SANDWICH THEOREMS FOR ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION

M.K.AOUF AND A. O. MOSTAFA

ABSTRACT. Making use of the generalized Sălăgean operator, we obtain some subordination theorems for analytic functions defined by convolution.

2000 Mathematics Subject Classification: 30C45.

1. INTRODUCTION

Let H be the class of analytic functions in the unit disk $U = \{z \in C : |z| < 1\}$ and let H[a, k] be the subclass of H consisting of functions of the form:

$$f(z) = a + a_k z^k + a_{k+1} z^{k+1} \dots (a \in C).$$
(1.1)

Also, let A_1 be the subclass of H consisting of functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$
 (1.2)

If $f, g \in H$, we say that f is subordinate to g, written $f(z) \prec g(z)$ if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for all $z \in U$, such that $f(z) = g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence, (cf., e.g., [6] and [17]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U)$$

Let $p, h \in H$ and let $\varphi(r, s, t; z) : C^3 \times U \to C$. If p and $\varphi(p(z), zp'(z), z^2p''(z); z)$ are univalent and if p satisfies the second order superordination

$$h(z) \prec \varphi(p(z), zp'(z), z^2 p''(z); z), \qquad (1.3)$$

then p is a solution of the differential superordination (1.3). Note that if f is subordinate to g, then g is superordinate to f. An analytic function q is called a subordinant if $q(z) \prec p(z)$ for all p satisfying (1.3). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants of (1.3) is called the best subordinant. Recently Miller and Mocanu [18] obtained conditions on the functions h, q and φ for which the following implication holds:

$$h(z) \prec \varphi(p(z), zp'(z), z^2 p''(z); z) \Rightarrow q(z) \prec p(z).$$

$$(1.4)$$

Using the results of Miller and Mocanu [18], Bulboaca [5] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [6]. Ali et al. [1], have used the results of Bulboaca [5] to obtain sufficient conditions for normalized analytic functions to satisfy:

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$. Also, Tuneski [30] obtained a sufficient condition for starlikeness of f in terms of the quantity $\frac{f''(z)f(z)}{(f'(z))^2}$. Recently, Shanmugam et al. [26] obtained sufficient conditions for the normalized analytic function f to satisfy

$$q_1(z) \prec \frac{f(z)}{zf'(z)} \prec q_2(z)$$

and

$$q_1(z) \prec \frac{z^2 f'(z)}{\{f(z)\}^2} \prec q_2(z).$$

For functions f given by (1.1) and $g \in A_1$ given by $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$, the Hadamard product (or convolution) of f and q is defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z).$$

For functions $f, g \in A_1$, we define the linear operator $D_{\lambda}^m : A_1 \to A_1 \ (\lambda \ge 0, m \in N_0 = N \cup \{0\}, N = \{1, 2, ...\})$ by:

$$D^{0}_{\lambda}(f * g)(z) = (f * g)(z),$$

$$D^{1}_{\lambda}(f * g)(z) = D_{\lambda}(f * g)(z) = (1 - \lambda)(f * g)(z) + z((f * g)(z))',$$

and (in general)

$$D_{\lambda}^{m}(f * g)(z) = D_{\lambda}(D_{\lambda}^{m-1}(f * g)(z))$$

$$= z + \sum_{k=2}^{\infty} [1 + \lambda(k-1)]^m a_k b_k z^k \ (\lambda \ge 0; m \in N_0).$$
(1.5)

From (1.5), we can easily deduce that

$$\lambda z \left(D_{\lambda}^{m}(f * g)(z) \right)' = D_{\lambda}^{m+1}(f * g)(z) - (1 - \lambda) D_{\lambda}^{m}(f * g)(z) \ (\lambda > 0).$$
(1.6)

We observe that the function (f * g)(z) reduces to several interesting functions for different choices of the function g.

