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PERTURBATION METHOD
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Abstract. In this paper, we establish some iterative methods for solving
real and complex zeroes of nonlinear equations by using the modified homotopy
perturbation method which is mainly due to Golbabai and Javidi [5] . The
proposed methods are then applied to solve test problems in order to assess
there validity and accuracy.
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1. Introduction

During the last few years, the numerical techniques for solving nonlinear
equations has been successfully applied. There are many papers that deal with
nonlinear equations (see for example [1-6, 9, 17] and the references therein).

In this paper, some new numerical methods based on modified homotopy
perturbation method (mainly due to Golbabai and Javidi [5]) are introduced
for solving real and complex zeroes of nonlinear equations. The proposed
methods are then applied to solve test problems in order to assess there validity
and accuracy.

2. Homotopy perturbation method

The homotopy perturbation method was established by He in 1999 [7]
and systematical description in 2000 [8] which is, in fact, a coupling of the
traditional perturbation method and homotopy in topology [8]. This method
was further developed and improved by He and applied to nonlinear oscillators
with discontinuities [11], nonlinear wave equations [12], asymptotology [10],
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boundary value problem [14], limit cycle and bifurcation of nonlinear problems
[13] and many other subjects. Thus He’s method is a universal one which can
solve various kinds of nonlinear equations. After that many researchers applied
the method to various linear and nonlinear problems (see for example [1, 5-6,
17]).

To illustrate basic ideas of modified homotopy perturbation method [5], we
consider the following nonlinear equation.

f(x) = 0, x ∈ R. (2.1)

We construct a homotopy (R× [0, 1])× R → R which satisfies

H(x̄, p, α) = pf(x̄)+(1−p)[f(x̄)−f(x0)]+p(1−p)α = 0, α, x̄ ∈ R, p ∈ [0, 1],
(2.2)

or

H(x̄, p, α) = f(x̄)−f(x0)+pf(xo)+p(1−p)α = 0, α, x̄ ∈ R, p ∈ [0, 1], (2.3)

where α is an unknown real number and p is the embedding parameter, xo is
an initial approximation of (2.1). It is obvious that

H(x̄, 0) = f(x̄)− f(x0) = 0, (2.4)

H(x̄, 1) = f(x̄) = 0. (2.5)

The embedding parameter p monotonically increases from zero to unit as
trivial problem H(x̄, 0) = f(x̄)−f(x0) = 0 is continuously deformed to original
problem H(x̄, 1) = f(x̄) = 0. The modified HPM uses the homotopy parameter
p as an expanding parameter to obtain [7]:

x̄ = x0 + px1 + p2x2 + p3x3 + p4x4 + ... (2.6)

The approximate solution of (2.1), therefore, can be readily obtained:

x = lim
p→1

x̄ = x0 + x1 + x2 + x3 + x4 + ... (2.7)

The convergence of the series (2.7) has been proved by He in [7].
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For the application of modified HPM to (2.1) we can write (2.3) as follows
by expanding f(x̄) into Taylor series around x0 :

[f(x0)+(x−x0)f
′(x0)+(x−x0)

2f ′′(x0)

2!
+(x−x0)

3f ′′′(x0)

3!
+(x−x0)

4f (iv)(x0)

4!
+...]

−f(x0) + pf(xo) + p(1− p)α = 0. (2.8)

Substitution of (2.6) into (2.8) yields

[f(x0) + (x0 + px1 + p2x2 + p3x3 + p4x4 + ...− x0)f
′(x0)

+(x0 + px1 + p2x2 + p3x3 + p4x4 + ...− x0)
2f ′′(x0)

2!

+(x0 + px1 + p2x2 + p3x3 + p4x4 + ...− x0)
3f ′′′(x0)

3!

+(x0 + px1 + p2x2 + p3x3 + p4x4 + ...− x0)
4f (iv)(x0)

4!
+ ...]

