A NEW CLASS OF HARMONIC MULTIVALENT FUNCTIONS DEFINED BY AN INTEGRAL OPERATOR

Luminiţa-Ioana Cotîrlă

Abstract. We define and investigate a new class of harmonic multivalent functions defined by Sălăgean integral operator. We obtain coefficient inequalities and distortion bounds for the functions in this class.

2000 Mathematics Subject Classification: 30C45, 30C50, 31A05.
Keywords and phrases: Harmonic univalent functions, integral operator, distortion inequalities.

1. Introduction

For fixed positive integer p, denote by $H(p)$ the set of all harmonic multivalent functions $f=h+\bar{g}$ which are sense-preserving in the open unit disk $\mathbb{U}=\{z:|z|<1\}$ where h and g are of the form

$$
\begin{equation*}
h(z)=z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}, \quad g(z)=\sum_{k=1}^{\infty} b_{k+p-1} z^{k+p-1}, \quad\left|b_{p}\right|<1 . \tag{1}
\end{equation*}
$$

The integral operator I^{n} was introduced by Sălăgean [9]. For fixed positive integer n and for $f=h+\bar{g}$ given by (1) we define the modified Sălăgean operator $I^{n} f$ as

$$
\begin{equation*}
I^{n} f(z)=I^{n} h(z)+(-1)^{n} \overline{I^{n} g(z)} ; \quad p>n, \quad z \in \mathbb{U} \tag{2}
\end{equation*}
$$

where

$$
I^{n} h(z)=z^{p}+\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n} a_{k+p-1} z^{k+p-1}
$$

and

$$
I^{n} g(z)=\sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n} b_{k+p-1} z^{k+p-1}
$$

It is known that, (see[3]), the harmonic function $f=h+\bar{g}$ is sense- preserving in U if $\left|g^{\prime}\right|<\left|h^{\prime}\right|$ in \mathbb{U}. The class $H(p)$ was studied by Ahuja and Jahangiri [1] and the class $H(p)$ for $p=1$ was defined and studied by Jahangiri et al. in [6].

For fixed positive integers n, p, and for $0 \leq \alpha<1, \quad \beta \geq 0$ we let $H_{p}(n+1, n, \alpha, \beta)$ denote the class of multivalent harmonic functions of the form (1) that satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I^{n} f(z)}{I^{n+1} f(z)}\right\}>\beta\left|\frac{I^{n} f(z)}{I^{n+1} f(z)}-1\right|+\alpha \tag{3}
\end{equation*}
$$

The subclass $H_{p}^{-}(n+1, n, \alpha, \beta)$ consists of functions $f_{n}=h+\overline{g_{n}}$ in $H_{p}(n, \alpha, \beta)$ so that h and g are of the form

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}, \quad g_{n}(z)=(-1)^{n-1} \sum_{k=1}^{\infty} b_{k+p-1} z^{k+p-1}, \quad\left|b_{p}\right|<1 \tag{4}
\end{equation*}
$$

The families $H_{p}(n+1, n, \alpha, \beta)$ and $H_{p}^{-}(n+1, n, \alpha, \beta)$ include a variety of wellknown classes of harmonic functions as well as many new ones. For example $H_{1}^{-}(1,0, \alpha, 0) \equiv H S(\alpha)$ is the class of sense-preserving, harmonic univalent functions f which are starlike of order α in $\mathbb{U}, H_{1}^{-}(2,1, \alpha, 0) \equiv H K(\alpha)$ is the class of sense-preserving, harmonic univalent functions f which are convex of order α in \mathbb{U} and $H_{1}^{-}(n+1, n, \alpha, 0) \equiv H^{-}(n, \alpha)$ is the class os Sălăgean type harmonic univalent functions.

