DIFFERENTIAL SUBORDINATIONS OBTAINED USING DZIOK-SRIVASTAVA LINEAR OPERATOR

Adela Olimpia Tăut

ABSTRACT. By using the properties of Dziok-Srivastava linear operator we obtain differential subordinations using functions from class A.

1. Introduction and preliminaries

Let U denote the unit disc of the complex plane:

$$U = \{ z \in \mathbb{C} : |z| < 1 \}$$

and

$$\overline{U} = \{ z \in \mathbb{C} : |z| \le 1 \}.$$

Let $\mathcal{H}(U)$ denote the space of holomorphic functions in U and let

$$A_n = \{ f \in \mathcal{H}(U), \ f(z) = z + a_{n+1} z^{n+1} + \dots, \ z \in U \}$$

with $A_1 = A$.

Let

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}(U), \ f(z) = z + a_n z^n + a_{n+1} z^{n+1} + \dots, \ z \in U \},$$

 $S = \{ f \in A; \ f \text{ is univalent in } U \}.$

Let

$$K = \left\{ f \in \mathcal{A}, \operatorname{Re} \frac{zf''(z)}{f'(z)} + 1 > 0, \ z \in U \right\},\,$$

denote the class of convex functions in U and

$$S^* = \left\{ f \in A; \text{ Re } \frac{zf'(z)}{f(z)} > 0, \ z \in U \right\}$$

denote the class of starlike functions in U.

If f and g are analytic functions in U, then we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1, for all $z \in U$ such that f(z) = g[w(z)] for $z \in U$.

If g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subseteq g(U)$.

The method of differential subordinations (also known as the admissible functions method) was introduced by P.T. Mocanu and S.S. Miller in 1978 [1] and 1981 [2] it was developed in [3].

Definition 1. Let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the (second-order) differential subordination

(i) $\psi(p(z), zp'(z), z^2p''(z); z) \prec h(z), z \in U$

then p is called a solution of differential subordination. The univalent function q is called a dominant of the solution of the differential subordination, or more simply a dominant, if $p \prec q$ for all p satisfying (ii). A dominant \widetilde{q} that satisfies $\widetilde{q} \prec q$ for all dominant q of (ii) is said to be the best dominant of (i). (Note that the best dominant is unique up to a rotation of U).

In [4] the authors introduce the dual problem of the differential subordination which they call differential superordination.

Definition 2. [4] Let $f, F \in \mathcal{H}(U)$ and let F be univalent in U. The function F is said to be superordinare to f, or f is subordinate to F, written $f \prec F$, if f(0) = F(0) and $f(U) \subset F(U)$.

Definition 3. [4] Let $\varphi : \mathbb{C}^3 \times U \to \mathbb{C}$ and let h be analytic in U. If p and $\varphi(p(z), zp'(z), z^2p''(z); z)$ are univalent in U and satisfy the (second-order) differential superordination

(ii) $h(z) \prec \varphi(p(z), zp'(z), z^2p''(z); z)$

then p is called a solution of the differential superordination. An analytic function q is called a subordinant of the solution of the differential superordination, or more simply a subordinant if $q \prec p$ for all p satisfying (i). A univalent subordinant \widetilde{q} that satisfies $q \prec \widetilde{q}$ for all subordinants q of (ii) is said to be the best subordinant. (Note that the best subordinant is unique up to a rotation of U).

Definition 4. [3, Definition 2.2b, p. 21] We denote by Q the set of functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$E(f) = \left\{ \zeta \in \partial U; \lim_{z \to \zeta} f(z) = \infty \right\}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

The subclass of Q for which f(0) = a is denoted by Q(a).

In order to prove the new results we shall use the following lemmas:

Lemma A. (Hallenbeck and Ruschweyh) [4, Th. 3.1.6, p. 71] Let h be convex function, with $h(0) = \alpha$ and let $\gamma \in \mathbb{C}^*$ be a complex number with $\text{Re } \gamma \geq 0$. If $p \in \mathcal{H}[a, n]$ and

$$p(z) + \frac{1}{\gamma} z p'(z) \prec h(z), \quad z \in U$$

then

$$p(z) \prec q(z) \prec h(z), \quad z \in U$$

where

$$q(z) = \frac{\gamma}{nz^{\gamma/n}} \int_0^z h(t) t^{\frac{\gamma}{n} - 1} dt, \quad z \in U.$$