−f(x0) + pf(xo) + p(1− p)α = 0. (2.9)

By equating the terms with identical powers of p, we have

p0 : f(x0)− f(x0) = 0, (2.10)

p1 : x1f
′(x0) + f(x0) + α = 0, (2.11)

p2 : x2f
′(x0) + x2

1

f ′′(x0)

2
− α = 0, (2.12)

p3 : x3f
′(x0) + x1x2f

′′(x0) + x3
1

f ′′′(x0)

6
= 0, (2.13)

p4 : x4f
′(x0) + (

1

2
x2

2 + x1x3)f
′′(x0) + x2

1x2
f ′′′(x0)

2
+ x4

1

f (iv)(x0)

24
= 0, (2.14)

p5 : x5f
′(x0) + (x2x3 + x1x4)f

′′(x0)

+x1(x1x3 + x2
2)

f ′′′(x0)

2
+ x3

1x2
f (iv)(x0)

6
+ x5

1

f (v)(x0)

120
= 0, (2.15)
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p6 : x6f
′(x0) + (x1x5 + x2x4 +

1

2
x2

3)f
′′(x0)

+ (x1x2x3 +
1

6
x3

2 +
1

2
x2

1x4)f
′′′(x0)

+
1

2
x2

1(
1

360
x4

1 +
1

3
x1x3f

(iv)(x0) +
1

2
x2

2)f
(iv)(x0)

+ x4
1x2

f (v)(x0)

24
= 0, (2.16)

.

.

.

We try to find parameter α, such that

x1 = 0. (2.17)

By putting x1 = 0, in (2.11), we get the value of α, i.e.,

α = −f(x0). (2.18)

Similarly in this way, after putting x1 = 0 and using the obtained results (2.18)
in (2.13), (2.14), (2.15) and (2.16), we get

x2 = − f(x0)

f ′(x0)
, (2.19)

x3 = 0, (2.20)

x4 = −x2
2

f ′′(x0)

2f ′(x0)
, (2.21)

x5 = 0, (2.22)

x6 = −x2x4
f ′′(x0)

f ′(x0)
− x3

2

f ′′′(x0)

6f ′(x0)
. (2.23)

From (2.19), (2.21) and (2.23) we obtain
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x4 = −f 2(x0)f
′′(x0)

2f ′3(x0)
, (2.24)

and

x6 =
f 3(x0)[−3f ′′

2
(x0) + f ′(x0)f

′′′(x0)]

6f ′5(x0)
, (2.25)

.

.

.

By substituting (2.17), (2.19), (2.20), (2.22), (2.24) and (2.25) in (2.7), we can
obtain the zero of (2.1) as follows:

x = x0 + x2 + x4 + x6 + ...

= x0 −
f(x0)

f ′(x0)
− f 2(x0)f

′′(x0)

2f ′3(x0)

+
f 3(x0)[−3f ′′

2
(x0) + f ′(x0)f

′′′(x0)]

6f ′5(x0)
+ ... (2.26)

This formulation allows us to suggest the following iterative methods for solv-
ing nonlinear equation (2.1).

1. For a given x0, calculate the approximation solution xn+1 by the iterative
scheme

xn+1 = xn −
f(xn)

f ′(xn)
, f ′(xn) 6= 0,

which is the classical Newton-Raphson method.

2. For a given x0, calculate the approximation solution xn+1 by the iterative
scheme

xn+1 = xn −
f(xn)

f ′(xn)
− f 2(xn)f ′′(xn)

2f ′3(xn)
, f ′(xn) 6= 0,

which is the famous householder method.
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3. For a given x0, calculate the approximation solution xn+1 by the iterative
scheme

xn+1 = xn−
f(xn)

f ′(xn)
− f 2(xn)f ′′(xn)

2f ′3(xn)
+

f 3(xn)[−3f ′′
2
(xn) + f ′(xn)f ′′′(xn)]

6f ′5(xn)
,

f ′(xn) 6= 0.