For the harmonic functions f of the form (1) with $b_{1}=0$, Avei and Zlotkiewicz [2] showed that if

$$
\sum_{k=2}^{\infty} k\left(\left|a_{k}\right|+b_{k} \mid\right) \leq 1
$$

then $f \in H S(0)$ and if

$$
\sum_{k=2}^{\infty} k^{2}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq 1
$$

then $f \in H K(0)$. Silverman [10] proved that the above two coefficient conditions are also necessary if $f=h+\bar{g}$ has negative coefficients. Later, Silverman and Silvia[11] improved the results of [6] and [9] to the case b_{1} not necessarily zero.

For the harmonic functions f of the form (4) with $n=1$, Jahangiri [5] showed that $f \in H S(\alpha)$ if and only if

$$
\sum_{k=2}^{\infty}(k-\alpha)\left|a_{k}\right|+\sum_{k=1}^{\infty}(k+\alpha)\left|b_{k}\right| \leq 1-\alpha
$$

and $f \in H_{1}^{-}(2,1, \alpha, 0)$ if and only if

$$
\sum_{k=2}^{\infty} k(k-\alpha)\left|a_{k}\right|+\sum_{k=1}^{\infty} k(k+\alpha)\left|b_{k}\right| \leq 1-\alpha
$$

In this paper, the coefficient conditions for the classes $H S(\alpha)$ and $H K(\alpha)$ are extended to the class $H_{p}(n+1, n, \alpha, \beta)$, of the form (3) above. Furthermore, we determine distortion theorem for the functions in $H_{p}^{-}(n+1, n, \alpha, \beta)$.

2.MAIN RESULTS

In the first theorem, we introduce a sufficient coefficient bound for harmonic functions in $H_{p}(n+1, n, \alpha, \beta)$.

Theorem 2.1. Let $f=h+\bar{g}$ be given by (1). If

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\{\Psi(n+1, n, p, \alpha, \beta)\left|a_{k+p-1}\right|+\Theta(n+1, n, p, \alpha, \beta)\left|b_{k+p-1}\right|\right\} \leq 2 \tag{5}
\end{equation*}
$$

where

$$
\Psi(n+1, n, p, \alpha, \beta)=\frac{\left(\frac{p}{k+p-1}\right)^{n}(1+\beta)-(\beta+\alpha)\left(\frac{p}{k+p-1}\right)^{n+1}}{1-\alpha}
$$

and

$$
\Theta(n+1, n, p, \alpha, \beta)=\frac{\left(\frac{p}{k+p-1}\right)^{n}(1+\beta)+\left(\frac{p}{k+p-1}\right)^{n+1}(\beta+\alpha)}{1-\alpha}
$$

$a_{p}=1, \quad 0 \leq \alpha<1, \quad \beta \geq 0, \quad n \in \mathbb{N}$. Then $f \in H_{p}(n+1, n, p, \alpha, \beta)$.
Proof. According to (2) and (3) we only need to show that

$$
\operatorname{Re}\left(\frac{I^{n} f(z)-\alpha I^{n+1} f(z)-\beta e^{i \Theta}\left|I^{n} f(z)-I^{n+1} f(z)\right|}{I^{n+1} f(z)}\right) \geq 0 .
$$

The case $r=0$ is obvious. For $0<r<1$ it follows that

$$
\begin{array}{r}
\operatorname{Re}\left(\frac{I^{n} f(z)-\alpha I^{n+1} f(z)-\beta e^{i \theta}\left|I^{n} f(z)-I^{n+1} f(z)\right|}{I^{n+1} f(z)}\right)= \\
=\operatorname{Re}\left\{\frac{(1-\alpha) z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}\left[\Gamma^{n}-\alpha \Gamma^{n+1}\right]}{z^{p}+\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{n+1} \sum_{k=1}^{\infty} \Gamma^{n+1} \bar{b}_{k+p-1} \bar{z}^{k+p-1}}\right.
\end{array}
$$

