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A C-CONTINUUM X IS METRIZABLE IF AND ONLY IF IT
ADMITS A WHITNEY MAP FOR C(X)
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Abstract. The purpose of this paper is to prove that a C-continuum X is
metrizable if and only if it admits a Whitney map for C(X) (Theorem 2.5).
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1. Preliminaries

In [1] J.J. Charatonik and W.J. Charatonik showed that the non-metric inde-
composable continuum example given by Gutek and Hagopian [3] will support a
Whitney map on C(X) the hyperspace of subcontinua.

In this paper we shall show that such examples are not in the class of C-continua,
since a C-continuum X admits a Whitney map for C(X) if and only if it is metrizable
(Theorem 2.5).

All spaces in this paper are compact Hausdorff and all mappings are continuous.
Let X be a space. We define its hyperspaces as the following sets:

2X = {F ⊆ X : F is closed and nonempty },
C(X) =

{
F ∈ 2X : F is connected },

C2(X) = C(C(X)),
X(n) =

{
F ∈ 2X : F has at most n points }, n ∈ N.

For any finitely many subsets S1, ..., Sn, let

〈S1, ..., Sn〉 =

{
F ∈ 2X : F ⊂

n⋃
i=1

Si, and F ∩ Si 6= ∅, for each i

}
.

The topology on 2X is the Vietoris topology, i.e., the topology with a base
{< U1, ..., Un >: Ui is an open subset of X for each i and each n < ∞ }, and C(X)
is a subspace of 2X .

Let Λ be a subspace of 2X . By a Whitney map for Λ [7, p. 24, (0.50)] we will
mean any mapping W : Λ → [0,+∞) satisfying
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a) if A,B ∈ Λ such that A ⊂ B and A 6= B, then W (A) < W (B) and
b) W ({x}) = 0 for each x ∈ X such that {x} ∈ Λ.
If X is a metric continuum, then there exists a Whitney map for 2X and C(X)

([7, pp. 24-26], [4, p. 106]). On the other hand, if X is non-metrizable, then it
admits no Whitney map for 2X [1]. It is known that there exist non-metrizable
continua which admit and ones which do not admit a Whitney map for C(X) [1].

The notion of an irreducible mapping was introduced by Whyburn [9, p. 162].
If X is a continuum, a surjection f : X → Y is irreducible provided no proper
subcontinuum of X maps onto all of Y under f . Some theorems for the case when
X is semi-locally-connected are given in [9, p. 163].

A mapping f : X → Y is said to be hereditarily irreducible [7, p. 204, (1.212.3)]
provided that for any given subcontinuum Z of X, no proper subcontinuum of Z
maps onto f(Z).

A mapping f : X → Y is light (zero-dimensional) if all fibers f−1(y) are
hereditarily disconnected (zero-dimensional or empty) [2, p. 450], i.e., if f−1(y) does
not contain any connected subsets of cardinality larger that one (dim f−1(y) ≤ 0).
Every zero-dimensional mapping is light, and in the realm of mappings with compact
fibers the two classes of mappings coincide.

Lemma 1.1.Every hereditarily irreducible mapping is light.

If X is a metric continuum, then there exists a Whitney map for 2X and C(X)
([7, pp. 24-26], [4, p. 106]). On the other hand, if X is non-metrizable, then it
admits no Whitney map for 2X [1]. It is known that there exist non-metrizable
continua which admit and ones which do not admit a Whitney map for C(X) [1].

We shall use the notion of inverse system as in [2, pp. 135-142]. An inverse
system is denoted by X = {Xa, pab, A}. We say that an inverse system X = {Xa,
pab, A} is σ-directed if for each sequence a1, a2, ..., ak, ... of the members of A there
is an a ∈ A such that a ≥ ak for each k ∈ N.

Theorem 1.2.[6, Theorem 1.8, p. 397]. Let X be a compact Hausdorff space
such that w(X) > ℵ0. There exists a σ-directed inverse system X = {Xa, pab, A} of
metric compacta Xa such that X is homeomorphic to limX.

The following result is an external characterization of non-metric continua which
admit a Whitney map.

