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subordination theorems for analytic functions defined by convolution.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let H be the class of analytic functions in the unit disk U = {z ∈ C : |z| < 1}
and let H[a, k] be the subclass of H consisting of functions of the form:

f(z) = a + akz
k + ak+1z

k+1... (a ∈ C). (1.1)

Also, let A1 be the subclass of H consisting of functions of the form:

f(z) = z +
∞∑

k=2

akz
k. (1.2)

If f , g ∈ H, we say that f is subordinate to g, written f(z) ≺ g(z) if there
exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0
and |w(z)| < 1 for all z ∈ U, such that f(z) = g(w(z)), z ∈ U. Furthermore, if the
function g is univalent in U, then we have the following equivalence, (cf., e.g.,[6] and
[17]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let p, h ∈ H and let ϕ(r, s, t; z) : C3 × U → C. If p and ϕ(p(z), zp′(z),
z2p′′(z); z) are univalent and if p satisfies the second order superordination

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z), (1.3)

then p is a solution of the differential superordination (1.3). Note that if f is subordi-
nate to g, then g is superordinate to f. An analytic function q is called a subordinant
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if q(z) ≺ p(z) for all p satisfying (1.3). A univalent subordinant q̃ that satisfies q ≺ q̃
for all subordinants of (1.3) is called the best subordinant. Recently Miller and Mo-
canu [18] obtained conditions on the functions h, q and ϕ for which the following
implication holds:

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z) ⇒ q(z) ≺ p(z). (1.4)

Using the results of Miller and Mocanu [18], Bulboaca [5] considered certain classes of
first order differential superordinations as well as superordination-preserving integral
operators [6]. Ali et al. [1], have used the results of Bulboaca [5] to obtain sufficient
conditions for normalized analytic functions to satisfy:

q1(z) ≺ zf ′(z)
f(z)

≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1. Also,
Tuneski [30] obtained a sufficient condition for starlikeness of f in terms of the

quantity
f ′′(z)f(z)
(f ′(z))2

. Recently, Shanmugam et al. [26] obtained sufficient conditions

for the normalized analytic function f to satisfy

q1(z) ≺ f(z)
zf ′(z)

≺ q2(z)

and

q1(z) ≺ z2f ′(z)
{f(z)}2

≺ q2(z).

For functions f given by (1.1) and g ∈ A1 given by g(z) = z +
∞∑

k=2

bkz
k, the

Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z +
∞∑

k=2

akbkz
k = (g ∗ f)(z).

For functions f, g ∈ A1, we define the linear operator Dm
λ : A1 → A1 (λ > 0,m ∈

N0 = N ∪ {0}, N = {1, 2, ...}) by:

D0
λ(f ∗ g)(z) = (f ∗ g)(z) ,

D1
λ(f ∗ g)(z) = Dλ(f ∗ g)(z) = (1− λ )( f ∗ g)(z) + z ( ( f ∗ g)(z))′ ,

and (in general )

Dm
λ (f ∗ g)(z) = Dλ(Dm−1

λ (f ∗ g)(z))
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= z +
∞∑

k=2

[1 + λ(k − 1)]makbkz
k (λ > 0 ;m ∈ N0). (1.5)

From (1.5), we can easily deduce that

λz (Dm
λ (f ∗ g)(z))′ = Dm+1

λ (f ∗ g)(z)− (1− λ)Dm
λ (f ∗ g)(z) (λ > 0). (1.6)

We observe that the function (f ∗ g)(z) reduces to several interesting functions
for different choices of the function g.

(i) For λ = 1 and bk = 1 (or g(z) =
z

1− z
), we have Dm

1 (f ∗g)(z) = Dmf(z),

where Dm is the Sălăgean operator introduced and studiedby Sălăgean [24];
(ii) For bk = 1 (or g(z) =

z

1− z
), we have Dm

λ (f ∗ g)(z) = Dm
λ f(z), where

Dm
λ is the generalized Sălăgean operator introduced and studied by Al-Oboudi [2];

(iii) For m = 0 and

g(z) = z +
∞∑

k=2

(a)k−1

(c)k−1
zk (c 6= 0,−1,−2, ...), (1.7)

where

(d)k =
{

1 (k = 0; d ∈ C\{0})
d(d + 1)...(d + k − 1) (k ∈ N ; d ∈ C),

we have D0
λ(f ∗ g)(z) = (f ∗ g)(z) = L(a, c)f(z), where the operator L(a, c) was

introduced by Carlson and Shaffer [8];
(iv) For m = 0 and

g(z) = z +
∞∑

k=2

[
1 + l + λ(k − 1)

