ON NEW CLASSES OF UNIVALENT HARMONIC FUNCTIONS DEFINED BY GENERALIZED DIFFERENTIAL OPERATOR

MASLINA DARUS AND RABHA W. IBRAHIM

ABSTRACT. In this article, we define two classes of univalent harmonic functions in the open unit disk

$$U := \{ z \in \mathbb{C} : |z| < 1 \}$$

under certain conditions involving generalized differential operator introduced by the first author [10, 11] as follows

$$\mathcal{D}_{\lambda,\delta}^k f(z) = z + \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^k C(\delta, n) a_n z^n, \quad k \in \mathbb{N}_0, \lambda \ge 0, \quad \delta \ge 0, \quad (z \in U)$$

for analytic function of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $(z \in U)$. A sufficient coefficient, such as distortion bounds, extreme points and other properties are studied.

2000 Mathematics Subject Classification: 30C45.

Keywords and phrases: Differential operator; Sălăgean differential operator; Ruscheweyh differential operator; Al-Oboudi differential operator ; Harmonic function.

1. INTRODUCTION

Let $U := \{z : |z| < 1\}$ be the open unit disk and let S_H denote the class of all complex valued, harmonic, sense-preserving, univalent functions f in Unormalized by f(0) = f'(0) - 1 = 0 and expressed as $f(z) = h(z) + \overline{g(z)}$ where

h and g belong to the linear space ${\cal H}(U)$ of all analytic functions on U take the form

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n \text{ and } g(z) = \sum_{n=1}^{\infty} b_n z^n.$$

Thus for each $f \in S_H$ takes the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n}, \quad z \in U.$$

$$(1)$$

Clunie and Sheil-Small proved that S_H is not compact and the necessary and sufficient condition for f to be locally univalent and sense-preserving in any simply connected domain \triangle is that |h'(z)| > |g'(z)| (see [1]).

In [10-11], a generalized differential operator was introduced as follows: $\mathcal{D}_{\lambda,\delta}^k f(z)$, where

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ (z \in U)$$

as follows :

$$\mathcal{D}_{\lambda,\delta}^k f(z) = z + \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^k C(\delta, n) a_n z^n, \quad k \in \mathbb{N}_0, \lambda \ge 0, \quad \delta \ge 0, \quad (2)$$

where

$$C(\delta, n) = \begin{pmatrix} n+\delta-1\\\delta \end{pmatrix} = \frac{\Gamma(n+\delta)}{\Gamma(n)\Gamma(\delta+1)}$$

This operator was later defined for second time by the authors in [2], without noticing that this operator has been given earlier by Al-Shaqsi and Darus [10] and further studied in [11].

Remark 1.1. When $\lambda = 1, \delta = 0$ we get Sălăgean differential operator [3], k = 0 gives Ruscheweyh operator [4], $\delta = 0$ implies Al-Oboudi differential operator of order (k) [5] and when $\lambda = 1$ operator (2) reduces to Al-Shaqsi and Darus differential operator [6].

In the following definitions, we introduce new classes of analytic functions containing the generalized differential operator (2):

Definition 1.1. Let f(z) of the form (1). Then $f(z) \in HS^k(\lambda, \delta, \mu)$ if and only if

$$\sum_{n=2}^{\infty} (n-\mu) [1+(n-1)\lambda]^k C(\delta,n) [|a_n|+|b_n|] \le (1-\mu)(1-|b_1|), \quad 0 \le \mu < 1, \quad |b_1| < 1,$$

for all $z \in U$.

Definition 1.2. Let f(z) of the form (1). Then $f(z) \in HC^k(\lambda, \delta, \mu)$ if and only if

$$\sum_{n=2}^{\infty} n(n-\mu) [1+(n-1)\lambda]^k C(\delta,n) [|a_n|+|b_n|] \le (1-\mu)(1-|b_1|), \quad 0 \le \mu < 1, \quad |b_1| <$$

for all $z \in U$.

Remark 1.1. Note that

$$HS^{0}(\lambda, 0, \mu) \equiv HS(\mu), \text{ and } HC^{0}(\lambda, 0, \mu) \equiv HC(\mu)$$

where the subclasses $HS(\mu)$ and $HC(\mu)$ are studied in [7]. And

$$HS^{0}(\lambda, 0, 0) \equiv HS$$
, and $HC^{0}(\lambda, 0, 0) \equiv HC$

where the subclasses HS and HC introduced in [8].