3. Analysis of convergence

Theorem. Let w ∈ I be a simple zero of a sufficiently differentiable func-
tion f : I ⊆ R → R on an open interval I. If x0 is close to w, then the
Algorithm 3 has fourth order of convergence.

Proof. The iterative technique is given by

xn+1 = xn −
f(xn)

f ′(xn)
− f 2(xn)f ′′(xn)

2f ′3(xn)
+

f 3(xn)[−3f ′′
2
(xn) + f ′(xn)f ′′′(xn)]

6f ′5(xn)
.

(3.1)
Let w be a simple zero of f . By Taylor’s expansion, we have,

f(xn) = f ′(w)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + O

(
e7

n

)]
, (3.2)

f ′(xn) = f ′(w)
[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n + O(e6

n)
]
, (3.3)

f ′′(xn) = f ′(w)[2c2 + 6c3en + 12c4e
2
n + O(e3

n)], (3.4)

f ′′′(xn) = f ′(w)[6c3 + 24c4en + O(e2
n)], (3.5)

where

ck =

(
1

k!

)
f (k)(w)

f ′(w)
, k = 2, 3, ..., and en = xn − w.

From (3.1), (3.2), (3.3), (3.4) and (3.5) we have

xn+1 = w + (c4 − 5c2c3 + 5c3
2)e

4
n + O(e5

n),

implies
en+1 = (c4 − 5c2c3 + 5c3

2)e
4
n + O(e5

n).

This completes the proof.
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4. Applications

We present some examples to illustrate the efficiency of the developed meth-
ods. In Table-A, we apply the Algorithm 2 (A1) and Algorithm 3 (A2) for the
following functions and compare them with the methods J1 (Algorithm 2.1,
[5]) and J2 (Algorithm 2.2, [5]) developed by Javidi in [5].

f1(x) = x3 + 4x2 + 8x + 8,
f2(x) = x− 2− e−x,
f3(x) = x2 − (1− x)5,
f4(x) = ex − 3x2,
f5(x) = sin2(x)− x2 + 1.

Table-A:

IT Root f(xn)
f1, x0 = −1

J1 8 2.0813-2.733i -2.4535e-111-1.60923e-113i
J2 10 2.0813-2.733i 2.1309e-19+8.206e-19i
A1 5 -1.2076478271309 5.81586e-115
A2 4 -1.2076478271309 -2.06436e-120

IT Root f(xn)
f2, x0 = 0

J1 7 -1.2076478271-1.49e-107i 2.901108e-106-3.0276e-106i
J2 4 0.257530 9.4420e-100
A1 4 0.257530 3.27433755e-114
A2 3 0.257530 -4.413912e-70

IT Root f(xn)
f3, x0 = 1

J1 5 0.11785097732 3.5354109e-38
J2 6 -2.058925+2.0606i -4.66e-57+9.484e-57i
A1 5 0.11785097732 1.237889811e-98
A2 3 0.11785097732 5.62000755291066013

135



A. Rafiq, A. Javeria - New iterative methods for solving nonlinear ...

IT Root f(xn)
f4, x0 = −10

J1 5 -0.4589622675369 3.0643975e-86
J2 5 0.910007522488 2.493934020e-48
A1 4 0.910007522488 -2.7259720e-91
A2 4 -0.4589622675369 -1.29618555762e-95

IT Root f(xn)
f5, x0 = −1

J1 4 -0.473465807729126 -9.77549922e-47
J2 7 0.236732-2.041i 9.0452e-72-2.2502e-72i
A1 3 -0.473465807729126 -3.0457465e-47
A2 4 -0.473465807729126 0

5. Conclusions

Modified homotopy perturbation method is applied to numerical solution
for solving real and complex zeroes of nonlinear equations. Comparison of the
results obtained by the presented methods with the existing methods reveal
that the presented methods are very effective, convenient and easy to use.
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