the open unit disk $U=\{z:|z|<1\}$. Let $f(z) \in$ S be given by (1.1) and $\Phi(z) \in S$ be given by

$$
\begin{equation*}
\Phi(z)=z+\sum_{k=2}^{\infty} c_{k} z^{k} \tag{1.2}
\end{equation*}
$$

then for analytic functions f and Φ with $f(0)=\Phi(0), f$ is said to be subordinate to Φ, denoted by $f \prec \Phi$, if there exists an analytic function w such that $w(0)=0$, $|w(z)|<1$ and $f(z)=\Phi(w(z))$, for all $z \in U$.
The Hadamard product (or convolution) $f * \Phi$ of f and Φ is defined (as usual) by

$$
\begin{equation*}
(f * \Phi)(z)=z+\sum_{k=2}^{\infty} a_{k} c_{k} z^{k}=(\Phi * f)(z) . \tag{1.3}
\end{equation*}
$$

Following Goodman ([7] and [8]), Ronning ([17] and [18]) introduced and studied the following subclasses:
(i) A function $f(z)$ of the form (1.1) is said to be in the class $S_{p}(\alpha, \beta)$ of uniformly β-starlike functions if it satisfies the condition:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in U) \tag{1.4}
\end{equation*}
$$

where $-1 \leq \alpha<1$ and $\beta \geq 0$.
(ii) A function $f(z)$ of the form (1.1) is said to be in the class $U C V(\alpha, \beta)$ of uniformly β-convex functions if it satisfies the condition:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in U) \tag{1.5}
\end{equation*}
$$

where $-1 \leq \alpha<1$ and $\beta \geq 0$. We also observe that

$$
S_{p}(\alpha, 0)=T^{*}(\alpha), \quad U C V(\alpha, 0)=C(\alpha)
$$

are, respectively, well-known subclasses of starlike functions of order α and convex functions of order α. Indeed it follows from (1.4) and (1.5) that

$$
\begin{equation*}
f(z) \in U C V(\alpha, \beta) \Longleftrightarrow z f^{\prime}(z) \in S_{p}(\alpha, \beta) \tag{1.6}
\end{equation*}
$$

For $-1 \leq \alpha<1,0 \leq \gamma \leq 1$ and $\beta \geq 0$, we let $S_{\gamma}(f, g ; \alpha, \beta)$ be the subclass of S consisting of functions $f(z)$ of the form (1.1) and functions $g(z)$ given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \quad\left(b_{k} \geq 0\right) \tag{1.7}
\end{equation*}
$$

and satisfying the analytic criterion:

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-\alpha\right\} \\
& \qquad \beta\left|\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right| \tag{1.8}
\end{align*}
$$

Let T denote the subclass of S consisting of functions of the form:

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right) \tag{1.9}
\end{equation*}
$$

Further, we define the class $T S_{\gamma}(f, g ; \alpha, \beta)$ by

$$
\begin{equation*}
T S_{\gamma}(f, g ; \alpha, \beta)=S_{\gamma}(f, g ; \alpha, \beta) \cap T \tag{1.10}
\end{equation*}
$$