We need the next definition as follows:

Definition 1.3. Let $F(z) = H(z) + \overline{G(z)}$ where $H(z) = z + \sum_{n=2}^{\infty} A_n z^n$ and $G(z) = \sum_{n=1}^{\infty} B_n z^n$. Then the generalized ρ -neighborhood of f to be the set $N_{\rho}^k(f) = \{F : \sum_{n=2}^{\infty} (n-\mu)[1+(n-1)\lambda]^k C(\delta,n)(|a_n-A_n|+|b_n-B_n|)+(1-\mu)|b_1-B_1|$

$$\leq (1-\mu)\rho\}.$$

Note that when $k = 0, \mu = 0$ and $\delta = 0$, we receive the set

$$N_{\rho}^{0}(f) = \{F : \sum_{n=2}^{\infty} n(|a_{n} - A_{n}| + |b_{n} - B_{n}|) + (1 - \mu)|b_{1} - B_{1}| \le \rho\}$$

which defined in [9]. And when k = 0 and $\delta = 0$ we pose the set

$$N_{\rho}^{0}(f) = \{F : \sum_{n=2}^{\infty} (n-\mu)(|a_{n}-A_{n}|+|b_{n}-B_{n}|) + (1-\mu)|b_{1}-B_{1}| \le (1-\mu)\rho\}$$

which defined in [7].

2. Main Results

In this section, we establish some properties of the classes $HS^k(\lambda, \delta, \mu)$ and $HC^k(\lambda, \delta, \mu)$ by obtaining the coefficient bonds. The next results come from the Definitions 1.1 and 1.2.

Theorem 2.1. Let $0 \le \mu_1 \le \mu_2 < 1$. Then

(i)
$$HS^{k}(\lambda, \delta, \mu_{2}) \subset HS^{k}(\lambda, \delta, \mu_{1}),$$

(ii) $HC^{k}(\lambda, \delta, \mu_{2}) \subset HC^{k}(\lambda, \delta, \mu_{1}).$

Theorem 2.2. Let the inequality

$$|a_n| + |b_n| \le \frac{(1-\mu)(1-|b_1|)}{(n-\mu)[1+(n-1)\lambda]^k C(\delta,n)}, \ 0 \le \mu < 1, \ |b_1| < 1, \ (z \in U)$$

be satisfied. Then f belongs to the class $HS^k(\lambda, \delta, \mu)$. The result is sharp.

Theorem 2.3. Let the inequality

$$|a_n| + |b_n| \le \frac{(1-\mu)(1-|b_1|)}{n(n-\mu)[1+(n-1)\lambda]^k C(\delta,n)}, \quad 0 \le \mu < 1, \quad |b_1| < 1, \quad z \in U$$

be satisfied. Then f belongs to the class $HC^k(\lambda, \delta, \mu)$. The result is sharp.

Theorem 2.4. $HS^k(\lambda, \delta, \mu) \subset HS^k(\lambda, \delta, 0)$ and $HC^k(\lambda, \delta, \mu) \subset HC^k(\lambda, \delta, 0)$.

Proof. Since for $0 \le \mu < 1$ we have

$$\sum_{n=2}^{\infty}n[1+(n-1)\lambda]^kC(\delta,n)[|a_n|+|b_n|]\leq$$

$$\sum_{n=2}^{\infty} \frac{(n-\mu)}{(1-\mu)} [1+(n-1)\lambda]^k C(\delta,n)[|a_n|+|b_n|] \le (1-|b_1|)$$

and

$$\sum_{n=2}^{\infty} n^2 [1 + (n-1)\lambda]^k C(\delta, n)[|a_n| + |b_n|] \le \sum_{n=2}^{\infty} \frac{n(n-\mu)}{(1-\mu)} [1 + (n-1)\lambda]^k C(\delta, n)[|a_n| + |b_n|] \le (1-|b_1|)$$

we obtain the proof of the theorem.

Next we discuss the following properties:

Theorem 2.5. The class $HS^k(\lambda, \delta, \mu)$ consists of locally univalent sense preserving harmonic mappings.

Proof. Let $f \in HS^k(\lambda, \delta, \mu)$. For $z_1, z_2 \in U$ such that $z_1 \neq z_2$ our aim is to prove that $|f(z_1) - f(z_2)| > 0$.

$$\begin{split} \left| \frac{f(z_1) - f(z_2)}{h(z_1) - h(z_2)} \right| &\geq 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right| \\ &= 1 - \left| \frac{\sum_{n=1}^{\infty} b_n(z_1^n - z_2^n)}{(z_1 - z_2) + \sum_{n=2}^{\infty} a_n(z_1^n - z_2^n)} \right| \\ &> 1 - \frac{\sum_{n=1}^{\infty} |b_n|}{1 - \sum_{n=2}^{\infty} |a_n|} \\ &\geq 1 - \frac{\sum_{n=1}^{\infty} (n - \mu) [1 + (n - 1)\lambda]^k C(\delta, n) \frac{|b_n|)}{(1 - \mu)(1 - |b_1|)}}{1 - \sum_{n=2}^{\infty} (n - \mu) [1 + (n - 1)\lambda]^k C(\delta, n) \frac{|a_n|}{(1 - \mu)(1 - |b_1|)}}{(1 - \mu)(1 - |b_1|)} \\ &> 0, \end{split}$$

where $a_1 = 1$. Hence f is univalent. Next we show that f is sense preserving mapping.