1 + l

]s

zk (λ > 0; l, s ∈ N0), (1.8)

we see that D0
λ(f∗g)(z) = (f∗g)(z) = I(s, λ, l)f(z), where I(s, λ, l) is the generalized

multiplier transformation which was introduced and studied by Cătaş et al. [9]. The
operator I(s, λ, l), contains as special cases, the multiplier transformation (see [10]),
the generalized Sălăgean operator introduced and studied by Al-Oboudi [2] which
in turn contains as special case the Sălăgean operator (see [24]);

(v) For m = 0 and

g(z) = z +
∞∑

k=2

(α1)k−1...(αl)k−1

(β1)k−1...(βs)k−1(1)k−1
zk, (1.9)

where, αi, βj ∈ C∗ = C\{0}, (i = 1, 2, ...l), (j = 1, 2, ...s), l ≤ s + 1, l, s ∈ N0, we
see that, D0

λ(f ∗ g)(z) = (f ∗ g)(z) = Hl,s(α1)f(z), where Hl,s(α1) is the Dziok-
Srivastava operator introduced and studied by Dziok and Srivastava [11] ( see also
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[12] and [13]). The operator Hl,s(α1), contains in turn many interesting operators
such as, Hohlov linear operator (see [14]), the Carlson-Shaffer linear operator (see
[8] and [23] ), the Ruscheweyh derivative operator (see [22]), the Barnardi-Libera-
Livingston operator ( see [4], [15] and [16]) and Owa-Srivastava fractional derivative
operator (see [20]);

(vi) For g(z) of the form (1.9), the operator Dm
λ (f ∗g)(z) = Dm

λ (α1, β1)f(z),
inroduced and studied by Selvaraj and Karthikeyan [25].

In this paper, we will derive several subordination results involving the operator
Dm

λ (f ∗ g)(z) and some of its special choises of the function g(z).

2. Definitions and Preliminaries

To prove our results we shall need the following definition and lemmas.

Definition 1 [18]. Let Q be the set of all functions f that are analytic and
injective on U \ E(f), where

E(f) = {ζ ∈ ∂U : lim
z→ζ

f(z) = ∞},

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U \ E(f).

Lemma 1[18]. Let q be univalent in the unit disc U, and let θ and ϕ be
analytic in a domain D containing q(U), with ϕ(w) 6= 0 when w ∈ q(U). Set
Q(z) = zq′(z)ϕ(q(z)), h(z) = θ(q(z)) + Q(z) and suppose that

(i) Q is a starlike function in U,

(ii) Re
zh′(z)
Q(z)

> 0, z ∈ U.

If p is analytic in U with p(0) = q(0), p(U) ⊆ D and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), (2.1)

then p(z) ≺ q(z), and q is the best dominant of (2.1).

Lemma 2 [7]. Let q be a univalent function in the unit disc U and let θ and ϕ
be analytic in a domain D containing q(U). Suppose that

(i) Re
θ′(q(z))
ϕ(q(z))

> 0 for z ∈ U,

(ii) h(z) = zq′(z)ϕ(q(z)) is starlike in U.
If p ∈ H[q(0), 1] ∩ Q, with p(U) ⊆ D, θ(p(z)) + zp′(z)ϕ(p(z)) is univalent in U,
and

θ(q(z)) + zq′(z)ϕ(q(z)) ≺ θ(p(z)) + zp′(z)ϕ(p(z)), (2.2)
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then q(z) ≺ p(z), and q is the best subordinant of (2.2).

The following lemma gives us a necessary and sufficient condition for the univa-
lence of a special function which will be used in some particular cases.

Lemma 3 [21] . The function q(z) = (1− z)−2ab is univalent in U if and only if
|2ab− 1| ≤ 1 or |2ab + 1| ≤ 1.

3. Main Results

Unless otherwise mentioned, we shall assume in the reminder of this paper that
λ > 0, α, δ, ζ ∈ C, µ, β ∈ C∗ = C\{0}, m ∈ N0 and the powers are understood as
principle values.