$$
\begin{aligned}
& +\frac{(-1)^{n} \sum_{k=1}^{\infty} \bar{b}_{k+p-1} \bar{z}^{k+p-1}\left[\Gamma^{n}+\alpha \Gamma^{n+1}\right]}{z^{p}+\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{n+1} \sum_{k=1}^{\infty} \Gamma^{n+1} \bar{b}_{k+p-1} \bar{z}^{k+p-1}}- \\
& \left.\frac{\beta e^{i \Theta}\left|\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}\left[\Gamma^{n}-\Gamma^{n+1}\right]+(-1)^{n} \sum_{k=1}^{\infty} \bar{b}_{k+p-1} \bar{z}^{k+p-1}\left[\Gamma^{n}+\Gamma^{n+1}\right]\right|}{z^{p}+\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{n+1} \sum_{k=1}^{\infty} \Gamma^{n+1} \bar{b}_{k+p-1} \bar{z}^{k+p-1}}\right\} \\
& =\operatorname{Re}\left\{\frac{1-\alpha+\sum_{k=2}^{\infty} a_{k+p-1} z^{k-1}\left[\Gamma^{n}-\alpha \Gamma^{n+1}\right]}{1+\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} z^{k-1}+(-1)^{n+1} \sum_{k=1}^{\infty} \Gamma^{n+1} \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}\right. \\
& +\frac{(-1)^{n} \sum_{k=1}^{\infty} \bar{b}_{k+p-1} \bar{z}^{k-1+p} z^{-p}\left[\Gamma^{n}+\alpha \Gamma^{n+1}\right]}{1+\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} z^{k-1}+(-1)^{n+1} \sum_{k=1}^{\infty} \Gamma^{n+1} \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}} \\
& \beta e^{i \Theta} z^{-p}\left|\sum_{k=2}^{\infty}\left[\Gamma^{n}-\Gamma^{n+1}\right] a_{k+p-1} z^{k+p-1}+(-1)^{n} \sum_{k=1}^{\infty}\left[\Gamma^{n}+\Gamma^{n+1}\right] \bar{b}_{k+p-1} \bar{z}^{k+p-1}\right| \\
& \hline 1+\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} z^{k-1}+(-1)^{n+1} \sum_{k=1}^{\infty} \Gamma^{n+1} \bar{b}_{k+p} \bar{z}^{k+p-1} z^{-p} \\
& =\operatorname{Re} \frac{(1-\alpha)+A(z)}{1+B(z)},
\end{aligned}
$$

where

$$
\Gamma=\frac{p}{k+p-1}
$$

For $z=r e^{i \Theta}$ we have

$$
\begin{gathered}
A\left(r e^{i \Theta}\right)=\sum_{k=2}^{\infty}\left(A^{n}-\alpha A^{n+1}\right) a_{k+p-1} r^{k-1} e^{(k-1) \Theta i}+ \\
+(-1)^{n} \sum_{k=1}^{\infty}\left(A^{n}+A^{n+1} \alpha\right) \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \Theta i}-\beta e^{-(p-1) i \Theta} \mathcal{D}(n+1, n, p, \alpha),
\end{gathered}
$$

where

$$
\begin{aligned}
\mathcal{D}(n+1, n, p, \alpha) & ==\mid \sum_{k=2}^{\infty}\left(A^{n}-A^{n+1}\right) a_{k+p-1} r^{k-1} e^{-(k+p-1) i \Theta} \\
& +(-1)^{n} \sum_{k=1}^{\infty}\left(A^{n}+A^{n+1}\right) \bar{b}_{k+p-1} r^{k-1} e^{-(k+p-1) i \Theta} \mid,
\end{aligned}
$$

and

$$
\begin{aligned}
B\left(r e^{i \Theta}\right) & =\sum_{k=2}^{\infty} A^{n+1} a_{k+p-1} r^{k-1} e^{(k-1) \Theta i} \\
& +(-1)^{n+1} \sum_{k=1}^{\infty} A^{n+1} \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \Theta i} .
\end{aligned}
$$