(i) For $\lambda = 1$ and $b_k = 1$ (or $g(z) = \frac{z}{1-z}$), we have $D_1^m(f*g)(z) = D^m f(z)$, where D^m is the Sălăgean operator introduced and studiedby Sălăgean [24]:

where D^m is the Sălăgean operator introduced and studied Sălăgean [24]; (*ii*) For $b_k = 1$ (or $g(z) = \frac{z}{1-z}$), we have $D^m_{\lambda}(f * g)(z) = D^m_{\lambda}f(z)$, where D^m_{λ} is the generalized Sălăgean operator introduced and studied by Al-Oboudi [2]; (*iii*) For m = 0 and

$$g(z) = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k \ (c \neq 0, -1, -2, ...),$$
(1.7)

where

$$(d)_{k} = \begin{cases} 1 & (k = 0; d \in C \setminus \{0\}) \\ d(d+1)...(d+k-1) & (k \in N; d \in C), \end{cases}$$

we have $D^0_{\lambda}(f * g)(z) = (f * g)(z) = L(a, c)f(z)$, where the operator L(a, c) was introduced by Carlson and Shaffer [8];

(iv) For m = 0 and

$$g(z) = z + \sum_{k=2}^{\infty} \left[\frac{1+l+\lambda(k-1)}{1+l} \right]^s z^k \ (\lambda \ge 0; l, s \in N_0), \tag{1.8}$$

we see that $D^0_{\lambda}(f*g)(z) = (f*g)(z) = I(s,\lambda,l)f(z)$, where $I(s,\lambda,l)$ is the generalized multiplier transformation which was introduced and studied by Cătaş et al. [9]. The operator $I(s,\lambda,l)$, contains as special cases, the multiplier transformation (see [10]), the generalized Sălăgean operator introduced and studied by Al-Oboudi [2] which in turn contains as special case the Sălăgean operator (see [24]);

(v) For m = 0 and

$$g(z) = z + \sum_{k=2}^{\infty} \frac{(\alpha_1)_{k-1} \dots (\alpha_l)_{k-1}}{(\beta_1)_{k-1} \dots (\beta_s)_{k-1} (1)_{k-1}} z^k,$$
(1.9)

where, $\alpha_i, \beta_j \in C^* = C \setminus \{0\}$, (i = 1, 2, ...l), $(j = 1, 2, ...s), l \leq s + 1, l, s \in N_0$, we see that, $D^0_{\lambda}(f * g)(z) = (f * g)(z) = H_{l,s}(\alpha_1)f(z)$, where $H_{l,s}(\alpha_1)$ is the Dziok-Srivastava operator introduced and studied by Dziok and Srivastava [11] (see also

[12] and [13]). The operator $H_{l,s}(\alpha_1)$, contains in turn many interesting operators such as, Hohlov linear operator (see [14]), the Carlson-Shaffer linear operator (see [8] and [23]), the Ruscheweyh derivative operator (see [22]), the Barnardi-Libera-Livingston operator (see [4], [15] and [16]) and Owa-Srivastava fractional derivative operator (see [20]);

(vi) For g(z) of the form (1.9), the operator $D_{\lambda}^{m}(f*g)(z) = D_{\lambda}^{m}(\alpha_{1},\beta_{1})f(z)$, inroduced and studied by Selvaraj and Karthikeyan [25].

In this paper, we will derive several subordination results involving the operator $D^m_{\lambda}(f * g)(z)$ and some of its special choises of the function g(z).

2. Definitions and Preliminaries

To prove our results we shall need the following definition and lemmas.

Definition 1 [18]. Let Q be the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$E(f) = \{ \zeta \in \partial \mathbf{U} : \lim_{z \to \zeta} f(z) = \infty \},\$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Lemma 1[18]. Let q be univalent in the unit disc U, and let θ and φ be analytic in a domain D containing q(U), with $\varphi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = zq'(z)\varphi(q(z)), h(z) = \theta(q(z)) + Q(z)$ and suppose that (i) Q is a starlike function in U.