We note that:
(i) $T S_{0}\left(f, \frac{z}{(1-z)} ; \alpha, 1\right)=S_{p} T(\alpha)$ and $T S_{0}\left(f, \frac{z}{(1-z)^{2}} ; \alpha, 1\right)=$
$T S_{1}\left(f, \frac{z}{(1-z)} ; \alpha, 1\right)=U C T(\alpha)(-1 \leq \alpha<1)$ (see Bharati et al. [4]);
(ii) $T S_{1}\left(f, \frac{z}{(1-z)} ; 0, \beta\right)=U C T(\beta)(\beta \geq 0)$ (see Subramanian et al. [24]);
(iii) $T S_{0}\left(f, z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^{k} ; \alpha, \beta\right)=T S(\alpha, \beta)(-1 \leq \alpha<1, \beta \geq 0, c \neq$
$0,-1,-2, \ldots$) (see Murugusundaramoorthy and Magesh [12] and [13]);
(iv) $T S_{0}\left(f, z+\sum_{k=2}^{\infty} k^{n} z^{k} ; \alpha, \beta\right)=T S(n, \alpha, \beta)\left(-1 \leq \alpha<1, \beta \geq 0, n \in N_{0}=\right.$ $N \cup\{0\}, N=\{1,2, \ldots\}$) (see Rosy and Murugusundaramoorthy [19]);
(v) $T S_{0}\left(f, z+\sum_{k=2}^{\infty}\binom{k+\lambda-1}{\lambda} z^{k} ; \alpha, \beta\right)=D(\alpha, \beta, \lambda)(-1 \leq \alpha<1, \beta \geq 0$,
$\lambda>-1$) (see Shams et al. [23]);
(vi) $T S_{0}\left(f, z+\sum_{k=2}^{\infty}[1+\lambda(k-1)]^{n} z^{k} ; \alpha, \beta\right)=T S_{\lambda}(n, \alpha, \beta)(-1 \leq \alpha<1$,
$\beta \geq 0, \lambda \geq 0, n \in N_{0}$) (see Aouf and Mostafa [2]);
(vii) $T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^{k} ; \alpha, \beta\right)=T S(\gamma, \alpha, \beta)(-1 \leq \alpha<1, \beta \geq 0$,
$0 \leq \gamma \leq 1, c \neq 0,-1,-2, \ldots$) (see Murugusundaramoorthy et al. [14]);
(viii) $T S_{0}(f, g ; \alpha, \beta)=H_{T}(g, \alpha, \beta)(-1 \leq \alpha<1, \beta \geq 0)$ (see Raina and Bansal [16]);
(viii) $T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \Gamma_{k} z^{k} ; \alpha, \beta\right)=T S_{q}^{s}(\gamma, \alpha, \beta)$ (see Ahuja et al. [1]), where

$$
\begin{equation*}
\Gamma_{k}=\frac{\left(\alpha_{1}\right)_{k-1} \ldots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1 \ldots}\left(\beta_{s}\right)_{k-1}} \frac{1}{(k-1)!} \tag{1.11}
\end{equation*}
$$

$\left(\alpha_{i}>0, i=1, \ldots, q ; \beta_{j}>0, j=1, \ldots, s ; q \leq s+1 ; q, s \in N_{0}\right)$.
Also we note that
(i) $T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} k^{n} z^{k} ; \alpha, \beta\right)=T S_{\gamma}(n, \alpha, \beta)$

$$
=\left\{f \in T: \operatorname{Re}\left\{\frac{(1-\gamma) z\left(D^{n} f(z)\right)^{\prime}+\gamma z\left(D^{n+1} f(z)\right)^{\prime}}{(1-\gamma) D^{n} f(z)+\gamma D^{n+1} f(z)}-\alpha\right\}\right.
$$

$\left.>\beta\left|\frac{(1-\gamma) z\left(D^{n} f(z)\right)^{\prime}+\gamma z\left(D^{n+1} f(z)\right)^{\prime}}{(1-\gamma) D^{n} f(z)+\gamma D^{n+1} f(z)}-1\right|,\left(-1 \leq \alpha<1, \beta \geq 0, n \in N_{0}, z \in U\right)\right\}$
(ii) $T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty}\left(\frac{c+1}{c+k}\right) z^{k} ; \alpha, \beta\right)=$
$=T S_{\gamma}(c, \alpha, \beta)=\left\{f \in T: \operatorname{Re}\left\{\frac{z\left(J_{c} f(z)\right)^{\prime}+\gamma z^{2}\left(J_{c} f(z)\right)^{\prime \prime}}{(1-\gamma) J_{c} f(z)+\gamma z\left(J_{c} f(z)\right)^{\prime}}-\alpha\right\}\right.$
$\left.>\beta\left|\frac{z\left(J_{c} f(z)\right)^{\prime}+\gamma z^{2}\left(J_{c} f(z)\right)^{\prime \prime}}{(1-\gamma) J_{c} f(z)+\gamma z\left(J_{c} f(z)\right)^{\prime}}-1\right|, 0 \leq \gamma \leq 1,-1 \leq \alpha<1, \beta \geq 0, c>-1, z \in U\right\} ;$
where J_{c} is a Bernardi operator [3], defined by

$$
J_{c} f(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t=z+\sum_{k=2}^{\infty}\left(\frac{c+1}{c+k}\right) a_{k} z^{k} .
$$