The function q is convex in U and is the best dominant. For two functions

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
 and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$,

the Hadamard product (or convolution) of f and g is defined by

$$(f * g)(z) := z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

For $\alpha_i \in \mathbb{C}$, i = 1, 2, 3, ..., l and $\beta_j \in \mathbb{C} \setminus \{0, -1, -2, ...\}$, j = 1, 2, ..., m, the generalized hypergeometric function is defined by

$${}_{l}F_{m}(\alpha_{1},\alpha_{2},\ldots,\alpha_{l};\beta_{1},\beta_{2},\ldots,\beta_{m};z) = \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n}\ldots(\alpha_{l})_{n}}{(\beta_{1})_{n}\ldots(\beta_{m})_{n}} \cdot \frac{z^{n}}{n!}$$

$$(l \le m+1, m \in \mathbb{N}_0 = \{0, 1, 2, \dots\})$$

where $(a)_n$ is the Pochhammer symbol defined by

$$(a)_n: \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1, & n=0\\ a(a+1)\dots(a+n-1), & n \in \mathbb{N} := \{1, 2, \dots \} \end{cases}$$

Corresponding to the function

$$h(\alpha_1, \alpha_2, \dots, \alpha_l; \beta_1, \beta_2, \dots, \beta_m; z) = z \cdot {}_{l}F_m(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m; z)$$

Dziok-Srivastava operator [5], [6], [7] is

$$H_{m}^{l}(\alpha_{1}, \alpha_{2}, \dots, \alpha_{l}; \beta_{1}, \beta_{2}, \dots, \beta_{m}; z)$$

$$= h(\alpha_{1}, \alpha_{2}, \dots, \alpha_{l}; \beta_{1}, \beta_{2}, \dots, \beta_{m}; z) * f(z)$$

$$= z + \sum_{n=2}^{\infty} \frac{(\alpha_{1})_{n-1}(\alpha_{2})_{n-1} \dots (\alpha_{l})_{n-1}}{(\beta_{1})_{n-1}(\beta_{2})_{n-1} \dots (\beta_{l})_{n-1}} \cdot a_{n} \cdot \frac{z^{n}}{(n-1)!}$$

For simplicity, we write

$$H_m^l[\alpha_1]f(z) = H_m^l(\alpha_1, \alpha_2, \dots, \alpha_l; \beta_1, \beta_2, \dots, \beta_m; z).$$

It is well known [2] that

(1)
$$\alpha_1 H_m^l[\alpha_1 + 1] f(z) = z \{ H_m^l[\alpha_1] f(z) \}' + (\alpha_1 - 1) H_m^l[\alpha_1] f(z).$$

2. Main results

Theorem 1. Let $l, m \in \mathbb{N}$, $l \leq m+1$, $\alpha_i \in \mathbb{C}$, i = 1, 2, ..., l and $\beta_j \in \mathbb{C} \setminus \{0, -1, -2, ...\}$, j = 1, 2, 3, ..., m, $f \in A$, and Dziok-Srivastava linear operator $H_m^l[\alpha_1]f(z)$ is given by (1).

If it verifies the differential subordination

(2)
$$\{H_m^l[\alpha_1+1]f(z)\}' \prec h(z), \quad z \in U, \text{ Re } \alpha_1 > 0$$

where h is a convex function, then

$$[H_m^l[\alpha_1]f(z)]' \prec q(z),$$

where

$$q(z) = \frac{\alpha_1}{z^{\alpha_1}} \int_0^z h(t) t^{\alpha_1 - 1} dt$$

q is a convex function and it is the best dominant.

Proof. Differentiating (1), we obtain:

(3)
$$\alpha_1 \{ H_m^l[\alpha_1 + 1] f(z) \}' = \alpha_1 \{ H_m^l[\alpha_1] f(z) \}' + Z \{ H_m^l[\alpha_1] f(z) \}'', \quad z \in U.$$

we note that

(4)
$$p(z) = \{H_m^l[\alpha_1]f(z)\}' = 1 + p_1 z + p_2 z^2 + \dots,$$

 $p_i \in \mathbb{C}$, where $p \in H[1,1]$.

Using (4) and (3), the subordination (2) becomes:

(5)
$$p(z) + \frac{1}{\alpha_1} z p'(z) \prec h(z), \quad z \in U, \operatorname{Re} \alpha_1 > 0.$$

Using Lemma A, we have

$$p(z) \prec q(z) = \frac{\alpha_1}{z^{\alpha_1}} \int_0^z h(t) t^{\alpha_1 - 1} dt$$

i.e.

$$\{H_m^l[\alpha_1]f(z)\}' \prec q(z) = \frac{\alpha_1}{z^{\alpha_1}} \int_0^z h(t)t^{\alpha_1-1}dt, \quad z \in U,$$

q is a convex function and it is the best dominant.

Remark 1. If the function

$$h(z) = \frac{1 + (2\alpha - 1)z}{1 + z}, \quad z \in U, \ 0 \le \alpha < 1,$$

then Theorem 1 can be expressed in the following:

Corollary 1. Let $l, m \in \mathbb{N}$, $l \leq m+1$, $\alpha_i \in \mathbb{C}$, i = 1, 2, ..., l and $\beta_j \in \mathbb{C} \setminus \{0, -1, -2, ...\}$, j = 1, 2, 3, ..., m let $f \in A$ and let $H_m^l[\alpha_1]f(z)$ be Dziok-Srivastava linear operator given by (1).

