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CERTAIN APPLICATION OF DIFFERENTIAL SUBORDINATION
ASSOCIATED WITH GENERALIZED DERIVATIVE OPERATOR

Ma‘moun Harayzeh Al-Abbadi and Maslina Darus

Abstract.The purpose of the present paper is to introduce several new sub-
classes of analytic function defined in the unit disk D = { z ∈ C : | z | < 1 }, using
derivative operator for analytic function, introduced in [1]. We also investigate var-
ious inclusion properties of these subclasses. In addition we determine inclusion
relationships between these new subclasses and other known classes.
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1. Introduction and Definitions

Let A denote the class of functions of the form

f(z) = z +
∞∑
k=2

ak z
k, ak is complex number (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} on the complex
plane C. Let S, S∗(α), K(α) (0 ≤ α < 1) denote the subclasses of A consisting
of functions that are univalent, starlike of order α and convex of order α in U ,
respectively. In particular, the classes S∗(0) = S∗ and K(0) = K are the familiar
classes of starlike and convex functions in U , respectively.

Let be given two functions f(z) = z+
∞∑
k=2

akz
k and g(z) = z+

∞∑
k=2

bkz
k analytic

in the open unit disk U = {z ∈ C : |z| < 1}. Then the Hadamard product (or
convolution) f ∗ g of two functions f , g is defined by

f(z) ∗ g(z) = (f ∗ g)(z) = z +
∞∑
k=2

akbkz
k .
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Next, we give simple knowledge in subordination. If f and g are analytic in U ,
then the function f is said to be subordinate to g, and can be written as

f ≺ g and f(z) ≺ g(z) (z ∈ U),

if and only if there exists the Schwarz function w, analytic in U , with w(0) =
0 and |w(z)| < 1 such that f(z) = g(w(z)) (z ∈ U) .
If g is univalent in U , then f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U). [9, p.36].
Now, (x)k denotes the Pochhammer symbol (or the shifted factorial) defined by

(x)k =
{

1 for k = 0, x ∈ C\{0},
x(x+ 1)(x+ 2)...(x+ k − 1) for k ∈ N = {1, 2, 3, ...}and x ∈ C.

Let

ka(z) =
z

(1− z)a

where a is any real number. It is easy to verify that ka(z) = z +
∞∑
k=2

(a)k−1

(1)k−1
zk. Thus

ka ∗ f, denotes the Hadamard product of ka with f that is

(ka ∗ f)(z) = z +
∞∑
k=2

(a)k−1

(1)k−1
akz

k.

Let N denotes the class of functions which are analytic, convex, univalent in U , with
normalization h(0) = 1 and Re(h(z)) > 0 (z ∈ U) Al Shaqsi and Darus [1] defined
the following generalized derivative operator.

Definition 1 ([1]). For f ∈ A the operator κnλ is defined by κnλ : A→ A

κnλ f(z) = (1− λ)Rnf(z) + λz(Rnf(z))′, (z ∈ U), (2)

where n ∈ N0 = N ∪ {0}, λ ≥ 0 andRnf(z) denote for Ruscheweyh derivative
operator [11].
If f is given by (1), then we easily find from the equality (2) that

κnλ f(z) = z +
∞∑
k=2

(1 + λ(k − 1)) c(n, k)akzk, (z ∈ U),

where n ∈ N0 = {0, 1, 2...} , λ ≥ 0 and c(n, k) =
(
n+k−1
n

)
= (n+1)k−1

(1)k−1
.

Let φnλ (z) = z +
∞∑
k=2

(1 + λ(k − 1)) c(n, k)zk,where n ∈ N0, λ ≥ 0 and (z ∈ U), the

operator κnλ written as Hadamard product of φnλ (z) with f(z), that is

κnλ f(z) = φnλ (z) ∗ f(z) = (φnλ ∗ f)(z).
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Note that for λ=0, κn0 f(z) = Rnf(z) which Ruscheweyh derivative operator [11].
Now, let remind the well known Carlson-Shaffer operator L(a, c) [3] associated with
the incomplete beta function φ(a, c; z), defined by

L(a, c) : A→ A

L(a, c) := φ(a, c; z) ∗ f(z) (z ∈ U), where φ(a, c; z) = z +
∞∑
k=2

(a)k−1

(c)k−1
zk.