Theorem 1.3. [6, Theorem 2.3, p. 398]. Let X be a non-metric continuum.
Then X admits a Whitney map for C(X) if and only if for each σ-directed inverse
system X = {Xa, pab, A} of continua which admit a Whitney map and X = limX
there exists a cofinal subset B ⊂ A such that for every b ∈ B the projection pb :
lim X → Xb is hereditarily irreducible.
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Now we give another form of Theorem 1.3.
Theorem 1.4.Let X be a non-metric continuum. Then X admits a Whitney

map for C(X) if and only if for each σ-directed inverse system X = {Xa, pab, A} of
continua which admit a Whitney map and X = limX there exists a cofinal subset
B ⊂ A such that for every b ∈ B the projection C(pb) : lim C(X) → C(Xb) is light.

Proof. This follows from Theorem 1.3 and the fact that C(f) : C(X) → C(Y ) is
light if and only if f : X → Y is hereditarily irreducible [7, p. 204, (1.212.3)].

2. C-continua and Whitney maps

A continuum X is said to be a C-continuum provided for each triple x, y, z of
points of X, there exists a subcontinuum C of X which contains x and exactly one
of the points y and z [10, p. 326].

A generalized arc is a Hausdorff continuum with exactly two non-separating
points (end points) x, y. Each separable arc is homeomorphic to the closed interval
I = [0, 1].

We say that a space X is arcwise connected if for every pair x, y of points of X
there exists a generalized arc L with end points x, y.

Lemma 2.1.Each arcwise connected continuum is a C-continuum.
Proof. Let x, y, z be a triple of points of an arcwise connected continuum X.

There exists an arc [x, y] with endpoints x and y. If z /∈ [x, y], then the proof is
completed. If z ∈ [x, y], then subarc [x, z] contains x and z, but not y. The proof is
completed.

Lemma 2.2.The cartesian product X × Y of two non-degenerate continua X
and Y is a C-continuum.

Proof. Let (x1, y1), (x2, y2), (x3, y3) be a triple of points of the product X × Y .
Now we have x2 6= x3 or y2 6= y3. We will give the proof in the case x2 6= x3 since
the proof in the case y2 6= y3 is similar. Now we have two disjoint continua Y2 =
{(x2, y) : y ∈ Y } and Y3 = {(x3, y) : y ∈ Y }. If (x1, y1) ∈ Y2 or (x1, y1) ∈ Y3, the
proof is completed. Let (x1, y1) /∈ Y2 and (x1, y1) /∈ Y3. Consider the continua X2 =
{(x, y2) : x ∈ X} and X3 = {(x, y3) : x ∈ X}. The continuum Y1 = {(x1, y) : y ∈ Y }
contains a point (x1, p) such that (x1, p) /∈ X2 ∪X3. Let Xp = {(x, p) : x ∈ X}. It
is clear that a continuum Y1 ∪Xp ∪ Y2 contains the points (x1, y1) and (x2, y2) but
not (x3, y3). Similarly, a continuum Y1 ∪ Xp ∪ Y3 contains the points (x1, y1) and
(x3, y3) but not (x2, y2). The proof is completed.
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The concept of aposyndesis was introduced by Jones in [5]. A continuum X is
aposyndetic provided it is true that if x and y are any two points of X, then some
closed connected neighborhood of x misses y.

A continuum is said to be semi-aposyndetic [4, p. 238, Definition 29.1], if for
every p 6= q in X, there exists a subcontinuum M of X such that IntX(M) contains
one of the points p, q and X�M contains the other one. Each locally connected
continuum is semi-aposyndetic.

Proposition 1.[10, Theorem 1, p. 326]. If the continuum X is aposyndetic, the
X is the C-continuum.

Remark 1. There exists a C-continuum continuum which is not aposyndetic
[10, p. 327]wilder. (See countable harmonic fan).

Remark 2. There exists a C-continuum continuum which is not arcwise con-
nected [10 p. 328].

A continuum X is said to be colocally connected provided that for each point
x ∈ X and each open se U 3 x there exists an open set V containing x such that
V ⊂ U and X�U is connected.

Lemma 2.3.Each colocally connected continuum X is a C-continuum.

Proof.Let x, y, z be a triple of points of X. Now, U = X�{x, y} is an open
set U such that z ∈ U . From the colocal connectedness of X it follows that there
exists an open set V such that z ∈ V ⊂ U and X�V is connected.Hence, X is a
C-continuum since the continuum X� V contains the points x and y.

Lemma 2.4.The cartesian product X × Y of two non-degenerate continua is a
colocally connected continuum and, consequently, a C-continuum.

Proof.Let (x, y) be a point of X × Y . We have to prove that there exists a
neighbourhood U = Ux × Uy of (x, y) such that E = X × Y �U is connected. We
may assume that Ux 6= X and Uy 6= Y . Let (x1, y1), (x2, y2) be a pair of different
points in E. For each point (z, w) ∈ X × Y we consider a continuum

Ezw = {(z, y) : y ∈ Y } ∪ {(x,w) : x ∈ X}.