$$|h'(z)| - |g'(z)| \ge 1 - \sum_{n=2}^{\infty} n|a_n||z|^{n-1} - |b_1| - \sum_{n=2}^{\infty} n|b_n||z|^{n-1}$$
$$> (1 - |b_1|) - [\sum_{n=2}^{\infty} n(|a_n| + |b_n|)]$$
$$> (1 - |b_1|) - (1 - |b_1|)$$
$$= 0.$$

Hence |h'(z)| - |g'(z)| > 0. This completes the proof.

In the same way we obtain the following result.

Corollary 2.6. The class $HC^k(\lambda, \delta, \mu)$ consists of locally univalent sense preserving harmonic mappings.

Theorem 2.7. Let $f \in HS^k(\lambda, \delta, \mu)$. Then

$$|\mathcal{D}_{\lambda,\delta}^k f(z)| \le (1 + \frac{|b_1|}{\delta})|z| + \frac{(1-\mu)(1-|b_1|)}{(2-\mu)}|z|^2$$

and

$$|\mathcal{D}_{\lambda,\delta}^k f(z)| \ge (1 - \frac{|b_1|}{\delta})|z| - \frac{(1 - \mu)(1 - |b_1|)}{(2 - \mu)}|z|^2$$

Proof. Let $f \in HS^k(\lambda, \delta, \mu)$ then we have

$$(2-\mu)\sum_{n=2}^{\infty} [1+(n-1)\lambda]^k C(\delta,n)[|a_n|+|b_n|] \le \sum_{n=2}^{\infty} (n-\mu)[1+(n-1)\lambda]^k C(\delta,n)[|a_n|+|b_n|] \le (1-\mu)(1-|b_1|)$$

implies that

$$\sum_{n=2}^{\infty} [1 + (n-1)\lambda]^k C(\delta, n) [|a_n| + |b_n|] \le \frac{(1-\mu)(1-|b_1|)}{(2-\mu)}.$$

Applying this inequality in the following assertion, we obtain

$$\begin{aligned} |\mathcal{D}_{\lambda,\delta}^{k}f(z)| &= |z + \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^{k}C(\delta,n)a_{n}z^{n} + \sum_{n=1}^{\infty} [1 + (n-1)\lambda]^{k}C(\delta,n)b_{n}\overline{z}^{n}| \\ &\leq (1 + \frac{|b_{1}|}{\delta})|z| + \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^{k}C(\delta,n)(|a_{n}| + |b_{n}|)|z|^{n} \\ &\leq (1 + \frac{|b_{1}|}{\delta})|z| + \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^{k}C(\delta,n)(|a_{n}| + |b_{n}|)|z|^{2} \\ &\leq (1 + \frac{|b_{1}|}{\delta})|z| + \frac{(1 - \mu)(1 - |b_{1}|)}{(2 - \mu)}|z|^{2}. \end{aligned}$$

Also, on the other hand we obtain

$$\begin{aligned} |\mathcal{D}_{\lambda,\delta}^{k}f(z)| &\geq (1 - \frac{|b_{1}|}{\delta})|z| - \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^{k}C(\delta,n)(|a_{n}| + |b_{n}|)|z|^{n} \\ &\geq (1 - \frac{|b_{1}|}{\delta})|z| - \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^{k}C(\delta,n)(|a_{n}| + |b_{n}|)|z|^{2} \\ &\geq (1 - \frac{|b_{1}|}{\delta})|z| - \frac{(1 - \mu)(1 - |b_{1}|)}{(2 - \mu)}|z|^{2}. \end{aligned}$$

In similar manner we can prove the following result.

Theorem 2.8. Let $f \in HC^k(\lambda, \delta, \mu)$. Then

$$|\mathcal{D}_{\lambda,\delta}^k f(z)| \le (1 + \frac{|b_1|}{\delta})|z| + \frac{(1-\mu)(1-|b_1|)}{2(2-\mu)}|z|^2$$

and

$$|\mathcal{D}_{\lambda,\delta}^k f(z)| \ge (1 - \frac{|b_1|}{\delta})|z| - \frac{(1 - \mu)(1 - |b_1|)}{2(2 - \mu)}|z|^2.$$

Theorem 2.9. Let f of the form (1) belongs to $HC^k(\lambda, \delta, \mu)$. If $\rho \leq 1$ then $N^k_{\rho}(f) \subset HS^k(\lambda, \delta, \mu)$.