It is easily seen that κ0
0f(z) = L(0, 0)f(z) = f(z) and κ1

0f(z) = L(2, 1)f(z) = zf ′

and also if λ = 0, n = a − 1, we see κa−1
0 f(z) = L(a, 1)f(z), where a = 1, 2, 3, .. .

Therefore, we write the following equality which can be verified easily for our result.

(1− β)κnλf(z) + βz(κnλf(z))′ = β(1 + n)κn+1
λ f(z)− (β(1 + n)− 1)κnλf(z) (3)

By using the generalized derivative operator κnλ we define new subclasses of A:
For some β(0 ≤ β ≤ 1), some h ∈ N and for all z ∈ U.

Pnλ (h, β) =
{
f ∈ A :

z(κnλf(z))′ + βz2(κnλf(z))′′

(1− β)κnλf(z) + βz(κnλf(z))′
≺ h(z)

}
.

For some α(α ≥ 0), some h ∈ N and for all z ∈ U.

Tnλ (h, α) =
{
f ∈ A : (1− α)

κnλf(z)
z

+ α(κnλf(z))′ ≺ h(z)
}

and finally Rnλ(h, α) = {f ∈ A : (κnλf(z))′ + αz(κnλf(z))′′ ≺ h(z)} .
We note that the class P a−1

0 (h, 0) = Sa(h) was studied by Padmanabhan Par-
vatham in [8], P a−1

0 (h, 1) = ka(h) , T a−1
0 (h, 0) = Ra(h) andT a−1

0 (h, 1) = pa(h)
were studied by Padmanabhan and Manjini in [7] and the classes P a−1

0 (h, β) =
Pa(h, β), T a−1

0 (h, β) = Ta(h, β) andRa−1
0 (h, β) = Ra(h, β) were studied by Ozkan

and Altintas [6]. Also note that the class P 0
0 (1+(1−2α)z

1−z , β) was studied by Altintas
[2]. Obviously, for the special choices function h and variables α, β, λ, n we have the
following relationships:

P 0
0 (

1 + z

1− z
, 0) = S∗, P 0

0 (
1 + z

1− z
, 1) = K, P 1

0 (
1 + z

1− z
, 0) = K

and P 0
0 (1+(1−2α)z

1−z , 0) = S∗(α), P 0
0 (1+(1−2α)z

1−z , 1) = K(α) (0 ≤ α < 1).

2. The main inclusion relationships
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In proving our main results, we need the following lemmas.

Lemma 1 (Ruscheweyh and Sheil-Small [12,p.54]). If f ∈ K, g ∈ S∗, then for
each analytic function h,

(f ∗ hg) (U)
(f ∗ g) (U)

⊂ coh(U),

where coh(U) denotes the closed convex hull of h(U).

Lemma 2 (Ruscheweyh [10]). Let 0 < α ≤ β, if β ≥ 2 or α + β ≥ 3, then the
function

φ(α, β, z) = z +
∞∑
k=2

(α)k−1

(β)k−1
zk (z ∈ U)

belongs to the class K of convex functions.

Lemma 3 ([5]). Let h be analytic, univalent, convex in U , with h(0) = 1 and

Re(βh(z) + γ) > o (β, γ ∈ C; z ∈ U).

If p(z) is analytic in U , with p(0) = h(0), then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) ⇒ p(z) ≺ h(z).

Lemma 4 ([5]). Let h be analytic, univalent, convex in U , with h(0) = 1.
Also let p(z) be analytic in U , with p(0) = h(0). If p(z) + zp′(z)

γ ≺ h(z) then

p(z) ≺ q(z) ≺ h(z), where q(z) = γ
zγ

z∫
0

tγ−1h(t)dt (z ∈ U ; Re(γ) ≥ 0; γ 6= 0).

Lemma 5 ([4, p.248]). If ψ ∈ K and g ∈ S∗, and F is an analytic function with
ReF (z) > 0 for z ∈ U, then we have

Re
(ψ ∗ Fg) (z)
(ψ ∗ g) (z)

> 0 (z ∈ U).

Lemma 6 ([13]). If 0 < a ≤ c then Re(φ(a,c;z)
z ) > 1

2 for all z ∈ U.
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Theorem 1. f(z) ∈ Pnλ (h, β) if and only if g(z) = βzf ′(z) + (1− β) f(z) ∈
Pnλ (h, 0).