Setting

$$
\frac{1-\alpha+A(z)}{1+B(z)}=(1-\alpha) \frac{1+w(z)}{1-w(z)}
$$

The proof will be complete if we can show that $|w(z)| \leq r<1$. This is the case since, by the condition (5), we can write:

$$
\begin{gathered}
|w(z)|=\left|\frac{A(z)-(1-\alpha) B(z)}{A(z)+(1-\alpha) B(z)+2(1-z)}\right| \leq \\
\frac{\sum_{k=1}^{\infty}\left[(1+\beta)\left(A^{n}-A^{n+1}\right)\left|a_{k+p-1}\right|+(1+\beta)\left(A^{n}+A^{n+1}\right)\left|b_{k+p-1}\right|\right] r^{k-1}}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{\left[A^{n}(1+\beta)-\Lambda A^{n+1}\right]\left|a_{k+p-1}\right|+\left[A^{n}(1+\beta)+\Lambda A^{n+1}\right]\left|b_{k+p-1}\right|\right\} r^{k-1}}< \\
<\frac{\sum_{k=1}^{\infty}(1+\beta)\left(A^{n}-A^{n+1}\right)\left|a_{k+p-1}\right|+\left(A^{m}+A^{n+1}\right)(1+\beta)\left|b_{k+p-1}\right|}{4(1-\alpha)-\left\{\sum_{k=1}^{\infty}\left[A^{n}(1+\beta)-\Lambda A^{n+1}\right]\left|a_{k+p-1}\right|+\left[A^{n}(1+\beta)+\Lambda A^{n+1}\right]\left|b_{k+p-1}\right|\right\}} \leq \\
\leq 1
\end{gathered}
$$

where $\Lambda=\beta+2 \alpha-1$.
The harmonic univalent functions

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=2}^{\infty} \frac{1}{\Psi(n+1, n, p, \alpha, \beta)} x_{k} z^{k+p-1}+\sum_{k=1}^{\infty} \frac{1}{\Theta(n+1, n, p, \alpha, \beta)} \overline{y_{k} z^{k+p-1}} \tag{6}
\end{equation*}
$$

where $n \in \mathbb{N}, 0 \leq \alpha<1, \beta \geq 0$ and $\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=1$, show that the coefficient bound given by (5) is sharp.

The functions of the form (6) are in $H_{p}(n+1, n, \alpha, \beta)$ because

$$
\begin{gathered}
\sum_{k=1}^{\infty}\left[\Psi(n+1, n, p, \alpha, \beta)\left|a_{k+p-1}\right|+\Theta(n+1, n, p, \alpha, \beta)\left|b_{k+p-1}\right|\right]= \\
=1+\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=2
\end{gathered}
$$

In the following theorem it is show that the condition (5) is also necessary for the function $f_{n}=h+\bar{g}_{n}$, where h and g_{n} are of the form (4).

Theorem 2.2. Let $f_{n}=h+\bar{g}_{n}$ be given by (4). Then $f_{n} \in H_{p}^{-}(n+1, n, \alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left[\Psi(n+1, n, p, \alpha, \beta) a_{k+p-1}+\Theta(n+1, n, p, \alpha, \beta) b_{k+p-1}\right] \leq 2 \tag{7}
\end{equation*}
$$

$a_{p}=1,0 \leq \alpha<1, n \in \mathbb{N}$.
Proof. Since $H_{p}^{-}(n+1, n, \alpha, \beta) \subset H_{p}(n+1, n, \alpha, \beta)$, we only need to prove the "only if" part of the theorem. For functions f_{n} of the form (4), we note that the condition

$$
\operatorname{Re}\left\{\frac{I^{n} f(z)}{I^{n+1} f(z)}\right\}>\beta\left|\frac{I^{n} f(z)}{I^{n+1} f(z)}-1\right|+\alpha
$$

is equivalent to

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{(1-\alpha) z^{p}-\sum_{k=2}^{\infty}\left(\Gamma^{n}-\alpha \Gamma^{n+1}\right) a_{k+p-1} z^{k+p-1}}{z^{p}-\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{2 n} \sum_{k=1}^{\infty} \Gamma^{n+1} b_{k+p-1} \bar{z}^{k+p-1}}+\right. \\
& +\frac{(-1)^{2 n-1} \sum_{k=1}^{\infty}\left(\Gamma^{n}+\Gamma^{n+1} \alpha\right) b_{k+p-1} \bar{z}^{k+p-1}}{z^{p}-\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{2 n} \sum_{k=1}^{\infty} \Gamma^{n+1} b_{k+p-1} \bar{z}^{k+p-1}}
\end{aligned}
$$