(i)
$$Q$$
 is a starlike function in

ii) Re
$$\frac{zh'(z)}{Q(z)} > 0, z \in \mathbf{U}$$

If p is analytic in U with $p(0) = q(0), p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(q(z)) + zq'(z)\varphi(q(z)),$$
(2.1)

then $p(z) \prec q(z)$, and q is the best dominant of (2.1).

Lemma 2 [7]. Let q be a univalent function in the unit disc U and let θ and φ be analytic in a domain D containing q(U). Suppose that

(i)
$$\operatorname{Re} \frac{\theta'(q(z))}{\varphi(q(z))} > 0$$
 for $z \in U$,
(ii) $h(z) = zq'(z)\varphi(q(z))$ is starlike in U.

If $p \in H[q(0), 1] \cap Q$, with $p(U) \subseteq D$, $\theta(p(z)) + zp'(z)\varphi(p(z))$ is univalent in U, and

$$\theta(q(z)) + zq'(z)\varphi(q(z)) \prec \theta(p(z)) + zp'(z)\varphi(p(z)), \qquad (2.2)$$

then $q(z) \prec p(z)$, and q is the best subordinant of (2.2).

The following lemma gives us a necessary and sufficient condition for the univalence of a special function which will be used in some particular cases.

Lemma 3 [21]. The function $q(z) = (1-z)^{-2ab}$ is univalent in U if and only if $|2ab-1| \le 1$ or $|2ab+1| \le 1$.

3. MAIN RESULTS

Unless otherwise mentioned, we shall assume in the reminder of this paper that $\lambda > 0, \alpha, \delta, \zeta \in C, \mu, \beta \in C^* = C \setminus \{0\}, m \in N_0$ and the powers are understood as principle values.

Theorem 1. Let $\left(\frac{D_{\lambda}^{m+1}(f*g)(z)}{z}\right)^{\mu} \in H$ and let q(z) be analytic and uni-

valent in $U, q(z) \neq 0$ ($z \in U$). Suppose that $\frac{zq'(z)}{q(z)}$ is starlike univalent in U. Let

$$\operatorname{Re}\left\{1 + \frac{\zeta}{\beta}q(z) + \frac{2\delta}{\beta}(q(z))^2 - \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0 \ (\beta \in C^*)$$
(3.1)

and

$$\chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z) = \alpha + \zeta \left(\frac{D_{\lambda}^{m+1}(f * g)(z)}{z}\right)^{\mu} + \delta \left(\frac{D_{\lambda}^{m+1}(f * g)(z)}{z}\right)^{2\mu} + \frac{\beta\mu}{\lambda} \left(\frac{D_{\lambda}^{m+2}(f * g)(z)}{D_{\lambda}^{m+1}(f * g)(z)} - 1\right).$$
(3.2)

If q(z) satisfies the following subordination:

$$\chi(\alpha,\delta,\beta,\zeta,\mu,\lambda,f,g)(z)\prec \alpha+\zeta q(z)+\delta(q(z))^2+\beta\frac{zq'(z)}{q(z)},$$

then

$$\left(\frac{D_{\lambda}^{m+1}(f*g)(z)}{z}\right)^{\mu} \prec q(z) \tag{3.3}$$

and q(z) is the best dominant.

Proof. Define p(z) by

$$p(z) = \left(\frac{D_{\lambda}^{m+1}(f \ast g)(z)}{z}\right)^{\mu} (z \in U).$$
(3.4)

Differentiating (3.4) logarithmically with respect to z and using the identity (1.6) in the resulting equation, we have

$$\frac{zp'(z)}{p(z)} = \frac{\mu}{\lambda} \left(\frac{D_{\lambda}^{m+2}(f \ast g)(z)}{D_{\lambda}^{m+1}(f \ast g)(z)} - 1 \right).$$

Setting $\theta(w) = \alpha + \zeta w + \delta w^2$ and $\varphi(w) = \frac{\beta}{w}$, we can easily verify that θ is analytic in C, φ is analytic in C^* and $\varphi(w) \neq 0 (w \in C^*)$. Also, letting

$$Q(z) = zq'(z)\varphi(q(z)) = \beta \frac{zq'(z)}{q(z)}$$

and

$$h(z) = \theta(q(z)) + Q(z) = \alpha + \zeta q(z) + \delta(q(z))^2 + \beta \frac{zq'(z)}{q(z)}$$