Proof. (⇒) Let f ∈ Pnλ (h, β), we want to show z(κn
λg(z))

′

κn
λg(z)

≺ h(z). Using the
well-known property of convolution z(f ∗ g)′(z) = (f ∗ zg′)(z) we obtain

z(κnλf(z))′ + βz2(κnλf(z))′′

(1− β)κnλf(z) + βz(κnλf(z))′
=

z(φnλ(z) ∗ f(z))′ + βz2(φnλ(z) ∗ f(z))′′

(1− β)
(
φnλ(z) ∗ f(z)

)
+ βz(φnλ(z) ∗ f(z))′

=

=
φnλ(z) ∗ z [f ′(z) + βzf ′′(z)]

φnλ(z) ∗ [(1− β)f(z) + βzf ′(z)]
=
φnλ(z) ∗ zg′(z)
φnλ(z) ∗ g(z)

≺ h(z).

Therefore g(z) ∈ Pnλ (h, 0).
(⇐) Obvious. Let g(z) ∈ Pnλ (h, 0), by using same property of convolution and
arguments, in the last proof, we obtain

z(κnλg(z))
′

κnλg(z)
=
φnλ(z) ∗ zg′(z)
φnλ(z) ∗ g(z)

=
z(κnλf(z))′ + βz2(κnλf(z))′′

(1− β)κnλf(z) + βz(κnλf(z))′
≺ h(z).

Therefore f(z) ∈ Pnλ (h, β) .

Remark 1. If β=1 in Theorem 1, then we deduce Theorem 3(i) of Padmanab-
han and Manjini [7].

Theorem 2. Let h ∈ N, 0 ≤ β ≤ 1, 0 ≤ n1 ≤ n2 and n1, n2 ∈ N0, if n2 ≥
1 or n1 + n2 ≥ 1, then Pn2

λ (h, β) ⊂ Pn1
λ (h, β).

Proof. We suppose that f ∈ Pn2
λ (h, β). Then by the definition of the class

Pn2
λ (h, β) we have

z(κn2
λ f(z))′ + βz2(κn2

λ f(z))′′

(1− β)κn2
λ f(z) + βz(κn2

λ f(z))′
= h(w(z)),

where h is convex univalent in U with Re(h(z)) > 0 (z ∈ U) , and |w(z)| < 1 in U
with w(0) = h(0)− 1. By using the fact c(n, k) = (n+1)k−1

(1)k−1
.

Setting kn1
λ f(z) = kn2

λ f(z) ∗ϕn1
n2

(z) where ϕn1
n2

(z) = z +
∞∑
k=2

(n1+1)k−1

(n2+1)k−1
zk we get

z(κn1
λ f(z))′ + βz2(κn1

λ f(z))′′

(1− β)κn1
λ f(z) + βz(κn1

λ f(z))′
=

z(κn2
λ f(z) ∗ ϕn1

n2
(z))′ + βz2(κn2

λ f(z) ∗ ϕn1
n2

(z))′′

(1− β)
(
κn2
λ f(z) ∗ ϕn1

n2(z)
)

+ βz(κn2
λ f(z) ∗ ϕn1

n2(z))′

=
ϕn1
n2

(z) ∗
[
z(κn2

λ f(z))′ + βz2(κn2
λ f(z))′′

]
ϕn1
n2(z) ∗

[
(1− β)

(
κn2
λ f(z)

)
+ βz(κn2

λ f(z))′
] =

ϕn1
n2

(z) ∗ h(w(z))p(z)
ϕn1
n2(z) ∗ p(z)

, (4)
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where p(z) = (1 − β)
(
κn2
λ f(z)

)
+ βz(κn2

λ f(z))′. It follows from Lemma 2 that
ϕn1
n2

(z) ∈ K and it follows from the Theorem 1 and from the definition of Pnλ (h, β)
that p(z) ∈ S∗. Therefor applying Lemma 1 we get{

ϕn1
n2

(z) ∗ h(w(z))p
}

(U)
{ϕn1

n2(z) ∗ p} (U)
⊂ coh(w(U)) ⊂ h(U).

Since h is convex univalent, thus (4) is subordinate to h in U and consequently
f(z) ∈ Pn1

λ (h, β). This completes the proof of the Theorem 2.