$$
\begin{gather*}
\left.-\frac{\beta e^{i \Theta}\left|-\sum_{k=2}^{\infty}\left(\Gamma^{n}-\Gamma^{n+1}\right) a_{k+p-1} z^{k+p-1}+(-1)^{2 n-1} \sum_{k=1}^{\infty}\left(\Gamma^{n}+\Gamma^{n+1}\right) \bar{b}_{k+p-1} \bar{z}^{k+p-1}\right|}{z^{p}-\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{2 n} \sum_{k=1}^{\infty} \Gamma^{n+1} b_{k+p-1} \bar{z}^{k+p-1}}\right\} \\
\geq 0 \tag{8}
\end{gather*}
$$

where $\Gamma=\frac{p}{p+k-1}$.
The above required condition (8) must hold for all values of $z \in \mathbb{U}$. Upon choosing the values of z on the positive real axis where $0 \leq z=r<1$, we must have

$$
\begin{align*}
& \frac{(1-\alpha)-\sum_{k=2}^{\infty}\left[\Gamma^{n}(1+\beta)-(\beta+\alpha) \Gamma^{n+1}\right] a_{k+p-1} r^{k-1}}{1-\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} r^{k-1}+\sum_{k=1}^{\infty} \Gamma^{n+1} b_{k+p-1} r^{k+p-1}} \tag{9}\\
& +\frac{-\sum_{k=1}^{\infty}\left[\Gamma^{n}(1+\beta)+\Gamma^{n+1}(\beta+\alpha)\right] b_{k+p-1} r^{k-1}}{1-\sum_{k=2}^{\infty} \Gamma^{n+1} a_{k+p-1} r^{k-1}+\sum_{k=1}^{\infty} \Gamma^{n+1} b_{k+p-1} r^{k-1}} \geq 0 .
\end{align*}
$$

If the condition (8) does not hold, then the expression in (9) is negative for r sufficiently close to 1 . Hence there exist $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in (9) is negative. This contradicts the required condition for $f_{n} \in H_{p}^{-}(n+1, n, \alpha, \beta)$. And so the proof is complete.

The following theorem gives the distortion bounds for functions in $H_{p}^{-}(n+$ $1, n, \alpha, \beta)$ which yields a covering results for this class.

Theorem 2.3. Let $f_{n} \in H_{p}^{-}(n+1, n, \alpha, \beta)$. Then for $|z|=r<1$ we have

$$
\left|f_{n}(z)\right| \leq\left(1+b_{p}\right) r^{p}+\left[\Phi(n+1, n, p, \alpha, \beta)-\Omega(n+1, n, p, \alpha, \beta) b_{p}\right] r^{n+1+p}
$$

and

$$
\left|f_{n}(z)\right| \geq\left(1-b_{p}\right) r^{p}-\left\{\Phi(n+1, n, p, \alpha, \beta)-\Omega(n+1, n, p, \alpha, \beta) b_{p}\right\} r^{n+p+1}
$$

where,

$$
\Phi(n+1, n, p, \alpha, \beta)=\frac{1-\alpha}{\left(\frac{p}{p+1}\right)^{n}(1+\beta)-\left(\frac{p}{p+1}\right)^{n+1}(\beta+\alpha)}
$$

$$
\Omega(n+1, n, p, \alpha, \beta)=\frac{(1+\beta)+(\alpha+\beta)}{\left(\frac{p}{p+1}\right)^{n}(1+\beta)-\left(\frac{p}{p+1}\right)^{n+1}(\beta+\alpha)} .
$$