Note that the operator $J_{1} f(z)$ was studied earlier by Libera [9] and Livingston [11];
(iii) $T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \frac{(\mu)_{k-1}}{(\lambda+1)_{k-1}} z^{k} ; \alpha, \beta\right)=T S_{\gamma}(\mu, \lambda ; \alpha, \beta)$

$$
\begin{gather*}
=\left\{f \in T: \operatorname{Re}\left\{\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}+\gamma z^{2}\left(I_{\lambda, \mu} f(z)\right)^{\prime \prime}}{(1-\gamma))_{\lambda, \mu} f(z)+\gamma z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}-\alpha\right\}\right. \\
\quad>\beta\left|\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}+\gamma z^{2}\left(I_{\lambda, \mu} f(z)\right)^{\prime \prime}}{(1-\gamma) I_{\lambda, \mu} f(z)+\gamma z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}-1\right|, \\
(0 \leq \gamma \leq 1,-1 \leq \alpha<1, \beta \geq 0, \lambda>-1, \mu>0, z \in U)\} ; \tag{1.14}
\end{gather*}
$$

where $I_{\lambda, \mu}$ is a Choi-Saigo-Srivastava operator [6], defined by

$$
I_{\lambda, \mu} f(z)=z+\sum_{k=2}^{\infty} \frac{(\mu)_{k-1}}{(\lambda+1)_{k-1}} a_{k} z^{k} \quad(\lambda>-1 ; \mu>0)
$$

(iv) $T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \frac{(c)_{k-1}}{(a)_{k-1}} \frac{(\lambda+1)_{k-1}}{(1)_{k-1}} z^{k} ; \alpha, \beta\right)=T S_{\gamma}(a, c, \lambda ; \alpha, \beta)$

$$
\begin{gather*}
=\left\{f \in T: \operatorname{Re}\left\{\frac{z\left(I^{\lambda}(a, c) f(z)\right)^{\prime}+\gamma z^{2}\left(I^{\lambda}(a, c) f(z)\right)^{\prime \prime}}{(1-\gamma) I^{\lambda}(a, c) f(z)+\gamma z\left(I^{\lambda}(a, c) f(z)\right)^{\prime}}-\alpha\right\}\right. \\
\quad>\beta\left|\frac{z\left(I^{\lambda}(a, c) f(z)\right)^{\prime}+\gamma z^{2}\left(I^{\lambda}(a, c) f(z)\right)^{\prime \prime}}{(1-\gamma) I^{\lambda}(a, c) f(z)+\gamma z\left(I^{\lambda}(a, c) f(z)\right)^{\prime}}-1\right| \\
\left.\left(0 \leq \gamma \leq 1,-1 \leq \alpha<1, \beta \geq 0, a, c \in R \backslash Z_{0}^{-}, \lambda>-1, z \in U\right)\right\} \tag{1.15}
\end{gather*}
$$

where $I^{\lambda}(a, c)$ is a Cho-Kwon-Srivastava operator [5], defined by

$$
I^{\lambda}(a, c) f(z)=z+\sum_{k=2}^{\infty} \frac{(c)_{k-1}}{(a)_{k-1}} \frac{(\lambda+1)_{k-1}}{(1)_{k-1}} a_{k} z^{k}
$$