Proof. Let

$$f(z) = z + \sum_{n=2}^{\infty} [a_n z^n + \overline{b_n z^n}] + \overline{b_1 z}$$

and

$$F(z) = z + \sum_{n=2}^{\infty} [A_n z^n + \overline{B_n z^n}] + \overline{B_1 z}$$

Let $f \in HC_k(\mu)$ and $F \in N^k_\rho(f)$ this give

$$(1-\mu)\rho \ge \sum_{n=2}^{\infty} (n-\mu)[1+(n-1)\lambda]^k C(\delta,n)(|a_n-A_n|+|b_n-B_n|)+(1-\mu)|b_1-B_1|$$
$$=\sum_{n=2}^{\infty} (n-\mu)[1+(n-1)\lambda]^k C(\delta,n)(|A_n-a_n|+|B_n-b_n|)+(1-\mu)|B_1-b_1|$$

$$\geq \sum_{n=2}^{\infty} (n-\mu)[1+(n-1)\lambda]^{k}C(\delta,n)(|A_{n}|-|a_{n}|+|B_{n}|-|b_{n}|)+(1-\mu)(|B_{1}|-|b_{1}|)$$

$$\geq \sum_{n=2}^{\infty} (n-\mu)[1+(n-1)\lambda]^{k}C(\delta,n)(|A_{n}|+|B_{n}|)+(1-\mu)|B_{1}|$$

$$-\left(\sum_{n=2}^{\infty} (n-\mu)[1+(n-1)\lambda]^{k}C(\delta,n)(|A_{n}|+|B_{n}|)+(1-\mu)|B_{1}|\right)$$

$$\geq \sum_{n=2}^{\infty} (n-\mu)[1+(n-1)\lambda]^{k}C(\delta,n)(|A_{n}|+|B_{n}|)+(1-\mu)|B_{1}|$$

$$-\left(\sum_{n=2}^{\infty} n(n-\mu)[1+(n-1)\lambda]^{k}C(\delta,n)(|A_{n}|+|B_{n}|)+(1-\mu)|B_{1}|\right)$$

$$\geq \sum_{n=2}^{\infty} (n-\mu)[1+(n-1)\lambda]^{k}C(\delta,n)(|A_{n}|+|B_{n}|)+(1-\mu)|B_{1}|-(1-\mu).$$

Thus we obtain that

$$\sum_{n=2}^{\infty} (n-\mu) [1+(n-1)\lambda]^k C(\delta,n) (|A_n|+|B_n|) \le (1-\mu)(1-|B_1|),$$

when $\rho \leq 1$. Hence $F \in HS_k(\mu)$.

Acknowledgement: The work here was fully supported by eScienceFund: 04-01-02-SF0425, MOSTI, Malaysia.

References

[1] J. Clunie, Sheil-Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fen. Series A.I.Math. 9(1984),3-25.

[2] M. Darus, R. W. Ibrahim, *Generalization of differential operator*, Journal of Mathematics and Statistics 4 (3): (2008), 138-144.

[3] G. Sălăgean, *Subclasses of univalent functions*, Lecture Notes in math., 1013, Springer-Verlag, Berlin, (1983), 362-372.

68

[4] S. Ruscheweyh, New criteria for univalent functions ,Proc. Amer. Math. Soc.49,(1975), 109-115.

[5] F. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, I.J.M.M.S.(27), (2004), 1429-1436.

[6] K. Al-Shaqsi, M. Darus, An operator defined by convolution involving polylogarithms functions, Journal of Mathematics and Statistics, 4 (1): (2008), 46-50.

[7] M. Ozturk, S.Yalcin, On univalent harmonic functions, J. Ineq. Pure Appl. Math. 3(61)(2002),1-8.

[8] Y. Avacyi, E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska, XLIV(1), Sectio A (1990), 1-7.

[9] S. Ruscheweyh, *Neighborhoods of univalent functions*, Proc. Amer. Math. Soc., 81 (1981), 521-528.

[10] K. Al-Shaqsi and M. Darus, *Differential subordination with generalized derivative operator*. (to appear in AJMMS)

[11] M.Darus and K.Al-Shaqsi, *Differential sandwich theorem with gener*alised derivative operator. International Journal of Computational and Mathematical Sciences, 2(2) (2008): 75-78.

Authors:

Maslina Darus

School of Mathematical Sciences Faculty of science and Technology Universiti Kebangsaan Malaysia Bangi 43600, Selangor Darul Ehsan Malaysia email: maslina@ukm.my

Rabha W. Ibrahim School of Mathematical Sciences Faculty of science and Technology Universiti Kebangsaan Malaysia Bangi 43600, Selangor Darul Ehsan Malaysia email: rabhaibrahim@yahoo.com

69