If

$$\{H_m^l[\alpha_1+1]f(z)\}' \prec h(z) = \frac{1+(2\alpha-1)z}{1+z}, \quad z \in U, \ 0 \le \alpha < 1$$

then

$$\{H_m^l[\alpha_1]f(z)\}' \prec q(z) = \alpha_1(2\alpha - 1) + \frac{2\alpha_1(1-\alpha)}{z^{\alpha_1}}\sigma(z,\alpha_1)$$

where

(6)
$$\sigma(z,\alpha_1) = \int_0^z \frac{t^{\alpha_1 - 1}}{1 + t} dt.$$

Since

$$q(z) = \alpha_1(2\alpha - 1) + 2\alpha_1(1 - \alpha)\frac{\sigma(z, \alpha_1)}{z^{\alpha_1}}$$

then, from the convexity of q, and since the fact that q(U) is symmetric with respect to the real axis and from $p(z) \prec q(z)$, we deduce

$$\operatorname{Re} p(z) > \operatorname{Re} q(1) = (2\alpha - 1)\operatorname{Re} \alpha_1 + 2(1 - \alpha)\operatorname{Re} \alpha_1 \cdot \sigma(1, \alpha_1) > 0$$

we obtain

Re
$$\{H_m^l[\alpha_1]f(z)\}' > 0$$

i.e.

$$H_m^l[\alpha_1]f(z) \in S.$$

Remark 2. If m = 0, l = 1, $\alpha_1 = 1$, $f \in A$ we obtain:

$$H_0^1[1]f(z) = f(z), \quad H_0^1[2]f(z) = zf'(z).$$

In this case Theorem 1 can be expressed under the form of the following corollary:

Corollary 2. If the differential subordination

$$zf''(z) + f'(z) \prec h(z), \quad z \in U$$

holds, then

$$f'(z) \prec \frac{1}{z} \int_0^z h(t)dt, \quad z \in U.$$

Theorem 2. Let $l, m \in \mathbb{N}$, $l \leq m+1$, $\alpha_i \in \mathbb{C}$, i = 1, 2, ..., l, $\beta_j \in \mathbb{C} \setminus \{0, -1, -2, ...\}$, j = 1, 2, ..., m let $f \in A$ and let $H_m^l[\alpha_1]f(z)$ be Dziok-Srivastava linear operator given by (1).

If the differential subordination

(7)
$$\{H_m^l[\alpha_1]f(z)\}' \prec h(z), \quad z \in U, \text{ Re } \alpha_1 > 0$$

holds, then

$$\frac{H_m^l[\alpha_1]f(z)}{z} \prec q(z) = \frac{1}{z} \int_0^z h(t)dt.$$

Proof. Let

(8)
$$p(z) = \frac{H_m^l[\alpha_1]f(z)}{z} = 1 + p_1 z + p_2 z^2 + \dots, \quad z \in U, \ p \in H[1, 1].$$

Differentiating (8), we obtain

(9)
$$p(z) + zp'(z) = \{H_m^l[\alpha_1]f(z)\}'$$

Using (9), the differential subordination (7) becomes:

$$p(z) + zp'(z) \prec h(z), \quad z \in U.$$

Using Lemma A, we obtain

$$p(z) \prec q(z) = \frac{1}{z} \int_0^z h(t)dt.$$

The function q is convex and it is the best dominant.

Remark 3. If $m=0,\ l=1,\ \alpha_1=2,\ f\in A,\ h(z)=\frac{1+z}{1-z}$ then the Theorem 2 becomes the following corollary:

Corollary 3. If the differential subordination:

$$zf'(z) + f(z) \prec \frac{1+z}{1-z}, \quad z \in U$$

holds, then

$$f(z) \prec q(z) = \frac{1}{z} \int_0^z \frac{1+t}{1-t} dt = -1 + \frac{2\ln(1-z)}{z}.$$

Then function q is convex and it is the best dominant.

References

- [1] S.S.Miller, Petru T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. **65**(1978), 298305.
- [2] S.S.Miller, Petru T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157171.
- [3] S.S.Miller, Petru T. Mocanu, *Differential subordinations. Theory and applications*, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000.
- [4] S.S.Miller, Petru T. Mocanu, Subordination of differential superordinations, Complex Variables., 48, **10**(2003), 815-826.
- [5] J. Dziok, H.M. Stivastava, Clases of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., **103**(1999), 1-13.

- [6] J. Dziok, H.M. Stivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14(2003), 7-18.
- [7] S. Owa, On the distortion theorems, I. Kyungpook. Math. J., $\mathbf{18}(1978)$, 53-59.

Author:

Adela Olimpia Tăut Faculty of Environmental Protection University of Oradea, Romania email: adela_taut@yahoo.com