(v) $T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \frac{(2)_{k-1}}{(n+1)_{k-1}} z^{k} ; \alpha, \beta\right)=T S_{\gamma}(n ; \alpha, \beta)$

$$
=\left\{f \in T: \operatorname{Re}\left\{\frac{z\left(I_{n} f(z)\right)^{\prime}+\gamma z^{2}\left(I_{n} f(z)\right)^{\prime \prime}}{(1-\gamma) I_{n} f(z)+\gamma z\left(I_{n} f(z)\right)^{\prime}}-\alpha\right\}\right.
$$

$$
\begin{equation*}
\left.>\beta\left|\frac{z\left(I_{n} f(z)\right)^{\prime}+\gamma z^{2}\left(I_{n} f(z)\right)^{\prime \prime}}{(1-\gamma) I_{n} f(z)+\gamma z\left(I_{n} f(z)\right)^{\prime}}-1\right|, 0 \leq \gamma \leq 1,-1 \leq \alpha<1, \beta \geq 0, n>-1, z \in U\right\} \tag{1.16}
\end{equation*}
$$

where I_{n} is a Noor integral operator [15], defined by

$$
I_{n} f(z)=z+\sum_{k=2}^{\infty} \frac{(2)_{k-1}}{(n+1)_{k-1}} a_{k} z^{k} \quad(n>-1)
$$

In [20], Silverman found that the function $f_{2}(z)=z-\frac{z^{2}}{2}$ is often extremal over the family T. He applied this function to resolve his integral means inequality, conjectured in [21] and settled in [22], that

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\eta} d \theta
$$

for all $f \in T, \eta>0$ and $0<r<1$. In [22], he also proved his conjecture for the subclasses $T^{*}(\alpha)$ and $C(\alpha)$ of T.

In this paper, we prove Silverman's conjecture for the functions in the class $T S_{\gamma}(f, g ; \alpha, \beta)$. By taking appropriate choises of the function g, we obtain the integral means inequalities for several known as well as new subclasses of uniformly convex and uniformly starlike functions in U. In fact, these results also settle the Silverman's conjecture for several other subclasses of T.

2.LEMMAS AND THEIR PROOFS

To prove our main results, we need the following lemmas.
Lemma 1. A function $f(z)$ of the form (1.1) is in the class $T S_{\gamma}(f, g ; \alpha, \beta)$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)]\left|a_{k}\right| b_{k} \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

where $-1 \leq \alpha<1, \beta \geq 0$ and $0 \leq \gamma \leq 1$.
Proof. It suffices to show that

$$
\beta\left|\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right|-\operatorname{Re}\left\{\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right\}
$$

$$
\leq 1-\alpha
$$

We have

$$
\begin{aligned}
& \beta\left|\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right|-\operatorname{Re}\left\{\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right\} \\
& \leq(1+\beta)\left|\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right| \leq \frac{(1+\beta) \sum_{k=2}^{\infty}(k-1)[1+\gamma(k-1)]\left|a_{k}\right| b_{k}}{1-\sum_{k=2}^{\infty}[1+\gamma(k-1)]\left|a_{k}\right| b_{k}}
\end{aligned}
$$

This last expression is bounded above by $(1-\alpha)$ if

$$
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)]\left|a_{k}\right| b_{k} \leq 1-\alpha
$$

and hence the proof is completed.
Lemma 2. A necessary and sufficient condition for $f(z)$ of the form (1.9) to be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] a_{k} b_{k} \leq 1-\alpha, \tag{2.2}
\end{equation*}
$$

Proof. In view of Lemma 1, we need only to prove the necessity. If $f(z) \in T S_{\gamma}(f, g ; \alpha, \beta)$ and z is real, then

$$
\frac{1-\sum_{k=2}^{\infty} k[1+\gamma(k-1)] a_{k} b_{k} z^{k-1}}{1-\sum_{k=2}^{\infty}[1+\gamma(k-1)] a_{k} b_{k} z^{k-1}}-\alpha \geq \beta\left|\frac{\sum_{k=2}^{\infty}(k-1)[1+\gamma(k-1)] a_{k} b_{k} z^{k-1}}{1-\sum_{k=2}^{\infty}[1+\gamma(k-1)] a_{k} b_{k} z^{k-1}}\right| .
$$

Letting $z \rightarrow 1^{-}$along the real axis, we obtain the desired inequality

$$
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] a_{k} b_{k} \leq 1-\alpha .
$$

Corollary 1. Let the function $f(z)$ be defined by (1.9) be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} \quad(k \geq 2) . \tag{2.3}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} z^{k} \quad(k \geq 2) . \tag{2.4}
\end{equation*}
$$

Lemma 3. The extreme points of $T S_{\gamma}(f, g ; \alpha, \beta)$ are
$f_{1}(z)=z$ and $f_{k}(z)=z-\frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} z^{k}$, for $k=2,3, \ldots$.
The proof of Lemma 3 is similar to the proof of the theorem on extreme points given in [20] and therefore are omit it.