We can verify that Q(z) is starlike univalent in U and

$$\operatorname{Re}\left\{\frac{zh'(z)}{Q(z)}\right\} = \operatorname{Re}\left\{1 + \frac{\zeta}{\beta}q(z) + \frac{2\delta}{\beta}(q(z))^2 - \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0.$$

The theorem follows by applying Lemma 1.

Taking g(z) of the form (1.9) and using the identity (see [25])

$$z \left(D_{\lambda}^{m}(\alpha_{1},\beta_{1})f(z) \right)' = \alpha_{1} D_{\lambda}^{m}(\alpha_{1}+1,\beta_{1})f(z) - (\alpha_{1}-1) D_{\lambda}^{m}(\alpha_{1},\beta_{1})f(z), \quad (3.5)$$

we get the result obtained by Selvaraj and Karthikeyan [25, Theorem 2.1].

Taking g(z) of the form (1.9) and using the identity (see [25])

$$\lambda z \left(D_{\lambda}^{m}(\alpha_{1},\beta_{1})f(z) \right)' = D_{\lambda}^{m+1}(\alpha_{1},\beta_{1})f(z) - (1-\lambda)D_{\lambda}^{m}(\alpha_{1},\beta_{1})f(z),$$
(3.6)

we get the following result which corrects the result of Selvaraj and Karthikeyan [25, Theorem 2.2].

Corollary 1. Let
$$\left(\frac{D_{\lambda}^{m+1}(\alpha_1,\beta_1)f(z)}{z}\right)^{\mu} \in H$$
 and let $q(z)$ be analytic and univalent in $U, q(z) \neq 0$ ($z \in U$). Suppose that $\frac{zq'(z)}{q(z)}$ is starlike univalent in U ,

(3.1) holds and

$$\chi_1(\alpha_1, \beta_1, \alpha, \delta, \beta, \zeta, \mu, \lambda, f)(z) = \alpha + \zeta \left(\frac{D_\lambda^{m+1}(\alpha_1, \beta_1)f(z)}{z}\right)^\mu + \delta \left(\frac{D_\lambda^{m+1}(\alpha_1, \beta_1)f(z)}{z}\right)^{2\mu} + \frac{\beta\mu}{\lambda} \left(\frac{D_\lambda^{m+2}(\alpha_1, \beta_1)f(z)}{D_\lambda^{m+1}(\alpha_1, \beta_1)f(z)} - 1\right).$$
(3.7)

If q(z) satisfies the following subordination:

$$\chi_1(\alpha_1,\beta_1,\alpha,\delta,\beta,\zeta,\mu,\lambda,f)(z) \prec \alpha + \zeta q(z) + \delta(q(z))^2 + \beta \frac{zq'(z)}{q(z)},$$

then

$$\left(\frac{D_{\lambda}^{m+1}(\alpha_1,\beta_1)f(z)}{z}\right)^{\mu}\prec q(z)$$

and q(z) is the best dominant.

Taking $m = 0, \lambda = 1$ and g(z) of the form (1.7) and using the identity (see [23])

$$z \left(L(a,c)f(z) \right)' = aL(a+1,c)f(z) - (a-1)L(a,c)f(z),$$
(3.8)

we get the following result which corrects the result of Shammugam et al. [27, Theorem 3].