Claim 1. For each point (x′, y′) ∈ E there exists a point (z, w) ∈ E such that
(x′, y′) ∈ Ezw and Ezw ∩ U = ∅. If Ex′y′ ∩ U = ∅ the proof is completed. In the
opposite case we have either {(x′, y) : y ∈ Y } ∩ U 6= ∅ or {(x, y′) : x ∈ X} ∩ U 6= ∅.
Suppose that {(x′, y) : y ∈ Y }∩U 6= ∅. Then {(x, y′) : x ∈ X}∩U = ∅. There exists
a point z ∈ X such that z /∈ U . Setting y′ = w, we obtain a point (z, w) ∈ E such
that (x′, y′) ∈ Ezw and Ezw ∩U = ∅. The proof in the case {(x, y′) : x ∈ X}∩U 6= ∅
is similar.
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Now, by Claim 1, for (x1, y1) there exists a continuum Ez1,w1 such that Ez1w1 ∩
U = ∅ and (x1, y1) ∈ Ez1,w1 . Similarly, there exist a continuum Ez2,w2 such that
Ez2w2 ∩ U = ∅ and (x2, y2) ∈ Ez2,w2 .

Claim 2. The union Ez1,w1 ∪ Ez2,w2 is a continuum which contains the points
(x1, y1), (x2, y2) and is contained in E = X × Y �U . Obvious.

Finally, we infer that E = X × Y �U is connected. Hence, X × Y is colocally
connected. From Lemma 2.3 it follows that X × Y is a C-continuum. The proof is
completed.

Now we shall prove the main theorem of this Section.
Theorem 2.5.A C-continuum X is metrizable if and only if it admits a Whitney

map for C(X).
Proof. If X is metrizable, then it admits a Whitney map for C(X) ([7, pp. 24-

26], [4, p. 106]). Conversely, let X admits a Whitney map µ : C(X) → [0,+∞).
Suppose that X is non-metrizable. The remaining part of the proof is broken into
several steps.

Step 1. There exists a σ-directed directed inverse system X = {Xa, pab, A}
of metric compact spaces Xa such that X is homeomorphic to limX [6, p. 397,
Theorem 1.8].

Step 2. There exists a cofinal subset B ⊂ A such that for every b ∈ B the
projection pb : lim X → Xb is hereditarily irreducible. This follows from Theorem
1.3.

Step 3. If limX is a C-continuum, then for every pair C,D of disjoint non-
degenerate subcontinua of limX there exists a non-degenerate subcontinuum E ⊂
limX such that C ∩E 6= ∅ 6= D ∩E and (C ∪D)�E 6= ∅. Let x ∈ C and y, z ∈ D.
There exists a continuum E such that either x, y ∈ E, z ∈ limX�E or x, z ∈ E,
y ∈ limX�E, respectively since lim X is a C-continuum. We assume that x, y ∈ E,
and z ∈ limX�E. It is clear that C ∩ E 6= ∅ 6= D ∩ E and (C ∪D)�E 6= ∅ since
x ∈ C ∩ E, y ∈ D ∩ E and z ∈ (C ∪D)�E.

In the remaining part of the proof we denote limX by X since X is homeomorphic
to limX.

Step 4. Every restriction C(pa)|(C(X)�X(1)) : (C(X)�X(1)) → C(pa) (C(X)) ⊂
C(Xa) is one-to-one. Consider the inverse system C(X) = {C(Xa), C(pab), A}
whose limit is C(X). From Theorem 1.3 it follows that there exists a subset B
cofinal in A such that the projections pb are hereditarily irreducible and C(pb) are
light for every b ∈ B, see [7, p. 204, (1.212.3)]. Since limX is homeomorphic
to lim{Xb, pbc, B}, we may assume that B = A. Let Ya = C(pa)(C(X)). Further-
more, C(pa)−1(Xa(1)) = X(1) since from the hereditary irreducibility of pa it fol-
lows that no non-degenerate subcontinuum of X maps under pa onto a point. We
infer that C(pa)−1[Ya�Xa(1)] = C(X)�X(1). Let us prove that the restriction
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C(pa)|[C(X)�X(1)] is one-to-one. Suppose that C(pa)|[C(X)�X (1)] is not one-
to-one. Then there exists a continuum Ca in Xa and two continua C,D in X such
that pa(C) = pa(D) = Ca. It is impossible that C ⊂ D or D ⊂ C since pa is hered-
itarily irreducible. Otherwise, if C ∩ D 6= ∅, then for a continuum Y = C ∪ D we
have that C and D are subcontinua of Y and pa(Y ) = pa(C) = pa(D) = Ca which
is impossible since pa is hereditarily irreducible. We infer that C ∩ D = ∅. There
exists a non-degenerate subcontinuum E ⊂ lim X such that C ∩E 6= ∅ 6= D∩E and
(C ∪D)�E 6= ∅ since limX is a C-continuum (Step 3). Moreover, we may assume
that E ∩D 6= D. Now pa(E ∪D ∪ C) = pa(E ∪ C) which is impossible since pa is
hereditarily irreducible. It follows that the restriction Pa = C(pa)|(C(X)�X(1)) is
one-to-one and closed [2, p. 95, Proposition 2.1.4].