Remark 2. Özkan and Altintas in [6] obtained the result: for a ≥ 1, Pa+1(h, λ) ⊂
Pa(h, λ). If we take λ=0, n1 = a1 − 1 and n2 = a2 − 1 in Theorem 2 we obtain fol-
lowing result improving the above mentiond.

Corollary 1. Let 0 < a1 ≤ a2, if a2 ≥ 2 or a1 + a2 ≥ 3, then Pa2(h, λ) ⊂
Pa1(h, λ).

Theorem 3. For λ ≥ 0, n ∈ N0 and 0 ≤ β ≤ 1, then Pn+1
λ (h, β) ⊂ Pnλ (h, β).

Proof. We suppose that f ∈ Pn+1
λ (h, β). Then by the definition of the class

Pn+1
λ (h, β) we have

z(κn+1
λ f(z))′ + βz2(κn+1

λ f(z))′′

(1− β)κn+1
λ f(z) + βz(κn+1

λ f(z))′
= h(w(z)),

where h is convex univalent in U with Re(h(z)) > 0 (z ∈ U) , and |w(z)| < 1 in U
with w(0) = h(0)− 1. By using the fact c(n, k) = (n+1)k−1

(1)k−1
.

Setting κnλf(z) = κn+1
λ f(z) ∗ ϕn(z), where ϕn(z) = z +

∞∑
k=2

(n+1)k−1

(n+2)k−1
zk, we get

z(κnλf(z))′ + βz2(κnλf(z))′′

(1− β)κnλf(z) + βz(κnλf(z))′
=

z(κn+1
λ f(z) ∗ ϕn(z))′ + βz2(κn+1

λ f(z) ∗ ϕn(z))′′

(1− β)
(
κn+1
λ f(z) ∗ ϕn(z)

)
+ βz(κn+1

λ f(z) ∗ ϕn(z))′

=
ϕn(z) ∗

[
z(κn+1

λ f(z))′ + βz2(κn+1
λ f(z))′′

]
ϕn(z) ∗

[
(1− β)

(
κn+1
λ f(z)

)
+ βz(κn+1

λ f(z))′
] =

ϕn(z) ∗ h(w(z))p(z)
ϕn(z) ∗ p(z)

. (5)

Here p(z) = (1 − β)
(
κn+1
λ f(z)

)
+ βz(κn+1

λ f(z))′. It follows from Lemma 2 that
ϕn(z) ∈ K and it follows form the Theorem 1 and from the definition of Pnλ (h, β)
that p(z) ∈ S∗. Therefore applying Lemma 1 we get

{ϕn(z) ∗ h(w(z))p} (U)
{ϕn(z) ∗ p} (U)

⊂ coh(w(U)) ⊂ h(U).
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Since h is convex univalent, thus (5) is subordinate to h in U and consequently
f(z) ∈ Pnλ (h, β). This completes the proof of Theorem 3.
Theorem 4. Let h ∈ N, 0 ≤ β ≤ 1 and 0 ≤ λ1 ≤ λ2 then Pnλ2

(h, β) ⊂ Pnλ1
(h, β).

Proof. Let f ∈ Pnλ2
(h, β). Applying the definition of the class Pnλ2

(h, β). And
using the same arguments as in the proof of Theorem 2. We get

z
(
κnλ1

f(z)
)′ + βz2

(
κnλ1

f(z)
)′′

(1− β)κnλ1
f(z) + βz

(
κnλ1

f(z)
)′ =

z
(
κnλ2

f(z) ∗ ψλ1
λ2

(z)
)′

+ βz2
(
κnλ2

f(z) ∗ ψλ1
λ2

(z)
)′′

(1− β)(κnλ2
f(z) ∗ ψλ1

λ2
(z)) + βz

(
κnλ2

f(z) ∗ ψλ1
λ2

(z)
)′

=
ψλ1
λ2

(z) ∗ h(w(z))q(z)

ψλ1
λ2

(z) ∗ q(z)

where |w(z)| < 1 in U with w(0) = 0, q(z) = (1 − β)κnλ2
f(z) + βz

(
κnλ2

f(z)
)′ and

ψλ1
λ2

(z) = z +
∞∑
k=2

1+λ1(k−1)
1+λ2(k−1) z

k. It follows from the Theorem 1 and the definition

of Pnλ (h, β) that q(z) ∈ S∗. And by classical results in the class of convex, the
coefficients problem for convex: |an| ≤ 1 we find ψλ1

λ2
(z) ∈ K. Hence it follows from

Lemma 1 that {
ψλ1
λ2

(z) ∗ h(w(z))q
}

(U){
ψλ1
λ2

(z) ∗ q
}

(U)
⊂ coh(w(U)) ⊂ h(U)

because h is convex univalent, and consequently f ∈ Pnλ1
(h, β).