Theorem 1. Let

(
Dm+1

λ (f ∗ g)(z)
z

)µ

∈ H and let q(z) be analytic and uni-

valent in U, q(z) 6= 0 (z ∈ U). Suppose that
zq′(z)
q(z)

is starlike univalent in U. Let

Re
{

1 +
ζ

β
q(z) +

2δ

β
(q(z))2 − zq′(z)

q(z)
+

zq′′(z)
q′(z)

}
> 0 (β ∈ C∗) (3.1)

and

χ(α, δ, β, ζ, µ, λ, f, g)(z) = α + ζ

(
Dm+1

λ (f ∗ g)(z)
z

)µ

+ δ

(
Dm+1

λ (f ∗ g)(z)
z

)2µ

+
βµ

λ

(
Dm+2

λ (f ∗ g)(z)
Dm+1

λ (f ∗ g)(z)
− 1

)
. (3.2)

If q(z) satisfies the following subordination:

χ(α, δ, β, ζ, µ, λ, f, g)(z) ≺ α + ζq(z) + δ(q(z))2 + β
zq′(z)
q(z)

,

then (
Dm+1

λ (f ∗ g)(z)
z

)µ

≺ q(z) (3.3)

and q(z) is the best dominant.
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Proof. Define p(z) by

p(z) =

(
Dm+1

λ (f ∗ g)(z)
z

)µ

(z ∈ U). (3.4)

Differentiating (3.4) logarithmically with respect to z and using the identity (1.6) in
the resulting equation, we have

zp′(z)
p(z)

=
µ

λ

(
Dm+2

λ (f ∗ g)(z)
Dm+1

λ (f ∗ g)(z)
− 1

)
.

Setting θ(w) = α + ζw + δw2 and ϕ(w) =
β

w
, we can easily verify that θ is analytic

in C,ϕ is analytic in C∗ and ϕ(w) 6= 0(w ∈ C∗). Also, letting

Q(z) = zq′(z)ϕ(q(z)) = β
zq′(z)
q(z)

and

h(z) = θ(q(z)) + Q(z) = α + ζq(z) + δ(q(z))2 + β
zq′(z)
q(z)

.

We can verify that Q(z) is starlike univalent in U and

Re{zh′(z)
Q(z)

} = Re
{

1 +
ζ

β
q(z) +

2δ

β
(q(z))2 − zq′(z)

q(z)
+

zq′′(z)
q′(z)

}
> 0.

The theorem follows by applying Lemma 1.

Taking g(z) of the form (1.9) and using the identity (see [25])

z (Dm
λ (α1, β1)f(z))′ = α1D

m
λ (α1 + 1, β1)f(z)− (α1 − 1)Dm

λ (α1, β1)f(z), (3.5)

we get the result obtained by Selvaraj and Karthikeyan [25, Theorem 2.1].
Taking g(z) of the form (1.9) and using the identity (see [25])

λz (Dm
λ (α1, β1)f(z))′ = Dm+1

λ (α1, β1)f(z)− (1− λ)Dm
λ (α1, β1)f(z), (3.6)

we get the following result which corrects the result of Selvaraj and Karthikeyan
[25, Theorem 2.2].

Corollary 1. Let

(
Dm+1

λ (α1, β1)f(z)
z

)µ

∈ H and let q(z) be analytic and

univalent in U, q(z) 6= 0 (z ∈ U). Suppose that
zq′(z)
q(z)

is starlike univalent in U ,

12
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(3.1) holds and

χ1(α1, β1, α, δ, β, ζ, µ, λ, f)(z) = α + ζ

(
Dm+1

λ (α1, β1)f(z)
z

)µ

+δ

(
Dm+1

λ (α1, β1)f(z)
z

)2µ

+
βµ

λ

(
Dm+2

λ (α1, β1)f(z)
Dm+1

λ (α1, β1)f(z)
− 1

)
. (3.7)

If q(z) satisfies the following subordination:

χ1(α1, β1, α, δ, β, ζ, µ, λ, f)(z) ≺ α + ζq(z) + δ(q(z))2 + β
zq′(z)
q(z)

,

then (
Dm+1

λ (α1, β1)f(z)
z

)µ

≺ q(z)

and q(z) is the best dominant.

Taking m = 0, λ = 1 and g(z) of the form (1.7) and using the identity (see [23])

z (L(a, c)f(z))′ = aL(a + 1, c)f(z)− (a− 1)L(a, c)f(z), (3.8)

we get the following result which corrects the result of Shammugam et al.[27, The-
orem 3].

Corollary 2. Let
(

L(a + 1, c)f(z)
z

)µ

∈ H and let q(z) be analytic and uni-

valent in U, q(z) 6= 0 (z ∈ U). Suppose that
zq′(z)
q(z)

is starlike univalent in U , (3.1)

holds and

χ2(a, c, α, δ, β, ζ, µ, f)(z) = α + ζ

(
L(a + 1, c)f(z)

z

)µ

+ δ

(
L(a + 1, c)f(z)

z

)2µ

+βµ(a + 1)
(

L(a + 2, c)f(z)
L(a + 1, c)f(z)

− 1
)

. (3.9)

If q(z) satisfies the following subordination:

χ2(a, c, α, δ, β, ζ, µ, f)(z) ≺ α + ζq(z) + δ(q(z))2 + β
zq′(z)
q(z)

,

then (
L(a + 1, c)f(z)

z

)µ

≺ q(z)

13
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and q(z) is the best dominant.