Step 5. C(X)�X(1) is metrizable and w(C(X)�X(1)) ≤ ℵ0. From Step 4
it follows that Pa is a homeomorphism and C(X)�X(1) is metrizable. Moreover,
w(C(X)�X(1)) ≤ ℵ0 since Ya as a compact metrizable space is separable and,
consequently, second-countable [2, p. 320].

Step 6. X is metrizable. If X is a continuum., then w(C(X)�X(1)) = ℵ0 if and
only if w(X) = ℵ0. If w(X) = ℵ0, then w(C(X)) = ℵ0. Hence, w(C(X)�X(1)) =
ℵ0. Conversely, if w(C(X)�X(1)) = ℵ0, then there exists a countable base B =
{Bi : i ∈ N} of C(X)�X(1). For each Bi let Ci = ∪{x ∈ X : x ∈ B, B ∈ Bi}, i.e.,
the union of all continua B contained in Bi.

Claim 1. The family {Ci : i ∈ N} is a network of X. Let X be a point of
X and let U be an open subsets of X such that x ∈ U . There exists and open
set V such that x ∈ V ⊂ ClV ⊂ U . Let K be a component of ClV containing
x. By Boundary Bumping Theorem [8, p. 73, Theorem 5.4] K is non-degenerate
and, consequently, K ∈ C(X)�X(1). Now, 〈U〉∩(C(X)�X(1)) is a neighbourhood
of K in C(X)�X(1). It follows that there exists a Bi ∈ B such that K ∈ Bi ⊂
〈U〉 ∩ (C(X)�X(1)). It is clear that Ci ⊂ U and x ∈ Ci since x ∈ K ⊂ U . Hence,
the family {Ci : i ∈ N} is a network of X.

Claim 2. nw(X) = ℵ0. Apply Claim 1 and the fact that B is countable.
Claim 3. w(X) = ℵ0. By Claim 1 we have nw(X) = ℵ0. Moreover, by [2, p.

171, Theorem 3.1.19] w(X) = ℵ0.
Step 6 contradicts the assumption that X is non-metrizable. The proof is com-

pleted.

Corollary 2.6.Let X be an (arcwise connected, aposyndetic, colocally connected
or cartesian product Y × Z of continua) continuum. Then X is metrizable if and
only if it admits a Whitney map for C(X).

Corollary 2.7.Let a continuum X be the countable union of C-continua. Then
X is metrizable if and only if it admits a Whitney map for C(X).
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Proof. If X is metrizable, then it admits a Whitney map for C(X) [4, p. 106].
Conversely, if X admits a Whitney map for C(X) and if X is the countable union of
C-continua Xi : i ∈ N, then each Xi admits a Whitney map for C(Xi).By Theorem
2.5 we infer that each Xi is metrizable. It is known [2, Corollary 3.1.20, p. 171] that
if a compact space X is the countable union of its subspaces Xn, n ∈ N, such that
w(Xn) ≤ ℵ0, then w(X) ≤ ℵ0. Hence, X is metrizable.

Theorem 2.8.A continuum X is metrizable if and only if C(X) admits a Whit-
ney map for C2(X) = C(C(X)).

Proof. If X is metrizable, then C(X) is metrizable and admits a Whitney map
for C(C(X)) = C2(X). Conversely, let C(X) admits a Whitney map for C(C(X)).
Now, C(X) is an arcwise connected continuum. By Corollary 2.6, C(X) is metriz-
able. Thus, X is metrizable since X is homeomorphic to X(1) ⊂ C(X).
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