Corollary 2. Let $\left(\frac{L(a+1,c)f(z)}{z}\right)^{\mu} \in H$ and let q(z) be analytic and univalent in $U, q(z) \neq 0$ ($z \in U$). Suppose that $\frac{zq'(z)}{q(z)}$ is starlike univalent in U, (3.1) holds and

$$\chi_{2}(a,c,\alpha,\delta,\beta,\zeta,\mu,f)(z) = \alpha + \zeta \left(\frac{L(a+1,c)f(z)}{z}\right)^{\mu} + \delta \left(\frac{L(a+1,c)f(z)}{z}\right)^{2\mu} + \beta \mu(a+1) \left(\frac{L(a+2,c)f(z)}{L(a+1,c)f(z)} - 1\right).$$
(3.9)

If q(z) satisfies the following subordination:

$$\chi_2(a,c,\alpha,\delta,\beta,\zeta,\mu,f)(z) \prec \alpha + \zeta q(z) + \delta(q(z))^2 + \beta \frac{zq'(z)}{q(z)},$$

then

$$\left(\frac{L(a+1,c)f(z)}{z}\right)^{\mu} \prec q(z)$$

and q(z) is the best dominant.

Taking the function $q(z) = \frac{1+Az}{1+Bz}$ in Theorem 1, where $-1 \le B < A \le 1$, the condition (3.1) becomes

$$\operatorname{Re}\left\{1 + \frac{\zeta}{\beta}\frac{1+Az}{1+Bz} + \frac{2\delta}{\beta}(\frac{1+Az}{1+Bz})^2 - \frac{2Bz}{1+Bz} - \frac{(A-B)z}{(1+Bz)(1+Az)}\right\} > 0 \ (\beta \in C^*),$$
(3.10)

hence, we have the following corollary.

Corollary 3. Let $q(z) = \frac{1 + Az}{1 + Bz}$ $(-1 \le B < A \le 1)$ and (3.10) holds true. If $f(z) \in A_1$ and

$$\chi(\alpha,\delta,\zeta,\beta,\mu,\lambda,f,g)(z) \prec \alpha + \zeta \left(\frac{1+Az}{1+Bz}\right) + \delta \left(\frac{1+Az}{1+Bz}\right)^2 + \beta \frac{(A-B)z}{(1+Az)(1+Bz)},$$

where $\chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z)$ is given by (3.2), then

$$\left(\frac{D_{\lambda}^{m+1}(f*g)(z)}{z}\right)^{\mu} \prec \frac{1+Az}{1+Bz}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Taking the function $q(z) = \left(\frac{1+z}{1-z}\right)^{\gamma} \ (0 < \gamma \le 1)$, in Theorem 1, the condition (3.1) becomes

$$\operatorname{Re}\left\{1+\frac{\zeta}{\beta}\left(\frac{1+z}{1-z}\right)^{\gamma}+\frac{2\delta}{\beta}\left(\frac{1+z}{1-z}\right)^{2\gamma}+\frac{2z^{2}}{1-z^{2}}\right\}>0\ (\beta\in C^{*}),\tag{3.11}$$

hence, we have the following corollary.

Corollary 4. Let $q(z) = \left(\frac{1+z}{1-z}\right)^{\gamma} (0 < \gamma \leq 1)$ and (3.11) holds true. If $f(z) \in A_1$ and

$$\chi(\alpha,\delta,\beta,\mu,\lambda,f,g)(z) \prec \alpha + \zeta \left(\frac{1+z}{1-z}\right)^{\gamma} + \delta \left(\frac{1+z}{1-z}\right)^{2\gamma} + \beta \frac{2\gamma z}{(1-z)^2},$$

where $\chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z)$ is given by (3.2), then

$$\left(\frac{D_{\lambda}^{m+1}(f*g)(z)}{z}\right)^{\mu} \prec \left(\frac{1+z}{1-z}\right)^{\gamma}$$

and $\left(\frac{1+z}{1-z}\right)^{\gamma}$ is the best dominant.

Taking $q(z) = e^{\mu A z}$, $|\mu A| < \pi$, Theorem 1, the condition (3.1) becomes

$$\operatorname{Re}\left\{1+\frac{\zeta}{\beta}e^{\mu\gamma Az}+\frac{2\delta}{\beta}e^{2\mu\gamma Az}\right\}>0\ (\beta\in C^*),\tag{3.12}$$

hence, we have the following corollary.