Theorem 5. If f(z) ∈ Pnλ (h, β) for n ∈ N0 then Fµ(f) ∈ Pnλ (h, β) where Fµ is
the integral operator defind by

Fµ(f) = Fµ(f)(z) :=
µ+ 1
zµ

z∫
0

tµ−1f(t)dt (µ ≥ 0). (6)

Proof. Let f(z) ∈ Pnλ (h, β) and

p(z) =
z(κnλFµ(f))′(z) + βz2(κnλFµ(f))′′(z)

(1− β)(κnλFµ(f))(z) + βz(κnλFµ(f))′(z)

from (6), we have z(Fµ(f))′(z) + µFµ(f)(z) = (µ+ 1)f(z) and so

(φnλ ∗ z(Fµ(f))
′
)(z) + µ (φnλ ∗ Fµ(f)) (z) = (µ+ 1) (φnλ ∗ f) (z).
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Using the fact z(φnλ ∗ Fµ(f))′(z) = (φnλ ∗ zF ′
µ(f))(z) we obtain

z(κnλFµ(f))′(z) + µ(κnλFµ(f))(z) = (µ+ 1)κnλf(z). (7)

Differentiating (7), we have

p(z) + µ = (µ+ 1)
[

(1− β)(κnλf(z)) + βz(κnλf(z))′

(1− β)(κnλFµ(f))(z) + βz(κnλFµ(f))′(z)

]
. (8)

Making use of the logarithmic differentiation on both sides of (8) and multiplying
the resulting equation by z, we have

p(z) +
zp′(z)
p(z) + µ

=
z(κnλf(z))′ + βz2(κnλf(z))′′

(1− β)(κnλf(z)) + βz(κnλf(z))′
. (9)

By applying Lemma 3 to (9), it follows that p ≺ h in U, that is Fµ(f) ∈ Pnλ (h, β).

Remark 3. Special cases of Theorems 3 and 5 with β = 0, λ = 0, n =
a− 1 and β = 1, λ = 0, n = a− 1 were given earlier in [8,7], respectively.

Remark 4. By putting β = 0, λ = 0, n = 0 and h(z) = 1+z
1−z (z ∈ U) in

Theorem 3, we obtain K ⊂ S∗.

Theorem 6. If f ∈ pnλ(h, β) then ψ = βf + (1− β)
z∫
0

f(t)
t dt ∈ pnλ(h, 1).

Proof. Let f ∈ Pnλ (h, β). Applying Theorem 1 at β=1 we get

f ∈ Pnλ (h, 1) ⇔ zf ′ ∈ Pnλ (h, 0) (10)

now zψ′ = βzf ′ + (1− β)f that is zψ′ ∈ Pnλ (h, 0), by (10) we see ψ ∈ Pnλ (h, 1).

Theorem 7. Let h ∈ N, α ≥ 0 and 0 ≤ n1 ≤ n2 if n2 ≥ 1 or n1 + n2 ≥ 1 then
Tn2
λ (h, α) ⊂ Tn1

λ (h, α).

Proof. Let f ∈ Tn2
λ (h, α). We obtain that

(1− α)
κn2
λ f(z)
z

+ α
(
κn2
λ f(z)

)′ ≺ h(z), (11)

where h ∈ N.
Setting, κn1

λ f(z) = κn2
λ f(z) ∗ ψn1

n2
(z), where ψn1

n2
(z) = z +

∞∑
k=2

c(n1,k)
c(n2,k)

zk. Applying

(11) and the properties of convolution we find that

(1− α)
κn1
λ f(z)
z

+ α
(
κn1
λ f(z)

)′ =
ψn1
n2

(z)
z

∗
[
(1− α)

κn2
λ f(z)
z

+ α
(
κn2
λ f(z)

)′]
. (12)
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Under the hypothesis 0 ≤ n1 ≤ n2, it follows from Lemma 6 that the function

z → ψ
n1
n2

(z)

z has its real part greater than or equal to 1
2 in U. From the Herglotz

Theorem we thus obtain ψ
n1
n2

(z)

z =
∫

|x|=1

dµ(x)
1−xz (z ∈ U), when µ(x) is a probability

measure on the unit circle |x| = 1, that is,
∫

|x|=1

dµ(x) = 1. It follows from (12) that

(1− α)
κn1
λ f(z)
z

+ α
(
κn1
λ f(z)

)′ =
∫

|x|=1

h(xz)dµ(x) ≺ h(z)

because h is convex univalent in U . This proves Theorem 7.