In 1925, Littlewood [10] proved the following subordination theorem.
Lemma 4. If the functions f and g are analytic in U with $g \prec f$, then for $\eta>0$, and $0<r<1$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta \tag{2.6}
\end{equation*}
$$

3.MAIN THEOREM

Applying Lemma 4, Lemma 2 and Lemma 3, we prove the following result.
Theorem 1. Suppose $f \in T S_{\gamma}(f, g ; \alpha, \beta), \eta>0,-1 \leq \alpha<1,0 \leq \gamma \leq 1, \beta \geq 0$ and $f_{2}(z)$ is defined by

$$
f_{2}(z)=z-\frac{1-\alpha}{(2+\beta-\alpha)(1+\gamma) b_{2}} z^{2}
$$

Then for $z=r e^{i \theta}, 0<r<1$, we have

$$
\begin{equation*}
\int_{0}^{2 \pi}|f(z)|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}(z)\right|^{\eta} d \theta \tag{3.1}
\end{equation*}
$$

Proof. For $f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right),(3.1)$ is equivalent to proving that

$$
\int_{0}^{2 \pi}\left|1-\sum_{k=2}^{\infty} a_{k} z^{k-1}\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{1-\alpha}{(2+\beta-\alpha)(1+\gamma) b_{2}} z\right|^{\eta} d \theta
$$

By Lemma 4, it suffices to show that

$$
1-\sum_{k=2}^{\infty} a_{k} z^{k-1} \prec 1-\frac{1-\alpha}{(2+\beta-\alpha)(1+\gamma) b_{2}} z .
$$

Setting

$$
\begin{equation*}
1-\sum_{k=2}^{\infty} a_{k} z^{k-1}=1-\frac{1-\alpha}{(2+\beta-\alpha)(1+\gamma) b_{2}} w(z) \tag{3.2}
\end{equation*}
$$

and using (2.2), we obtain

$$
|w(z)|=\left|\sum_{k=2}^{\infty} \frac{(2+\beta-\alpha)(1+\gamma) b_{2}}{1-\alpha} a_{k} z^{k-1}\right| \leq|z| \sum_{k=2}^{\infty} \frac{(2+\beta-\alpha)(1+\gamma) b_{2}}{1-\alpha} a_{k} \leq|z|
$$

This completes the proof of Theorem 1.
By taking different choices of $g(z), \alpha, \beta$ and γ in the above theorem, we can state
the following integral means results for various subclasses.
Remarks. (i) Taking $g(z)=z+\sum_{k=2}^{\infty} \Gamma_{k} z^{k}$, where Γ_{k} is given by (1.11) in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Theorem 3.1];
(ii) Taking $g(z)=\frac{z}{1-z}$ and $\gamma=0$ in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Corollary 3.2];
(iii) Taking $g(z)=\frac{z}{1-z}$ and $\gamma=1$ in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Corollary 3.4];
(iv) Taking $g(z)=z+\sum_{k=2}^{\infty}\binom{k+\lambda-1}{\lambda} z^{k}(\lambda>-1)$ and $\gamma=0$ in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Corollary 3.6];
(v) Taking $g(z)=z+\sum_{k=2}^{\infty}\left(\frac{c+1}{c+k}\right) z^{k}(c>-1)$ and $\gamma=0$ in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Corollary 3.7];
(vi) Taking $g(z)=z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^{k}(a>0 ; c>0)$ and $\gamma=0$ in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Corollary 3.8].
Corollary 2. If $f \in T S_{0}\left(f, z+\sum_{k=2}^{\infty} k^{n} z^{k} ; \alpha, \beta\right)=T S(n, \alpha, \beta)(-1 \leq \alpha<1, \beta \geq 0$, $n \in N_{0}$ and $\eta>0$), then the assertion (3.1) holds true, where