Taking the function q(z) =
1 + Az

1 + Bz
in Theorem 1, where −1 ≤ B < A ≤ 1, the

condition (3.1) becoms

Re
{

1 +
ζ

β

1 + Az

1 + Bz
+

2δ

β
(
1 + Az

1 + Bz
)2 − 2Bz

1 + Bz
− (A−B)z

(1 + Bz)(1 + Az)

}
> 0 (β ∈ C∗),

(3.10)
hence, we have the following corollary.

Corollary 3. Let q(z) =
1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1) and (3.10) holds true. If

f(z) ∈ A1 and

χ(α, δ, ζ, β, µ, λ, f, g)(z) ≺ α + ζ

(
1 + Az

1 + Bz

)
+ δ

(
1 + Az

1 + Bz

)2

+ β
(A−B)z

(1 + Az)(1 + Bz)
,

where χ(α, δ, β, ζ, µ, λ, f, g)(z) is given by (3.2), then(
Dm+1

λ (f ∗ g)(z)
z

)µ

≺ 1 + Az

1 + Bz

and
1 + Az

1 + Bz
is the best dominant.

Taking the function q(z) =
(

1 + z

1− z

)γ

(0 < γ ≤ 1), in Theorem 1, the condition

(3.1) becoms

Re

{
1 +

ζ

β

(
1 + z

1− z

)γ

+
2δ

β

(
1 + z

1− z

)2γ

+
2z2

1− z2

}
> 0 (β ∈ C∗), (3.11)

hence, we have the following corollary.

Corollary 4. Let q(z) =
(

1 + z

1− z

)γ

(0 < γ ≤ 1) and (3.11) holds true. If

f(z) ∈ A1 and

χ(α, δ, β, µ, λ, f, g)(z) ≺ α + ζ

(
1 + z

1− z

)γ

+ δ

(
1 + z

1− z

)2γ

+ β
2γz

(1− z)2
,

where χ(α, δ, β, ζ, µ, λ, f, g)(z) is given by (3.2), then(
Dm+1

λ (f ∗ g)(z)
z

)µ

≺
(

1 + z

1− z

)γ

14



M.K.Aouf, A. O. Mostafa - Sandwich theorems for analytic functions defined by...

and
(

1 + z

1− z

)γ

is the best dominant.

Taking q(z) = eµAz, |µA| < π, Theorem 1, the condition (3.1) becoms

Re
{

1 +
ζ

β
eµγAz +

2δ

β
e2µγAz

}
> 0 (β ∈ C∗), (3.12)

hence, we have the following corollary.

Corollary 5. Let q(z) = eµAz, |µA| < π and (3.12) holds. If f(z) ∈ A1 and
χ(α, δ, β, ζ, µ, λ, f, g)(z) ≺ α+ζeµAz+δe2µAz+βAµz, where χ(α, δ, β, ζ, µ, λ, f, g)(z)
is given by (3.2), then (

Dm+1
λ (f ∗ g)(z)

z

)µ

≺ eµAz (µ ∈ C∗)

and eµAz is the best dominant.

Taking m = 0, g(z) =
z

1− z
, δ = ζ = 0, λ = α = µ = 1, β = 1

b (b ∈ C∗) and

q(z) =
1

(1− z)2b
in Theorem 1, we obtain the result obtained by Srivastava and

Lashin [29, Corollary 1].

Theorem 2. Let
(

Dm
λ (f ∗ g)(z)

z

)µ

∈ H and let q(z) be analytic and univalent

in U, q(z) 6= 0 (z ∈ U). Suppose that
zq′(z)
q(z)

is starlike univalent in U and (3.1)

holds and

η(α, δ, β, ζ, µ, f, g)(z) = α + ζ

(
Dm

λ (f ∗ g)(z)
z

)µ

+ δ

(
Dm

λ (f ∗ g)(z)
z

)2µ

+
βµ

λ

(
Dm+1

λ (f ∗ g)(z)
Dm

λ (f ∗ g)(z)
− 1

)
.

If q(z) satisfies the following subordination:

η(α, δ, β, ζ, µ, f, g)(z) ≺ α + ζq(z) + δ(q(z))2 + β
zq′(z)
q(z)

,

then (
Dm

λ (f ∗ g)(z)
z

)µ

≺ q(z)

15
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and q(z) is the best dominant.

Proof. The proof is similar to the proof of Theorem 1, and hence we omit it.