Remark 5. By putting λ = 0, n2 + 1 = a2, and n1 + 1 = a1 in the Theorem 7
we deduce the following result which improves Theorem 5 of [6].

Corollary 2. If 0 < a1 ≤ a2 then Ta2(h, α) ⊂ Ta1(h, α).

Theorem 8. For n ∈ N0 and λ ≥ 0 then Tn+1
λ (h, α) ⊂ Tnλ (h, α).

Proof. Let f ∈ Tn+1
λ (h, α) and p(z) = (1− α)κ

n
λf(z)
z + α (κnλf(z))′ .

Taking β=1 in (3), we obtain the following equality:

z (κnλf(z))′ = (n+ 1)κn+1
λ f(z)− nκnλf(z). (13)

Using (13) and the differentiation of (13), we have

p(z) +
zp

′
(z)

n+ 1
= (1− α)

κn+1
λ f(z)
z

+ α
(
κn+1
λ f(z)

)′ ≺ h(z). (14)

By applying Lemma 4 to (14), we can write p ≺ h(z) in U.Thus f ∈ Tnλ (h, α).

Theorem 9. If f ∈ Tnλ (h, α) then Fµ(f) ∈ Tnλ (h, α).

Proof. We assume that if f ∈ Tnλ (h, α) and p(z) = (1−α)(
κn

λFµ(f))(z)
z +α (κnλFµ(f))′ (z).

Differentiating (7), we have

p(z) +
zp′(z)
µ+ 1

= (1− α)
(κnλf(z))

z
+ α (κnλf(z))′

from Lemma 4, we write p(z) ≺ h(z) in U and hence Fµ(f) ∈ Tnλ (h, α).
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Theorem 10. f ∈ Rnλ(h, α) if and only if zf ′ ∈ Tnλ (h, α).

Proof. Using the equality z(φnλ(z) ∗ f)′ = (φnλ ∗ zf ′) (z) we see that.

(1− α)
κnλ(zf

′)(z)
z

+ α
(
κnλ(zf

′)
)′ (z) = (1− α)

(φnλ ∗ (zf ′)) (z)
z

+ α
(
φnλ ∗ (zf ′)

)′ (z)
= (1− α) (φnλ ∗ f)′ (z) + α

(
z (φnλ ∗ f)′ (z)

)′ = (κnλf(z))′ + αz (κnλf(z))′′ .

Theorem 11. Let h ∈ N, α > 0 and n1, n2 ∈ N0. If 0 6 n1 ≤ n2 then

Rn2
λ (h, α) ⊂ Rn1

λ (h, α).

Proof. Applying Theorem 10 we immediately find that

f ∈ Rn2
λ (h, α) ⇔ zf ′ ∈ Tn2

λ (h, α) ⇒ zf ′ ∈ Tn1
λ (h, α) ⇔ f ∈ Rn1

λ (h, α).

This completes the proof of Theorem 11.

Theorem 12. Rn+1
λ (h, α) ⊂ Rnλ(h, α). Proof. Let f ∈ Rn+1

λ (h, α) and p(z) =

(κnλf(z))′ + αz (κnλf(z))′′ .
Differentiating (13), we have

p(z) +
zp′(z)
α

=
(
κn+1
λ f(z)

)′ + αz
(
κn+1
λ f(z)

)′′
.

From Lemma 4, we have p ≺ h in U. Thus f ∈ Rnλ(h, α).

Theorem 13. If f ∈ Rnλ(h, α) then Fµ(f) ∈ Rnλ(h, α).

Proof. We assume that f ∈ Rnλ(h, α) and p(z) = (κnλFµ(f))′ + αz (κnλFµ(f))′′ .
Differentiating (7), we have

p(z) +
zp′(z)
µ+ 1

= (κnλf(z))′ + αz (κnλf(z))′′ ≺ h(z).