$$
f_{2}(z)=z-\frac{(1-\alpha)}{2^{n}(2+\beta-\alpha)} z^{2} .
$$

Corollary 3. If $f \in T S_{0}\left(f, z+\sum_{k=2}^{\infty}[1+\lambda(k-1)]^{n} z^{k} ; \alpha, \beta\right)=T S_{\lambda}(n, \alpha, \beta)(-1 \leq$ $\alpha<1, \beta \geq 0, \lambda \geq 0, n \in N_{0}$ and $\eta>0$), then the assertion (3.1) holds true, where

$$
f_{2}(z)=z-\frac{(1-\alpha)}{(2+\beta-\alpha)(1+\lambda)^{n}} z^{2} .
$$

Corollary 4. If $f \in T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^{k} ; \alpha, \beta\right)=T S(\gamma, \alpha, \beta)(0 \leq \gamma \leq 1$, $-1 \leq \alpha<1, \beta \geq 0, a>0, c>0$ and $\eta>0$), then the assertion (3.1) holds true, where

$$
f_{2}(z)=z-\frac{c(1-\alpha)}{a(2+\beta-\alpha)(1+\gamma)} z^{2} .
$$

Corollary 5. If $f \in T S_{0}(f, g(z) ; \alpha, \beta)=H_{T}(g, \alpha, \beta)(-1 \leq \alpha<1, \beta \geq 0$ and $\eta>0$), then the assertion (3.1) holds true, where

$$
f_{2}(z)=z-\frac{(1-\alpha)}{(2+\beta-\alpha) b_{2}} z^{2} .
$$

Corollary 6. If $f \in T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} k^{n} z^{k} ; \alpha, \beta\right)=T S_{\gamma}(n, \alpha, \beta)(0 \leq \gamma \leq 1,-1 \leq$ $\alpha<1, \beta \geq 0, n \in N_{0}$ and $\eta>0$), then the assertion (3.1) holds true, where

$$
f_{2}(z)=z-\frac{(1-\alpha)}{2^{n}(2+\beta-\alpha)(1+\gamma)} z^{2}
$$

Corollary 7. If $f \in T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty}\left(\frac{c+1}{c+k}\right) z^{k} ; \alpha, \beta\right)=T S_{\gamma}(c, \alpha, \beta)(0 \leq \gamma \leq 1$, $-1 \leq \alpha<1, \beta \geq 0, c>-1$ and $\eta>0$), then the assertion (3.1) holds true, where

$$
f_{2}(z)=z-\frac{(1-\alpha)(c+2)}{(2+\beta-\alpha)(1+\gamma)(c+1)} z^{2}
$$

Corollary 8. If $f \in T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \frac{(\mu)_{k-1}}{(\lambda+1)_{k-1}} z^{k} ; \alpha, \beta\right)=T S_{\gamma}(\mu, \lambda ; \alpha, \beta)(0 \leq \gamma \leq 1$, $-1 \leq \alpha<1, \beta \geq 0, \lambda>-1, \mu>0$ and $\eta>0$), then the assertion (3.1) holds true, where

$$
f_{2}(z)=z-\frac{(1-\alpha)(\lambda+1)}{(2+\beta-\alpha)(1+\gamma) \mu} z^{2}
$$

Corollary 9. If $f \in T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \frac{(c)_{k-1}}{(a)_{k-1}} \frac{(\lambda+1)_{k-1}}{(1)_{k-1}} z^{k} ; \alpha, \beta\right)=T S_{\gamma}(a, c, \lambda ; \alpha, \beta)$ $\left(0 \leq \gamma \leq 1,-1 \leq \alpha<1, \beta \geq 0, a, c \in R \backslash Z_{0}^{-}, \lambda>-1\right.$ and $\left.\eta>0\right)$, then the assertion (3.1) holds true, where

$$
f_{2}(z)=z-\frac{a(1-\alpha)}{c(2+\beta-\alpha)(1+\gamma)(\lambda+1)} z^{2}
$$