Corollary 5. Let $q(z) = e^{\mu Az}$, $|\mu A| < \pi$ and (3.12) holds. If $f(z) \in A_1$ and $\chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z) \prec \alpha + \zeta e^{\mu Az} + \delta e^{2\mu Az} + \beta A\mu z$, where $\chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z)$ is given by (3.2), then

$$\left(\frac{D_{\lambda}^{m+1}(f*g)(z)}{z}\right)^{\mu} \prec e^{\mu A z} \ (\mu \in C^*)$$

and $e^{\mu Az}$ is the best dominant.

Taking $m = 0, g(z) = \frac{z}{1-z}, \delta = \zeta = 0, \lambda = \alpha = \mu = 1, \beta = \frac{1}{b}(b \in C^*)$ and $q(z) = \frac{1}{(1-z)^{2b}}$ in Theorem 1, we obtain the result obtained by Srivastava and Lashin [29, Corollary 1].

Theorem 2. Let $\left(\frac{D_{\lambda}^{m}(f * g)(z)}{z}\right)^{\mu} \in H$ and let q(z) be analytic and univalent in $U, q(z) \neq 0$ ($z \in U$). Suppose that $\frac{zq'(z)}{q(z)}$ is starlike univalent in U and (3.1) holds and

$$\eta(\alpha, \delta, \beta, \zeta, \mu, f, g)(z) = \alpha + \zeta \left(\frac{D_{\lambda}^{m}(f * g)(z)}{z}\right)^{\mu} + \delta \left(\frac{D_{\lambda}^{m}(f * g)(z)}{z}\right)^{2\mu} + \frac{\beta\mu}{\lambda} \left(\frac{D_{\lambda}^{m+1}(f * g)(z)}{D_{\lambda}^{m}(f * g)(z)} - 1\right).$$

If q(z) satisfies the following subordination:

$$\eta(\alpha, \delta, \beta, \zeta, \mu, f, g)(z) \prec \alpha + \zeta q(z) + \delta(q(z))^2 + \beta \frac{zq'(z)}{q(z)},$$

then

$$\left(\frac{D_{\lambda}^{m}(f*g)(z)}{z}\right)^{\mu} \prec q(z)$$

and q(z) is the best dominant.

Proof. The proof is similar to the proof of Theorem 1, and hence we omit it.

Taking $m = 0, g(z) = \frac{z}{1-z}, \delta = \zeta = 0, \lambda = \alpha = 1, \mu = a, \beta = \frac{1}{ab}(a, b \in C^*)$ and $q(z) = \frac{1}{(1-z)^{2ab}}$ in Theorem 2 and combining with Lemma 3, we obtain the result due to Obradović et al. [19, Theorem 1];

Taking $m = 0, g(z) = \frac{z}{1-z}, \delta = \zeta = 0, \lambda = \alpha = 1, \mu = a, \beta = \frac{e^{i\lambda}}{ab\cos\lambda} (a, b \in C^*, |\lambda| < \frac{\pi}{2})$ and $q(z) = \frac{1}{(1-z)^{2ab\cos\lambda e^{-i\lambda}}}$ in Theorem 2 and combining with Lemma 3, we obtain the result due to Aouf et al. [3, Theorem 1].

Taking $m = 0, \lambda = 1$ and g(z) of the form (1.7) and using the identity (3.8), we get the following result which corrects the result of Shammugam et al.[28, Theorem 3.1].