Taking m = 0, g(z) =
z

1− z
, δ = ζ = 0, λ = α = 1, µ = a, β = 1

ab(a, b ∈ C∗) and

q(z) =
1

(1− z)2ab
in Theorem 2 and combining with Lemma 3, we obtain the result

due to Obradović et al. [19, Theorem 1];

Taking m = 0, g(z) =
z

1− z
, δ = ζ = 0, λ = α = 1, µ = a, β =

eiλ

ab cos λ
(a, b ∈

C∗, |λ| < π
2 ) and q(z) =

1
(1− z)2ab cos λe−iλ in Theorem 2 and combining with Lemma

3, we obtain the result due to Aouf et al. [3, Theorem 1].

Taking m = 0, λ = 1 and g(z) of the form (1.7) and using the identity (3.8), we
get the following result which corrects the result of Shammugam et al.[28, Theorem
3.1].

Corollary 6. Let
(

L(a, c)f(z)
z

)µ

∈ H and let q(z) be analytic and univalent

in U, q(z) 6= 0 (z ∈ U). Suppose that
zq′(z)
q(z)

is starlike univalent in U , (3.1) holds

and

χ3(a, c, α, δ, β, ζ, µ, f)(z) = α + ζ

(
L(a, c)f(z)

z

)µ

+ δ

(
L(a, c)f(z)

z

)2µ

+βµa

(
L(a + 1, c)f(z)

L(a, c)f(z)
− 1
)

.

If q(z) satisfies the following subordination:

χ3(a, c, α, δ, β, ζ, µ, f)(z) ≺ α + ζq(z) + δ(q(z))2 + β
zq′(z)
q(z)

,

then (
L(a + 1, c)f(z)

z

)µ

≺ q(z)

and q(z) is the best dominant.

Theorem 3. Let q(z) be convex, univalent in U , q(z) 6= 0 and
zq′(z)
q(z)

be starlike

univalent in U. Suppose that

Re
{

2δ

β
(q(z))2 +

ζ

β
q(z)

}
q′(z) > 0. (3.11)
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If f(z) ∈ A, 0 6=

(
Dm+1

λ (f ∗ g)(z)
z

)µ

∈ H[q(0), 1]∩Q, and χ(α, δ, β, ζ, µ, λ, f, g)(z)

is univalent in U , then

α + ζq(z) + δ(q(z))2 + β
zq′(z)
q(z)

≺ χ(α, δ, β, ζ, µ, λ, f, g)(z)

implies

q(z) ≺

(
Dm+1

λ (f ∗ g)(z)
z

)µ

(3.12)

and q(z) is the best subordinant, χ(α, δ, β, ζ, µ, λ, f, g)(z) is given by (3.2).

Proof. Let θ(w) = α + ζw + δw2 and ϕ(w) =
β

w
, we can verify that θ is analytic

in , ϕ is analytic in C∗ and ϕ(w) 6= 0(w ∈ C∗). Since q(z) is convex, it follows that

Re
θ′(q(z))
ϕ(q(z))

= Re
{

2δ

β
(q(z))2 +

ζ

β
q(z)

}
q′(z) > 0.

The assertion (3.12) follows by an application of Lemma 2. This completes the proof
of Theorem 3.

Combining Theorem 1 and Theorem 3, we get the following sandwich theorem.

Theorem 4. Let q1 and q2 be univalent in U such that q1(z) 6= 0 and q2(z) 6= 0

(z ∈ U),
zq′1(z)
q1(z)

and
zq′2(z)
q2(z)

are starlike univalent. Suppose that q1 and q2 satisfies

(3.11) and (3.1), respectively. If f ∈ A1,

(
Dm+1

λ (f ∗ g)(z)
z

)µ

∈ H[q(0), 1] ∩Q, and

χ(α, δ, β, ζ, µ, λ, f, g)(z) is univalent in U , then

α + ζq1(z) + δ(q1(z))2 + β
zq′1(z)
q1(z)

≺ χ(α, δ, β, ζ, µ, λ, f, g)(z)

≺ α + ζq2(z) + δ(q2(z))2 + β
zq′2(z)
q2(z)

implies

q1(z) ≺

(
Dm+1

λ (f ∗ g)(z)
z

)µ

≺ q2(z)

and q1 and q2 are the best subordinant and the best dominant, respectively and
χ(α, δ, β, ζ, µ, λ, f, g)(z) is given by (3.2).
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Remark. According to Corollary 2, Theorems 3 and 4 correct the results ob-
tained by Shammugam et al.[27, Theorems 4 and 5, respectively] for m = 0, λ = 1
and g(z) of the form (1.7).
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