Proof. We prove the right side inequality for $\left|f_{n}\right|$. The proof for the left hand inequality can be done using similar arguments. Let $f_{n} \in H_{p}^{-}(n+1, n, \alpha, \beta)$. Taking the absolute value of f_{n} then by Theorem 2.2 , we can obtain:

$$
\begin{gathered}
\left|f_{n}(z)\right|=\left|z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}+(-1)^{n-1} \sum_{k=1}^{\infty} b_{k+p-1} \bar{z}^{k+p-1}\right| \leq \\
\leq r^{p}+\sum_{k=2}^{\infty} a_{k+p-1} r^{k+p-1}+\sum_{k=1}^{\infty} b_{k+p-1} r^{k+p-1}= \\
=r^{p}+b_{p} r^{p}+\sum_{k=2}^{\infty}\left(a_{k+p-1}+b_{k+p-1}\right) r^{k+p-1} \leq \\
\leq r^{p}+b_{p} r^{p}+\sum_{k=2}^{\infty}\left(a_{k+p-1}+b_{k+p-1}\right) r^{p+1}= \\
=\left(1+b_{p}\right) r^{p}+\Phi(n+1, n, p, \alpha, \beta) \sum_{k=2}^{\infty} \frac{1}{\Phi(n+1, n, p, \alpha, \beta)}\left(a_{k+p-1}+b_{k+p-1}\right) r^{p+1} \leq \\
\quad \leq\left(1+b_{p}\right) r^{p}+\Phi(n+1, n, p, \alpha, \beta) r^{n+p+1} \times \\
\times\left[\sum_{k=2}^{\infty} \Psi(n+1, n, p, \alpha, \beta) a_{k+p-1}+\Theta(n+1, n, p, \alpha, \beta) b_{k+p-1}\right] \leq \\
\leq\left(1+b_{p}\right) r^{p}+\left[\Phi(n+1, n, p, \alpha, \beta)-\Omega(n+1, n, p, \alpha, \beta) b_{p}\right] r^{n+1+p} .
\end{gathered}
$$

The following covering result follows from the left hand inequality in Theorem 2.3.

Corollary 2.4. Let $f_{n} \in H_{p}^{-}(n+1, n, \alpha, \beta)$, then for $|z|=r<1$ we have

$$
\left\{w: \mid w<1-b_{p}-\left[\Phi(n+1, n, p, \alpha, \beta)-\Omega(n+1, n, p, \alpha, \beta) b_{p}\right] \subset f_{n}(\mathbb{U})\right\} .
$$

For $\beta=0$ we obtain the results given in [4].
For $\beta=0, p=1$ and using the differential Sălăgean operator we obtain the results given [7].

The beautiful results, for harmonic functions, was obtained by P. T. Mocanu in [8].

References

[1]O.P. Ahuja, J.M. Jahangiri, Multivalent harmonic starlike functions, Ann. Univ. Marie Curie-Sklodowska Sect. A, LV 1(2001), 1-13.
[2]Y. Avci, E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Marie Crie-Sklodowska, Sect. A., 44(1991).
[3]J. Clunie, T. Scheil- Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
[4] L. I. Cotîrlă, Harmonic univalent functions defined by an integral operator, Acta Universitatis Apulensis, 17(2009), 95-105.
[5]J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999).
[6]J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Sălăgean harmonic univalent functions, South. J. Pure Appl. Math., 2(2002), 77-82.
[7]A. R. S. Juma, L. I. Cotîrlă, On harmonic univalent functions defined by generalized Sălăgean derivatives, submitted for publications.
[8]P. T. Mocanu, Three-cornered hat harmonic functions, Complex Variables and Elliptic Equation, 12(2009), 1079-1084.
[9]G.S. Sălăgean, Subclass of univalent functions, Lecture Notes in Math. SpringerVerlag, 1013(1983), 362-372.
[10]H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220(1998), 283-289.
[11]H. Silverman, E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math. 28(1999), 275-284.

Luminita-Ioana Cotîrlă
Babeş-Bolyai University
Faculty of Mathematics and Computer Science
400084 Cluj-Napoca, Romania
E-mail: uluminita@math.ubbcluj.ro, luminita.cotirla@yahoo.com