Corollary 6. Let $\left(\frac{L(a,c)f(z)}{z}\right)^{\mu} \in H$ and let q(z) be analytic and univalent in $U, q(z) \neq 0$ ($z \in U$). Suppose that $\frac{zq'(z)}{q(z)}$ is starlike univalent in U, (3.1) holds and

$$\begin{split} \chi_3(a,c,\alpha,\delta,\beta,\zeta,\mu,f)(z) &= \alpha + \zeta \left(\frac{L(a,c)f(z)}{z}\right)^{\mu} + \delta \left(\frac{L(a,c)f(z)}{z}\right)^{2\mu} \\ &+ \beta \mu a \left(\frac{L(a+1,c)f(z)}{L(a,c)f(z)} - 1\right). \end{split}$$

If q(z) satisfies the following subordination:

$$\chi_3(a,c,\alpha,\delta,\beta,\zeta,\mu,f)(z) \prec \alpha + \zeta q(z) + \delta(q(z))^2 + \beta \frac{zq'(z)}{q(z)},$$

then

$$\left(\frac{L(a+1,c)f(z)}{z}\right)^{\mu} \prec q(z)$$

and q(z) is the best dominant.

Theorem 3. Let q(z) be convex, univalent in U, $q(z) \neq 0$ and $\frac{zq'(z)}{q(z)}$ be starlike univalent in U. Suppose that

$$\operatorname{Re}\left\{\frac{2\delta}{\beta}(q(z))^{2} + \frac{\zeta}{\beta}q(z)\right\}q'(z) > 0.$$
(3.11)

If
$$f(z) \in A, 0 \neq \left(\frac{D_{\lambda}^{m+1}(f * g)(z)}{z}\right)^{\mu} \in H[q(0), 1] \cap Q$$
, and $\chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z)$ is univalent in U , then

$$\alpha + \zeta q(z) + \delta(q(z))^2 + \beta \frac{zq'(z)}{q(z)} \prec \chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z)$$

implies

$$q(z) \prec \left(\frac{D_{\lambda}^{m+1}(f \ast g)(z)}{z}\right)^{\mu}$$
(3.12)

and q(z) is the best subordinant, $\chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z)$ is given by (3.2).

Proof. Let $\theta(w) = \alpha + \zeta w + \delta w^2$ and $\varphi(w) = \frac{\beta}{w}$, we can verify that θ is analytic in , φ is analytic in C^* and $\varphi(w) \neq 0 (w \in C^*)$. Since q(z) is convex, it follows that

$$\operatorname{Re}\frac{\theta'(q(z))}{\varphi(q(z))} = \operatorname{Re}\left\{\frac{2\delta}{\beta}(q(z))^2 + \frac{\zeta}{\beta}q(z)\right\}q'(z) > 0.$$

The assertion (3.12) follows by an application of Lemma 2. This completes the proof of Theorem 3.

Combining Theorem 1 and Theorem 3, we get the following sandwich theorem.

Theorem 4. Let q_1 and q_2 be univalent in U such that $q_1(z) \neq 0$ and $q_2(z) \neq 0$ $(z \in U), \frac{zq'_1(z)}{q_1(z)}$ and $\frac{zq'_2(z)}{q_2(z)}$ are starlike univalent. Suppose that q_1 and q_2 satisfies (3.11) and (3.1), respectively. If $f \in A_1$, $\left(\frac{D^{m+1}_{\lambda}(f * g)(z)}{z}\right)^{\mu} \in H[q(0), 1] \cap Q$, and $\chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z)$ is univalent in U, then

$$\alpha + \zeta q_1(z) + \delta(q_1(z))^2 + \beta \frac{zq_1(z)}{q_1(z)} \prec \chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z)$$
$$\prec \alpha + \zeta q_2(z) + \delta(q_2(z))^2 + \beta \frac{zq_2'(z)}{q_2(z)}$$

implies

$$q_1(z) \prec \left(\frac{D_{\lambda}^{m+1}(f*g)(z)}{z}\right)^{\mu} \prec q_2(z)$$

and q_1 and q_2 are the best subordinant and the best dominant, respectively and $\chi(\alpha, \delta, \beta, \zeta, \mu, \lambda, f, g)(z)$ is given by (3.2).

Remark. According to Corollary 2, Theorems 3 and 4 correct the results obtained by Shammugam et al.[27, Theorems 4 and 5, respectively] for $m = 0, \lambda = 1$ and g(z) of the form (1.7).