Corollary 10. If $f \in T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \frac{(2)_{k-1}}{(n+1)_{k-1}} z^{k} ; \alpha, \beta\right)=T S_{\gamma}(n, \alpha, \beta) \quad(0 \leq \gamma \leq 1$, $-1 \leq \alpha<1, \beta \geq 0, n>-1$ and $\eta>0$), then the assertion (3.1) holds true, where

$$
f_{2}(z)=z-\frac{(1-\alpha)(n+1)}{2(2+\beta-\alpha)(1+\gamma)} z^{2}
$$

References

[1] O. Ahuja, G. Murugusundaramoorthy and N. Magesh, Integral means for uniformly convex and starlike functions associated with generalized hypergeometric functions, J. Inequal. Pure Appl. Math. 8(2007), no. 4, Art. 118, 1-9.
[2] M. K. Aouf and A. O. Mostafa, Some properties of a subclass of uniformly convex functions with negative coefficients, Demonstratio Math., 2 (2008), 353-370.
[3] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.
[4] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamakang J. Math. 28(1997), 17-32.
[5] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292(2004), 470-483.
[6] J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276(2002), 432-445.

7] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56(1991), 87-92.
[8] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155(1991), 364-370.
[9] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1965), 755-758.
[10] J. E. Littlewood, On inequalities in theory of functions, Proc. London Math. Soc. 23(1925), 481-519.
[11] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17(1966), 352-357.
[12] G. Murugusundaramoorthy and N. Magesh, A new subclass of uniformly convex functions and corresponding subclass of starlike functions with fixed second coefficient, J. Inequal. Pure Appl. Math. 5(2004), no. 4, Art. 85, 1-10.
[13] G. Murugusundaramoorthy and N. Magesh, Linear operators associated with a subclass of uniformly convex functions, Internat. J. Pure Appl. Math. Sci. 3 (2006), no. 2, 113-125.
[14] G. Murugusundaramoorthy, T. Rosy and K. Muthunagai, Carlson-Shaffer operator and their applications to certain subclass of uniformly convex function, General Math. 15(2007), no. 4, 131-143.
[15] K. I. Noor, On new classes of integral operators, J. Natur. Geem. 16(1999), 71-80.
[16] R. K. Raina and D. Bansal, Some properties of a new class of analytic functions defined in terms of a Hadamard product, J. Inequal. Pure Appl. Math. 9(2008), no. 1, Art. 22, 1-9.
[17] F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae-Curie-Sklodowska, Sect. A 45(1991), 117-122.
[18] F. Ronning, Uniformly convex functions and a corresponding class of starlike
functions, Proc. Amer. Math. Soc. 118(1993), 189-196.
[19] T. Rosy and G. Murugusundaramoorthy, Fractional calculus and their applications to certain subclass of uniformly convex functions, Far East J. Math. Sci. (FJMS), 115(2004), no. 2, 231-242.
[20] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.
[21] H. Silverman, A survey with open problems on univalent functions whose coefficients are negative, Rocky Mountain J. Math. 21(1991), 1099-1125.
[22] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math. 23(1997), 169-174.
[23] S. Shams, S.R. Kulkarni and J. M. Jahangiri, Classes of Ruscheweyh-type analytic univalent functions, Southwest J. Pure Appl. Math., 2(2003), 105-110.
[24] K. G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahma and H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japon. 42(1995), no. 3, 517-522.
M. K. Aouf

Department of Mathematics
Faculty of Science
University of Mansoura
Mansoura 33516, Egypt
e-mail: mkaouf127@yahoo.com
R. M. El-Ashwah Department of Mathematics

Faculty of Science at Damietta
University of Mansoura
New Damietta 34517, Egypt
e-mail: r_elashwah@yahoo.com
S. M. El-Deeb Department of Mathematics

Faculty of Science at Damietta
University of Mansoura
New Damietta 34517, Egypt
e-mail: shezaeldeeb@yahoo.com