References

[1] R. M. Ali, V. Ravichandran and K. G. Subramanian, *Differential sandwich theorems for certain analytic functions*, Far East J. Math. Sci. 15 (2004), no. 1, 87-94.

[2] F. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci., 27 (2004), 1429-1436.

[3] M. K. Aouf, F. M. Al-Oboudi and M. M. Haidan, On some results for λ -spirallike and λ -Robertson functions of complex order, Publ. Institute Math. Belgrade, 77 (91)(2005), 93-98.

[4] S.D. Bernardi, *Convex and univalent functions*, Trans. Amer. Math. Soc., 135 (1996), 429-446.

[5] T. Bulboacă, *Classes of first order differential superordinations*, Demonstratio Math. 35 (2002), no. 2, 287-292.

[6] T. Bulboaca, *Differential Subordinations and Superordinations*, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.

[7] T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. (N. S.). 13 (2002), no. 3, 301-311.

[8] B. C. Carlson and D. B. Shaffer, *Starlike and prestarlike hypergeometric functions*, SIAM J. Math. Anal., 15 (1984), 737-745.

[9] A. Cătaş, G. I. Oros and G. Oros, *Differential subordinations associated with multiplier transformations*, Abstract Appl. Anal., 2008 (2008), ID 845724, 1-11.

[10] N. E. Cho and T. G. Kim, *Multiplier transformations and strongly close-to-convex functions*, Bull. Korean Math. Soc., 40 (2003), no. 3, 399-410.

[11] J. Dziok and H. M. Srivastava, *Classes of analytic functions associated with thegeneralized hypergeometric function*, Appl. Math. Comput., 103 (1999), 1-13.

[12] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5 (2002), 115-125.

[13] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Trans. Spec. Funct., 14 (2003), 7-18.

[14] Yu. E. Hohlov, Operators and operations in the univalent functions, Izv. Vysŝh. Učebn. Zaved. Mat., 10 (1978), 83-89 (in Russian).

[15] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-658.

[16] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.

[17] S. S. Miller and P. T. Mocanu, *Differential Subordination: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.

[18] S. S. Miller and P. T. Mocanu, *Subordinates of differential superordinations*, Complex Variables, 48 (2003), no. 10, 815-826.

[19] M. Obradović, M. K. Aouf and S. Owa, On some results for starlike functions of complex order, Publ. Institute Math. Belgrade, 46 (60)(1989), 79-85.

[20] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.

[21] W. C. Royster, On the univalence of a certain integral, Michigan Math. J., 12 (1965), 385-387.

[22] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Sco., 49 (1975), 109-115.

[23] H. Saitoh, A linear operator and its applications of fiest order differential subordinations, Math. Japon. 44 (1996), 31-38.

[24] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013, (1983), 362 - 372.

[25] C. Selvaraj and K. R. Karthikeyan, *Differential subordination and super*ordination for certain subclasses of analytic functions, Far East J. Math. Sci., 29 (2008), no. 2, 419-430.

[26] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, *Differantial sandwich theorems for some subclasses of analytic functions*, J. Austr.Math. Anal. Appl., 3 (2006), no. 1, art. 8, 1-11.

[27] T. N. Shanmugam, V. Ravichandran, M. Darus and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions involving a linear operator, Acta Math. Univ. Comenianae, 74 (2007), no. 2, 287-294.

[28] T. N. Shanmugam, S. Sivasubramanian and S. Owa, On sandwich theorems for certain subclasses of analytic functions involving a linear operator, Math. Inequal. Appl., 10 (2007), no. 3, 575-585.

[29] H. M. Srivastava and A. Y. Lashin, *Some applications of the Briot-Bouquet differential subordination*, J. Inequal. Pure Appl.Math., 6 (2005), no. 2, Art. 41, 1-7.

[30] N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J. Math. Math. Sci., 23 (2000), no. 8, 521-527.

M. K. Aouf and A. O. Mostafa Department of Mathematics Faculty of Science Mansoura University Mansoura 35516, Egypt. emails: mkaouf127@yahoo.com, adelaeg254@yahoo.com