From Lemma 4, we write p ≺ h in U. Thus Fµ(f) ∈ Rnλ(h, α).

Theorem 14. Rnλ(h, α) ⊂ Tnλ (h, α).

Proof. Let f ∈ Rnλ(h, α) and p(z) = (1− α) κ
n
λf(z)
z + α (κnλf(z))′ .

Thus, we obtain

p(z) + zp′(z) = (κnλf(z))′ + αz (κnλf(z))′′ ≺ h(z).
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Hence, from Lemma 4, we have f ∈ Tnλ (h, α).

Theorem 15.
(i) If f ∈ Tnλ (h, α) then f ∈ Tnλ (h, 0).
(ii) For α > β > 0, Tnλ (h, α) ⊂ Tnλ (h, β).

Proof.
(i) Let f ∈ Tnλ (h, α) and p(z) = κn

λf(z)
z . Then, we find that

p(z) + αzp′(z) = (1− α)
κnλf(z)
z

+ α (κnλf(z))′ .

From Lemma 4, we have p ≺ h in U. Thus f(z) ∈ Tnλ (h, 0).
(ii) If β=0, then the statement reduces to (i). Hence we suppose that β 6= 0 and let
f ∈ Tnλ (h, α). Let z1 be arbitrary point in U . Then
(1− α) κ

n
λf(z1)
z1

+ α (κnλf(z1))
′ ∈ h(U). From (i), since κn

λf(z)
z ∈ h(U), we write the

following equality:

(1− β)
κnλf(z)
z

+ β (κnλf(z))′ =
(

1− β

α

)
κnλf(z)
z

+
β

α

[
(1− α)

κnλf(z)
z

+ α (κnλf(z))′
]
.

Since β/α < 1 and h(U) is convex,

(1− β)
κnλf(z)
z

+ β (κnλf(z))′ ∈ h(U).

Thus f ∈ Tnλ (h, β).

Theorem 16.
(i) If f ∈ Rnλ(h, α) then f ∈ Rnλ(h, 0).

(ii)For α > β > 0, Rnλ(h, α) ⊂ Rnλ(h, β).

Proof. (i) Let f ∈ Rnλ(h, α) and p(z) = (κnλf(z))′ then we have

p(z) + αzp′(z) = (κnλf(z))′ + αz (κnλf(z))′′ .

Hence from Lemma 4, we have p ≺ h in U. Thus f(z) ∈ Rnλ(h, 0).
(ii) If β=0, then the statement reduces to (i). Hence we suppose that β 6= 0 and let
f ∈ Rnλ(h, α). Let z1 be arbitrary point in U . Then

(κnλf(z1))
′ + αz1 (κnλf(z1))

′′ ∈ h(U).
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From (i) we write the following equality:

(κnλf(z))′ + βz (κnλf(z))′′ =
(

1− β

α

)
(κnλf(z))′ +

β

α

[
(κnλf(z))′ + αz (κnλf(z))′′

]
.

Since β/α < 1 and h(U) is convex,

(κnλf(z))′ + βz (κnλf(z))′′ (z) ∈ h(U).

Thus f ∈ Rnλ(h, β).

3. Convolution results and its applications

Theorem 17. Let h ∈ N, n ∈ N0 and 0 6 β 6 1. If g ∈ K and f ∈ Pnλ (h, β)
then f ∗ g ∈ Pnλ (h, β).

Proof. We begin by assuming f ∈ Pnλ (h, β) and g ∈ K. In the proof we use the
same idea as in the proof of Theorem 2. Let

z(κnλf(z))′ + βz2(κnλf(z))′′

(1− β)κnλf(z) + βz(κnλf(z))′
= h(w(z)),

and
p(z) = (1− β)κnλf(z) + βz(κnλf(z))′.

Using the following equalities:

z (φnλ ∗ f)′ (z) =
(
φnλ ∗ zf ′

)
(z) and z2 (φnλ ∗ f)′′ (z) =

(
φnλ ∗ z2f ′′

)
(z),

we write
z(κnλ (f ∗ g) (z))′ + βz2(κnλ (f ∗ g) (z))′′

(1− β)κnλ (f ∗ g) (z) + βz(κnλ (f ∗ g) (z))′
=

=
z(φnλ ∗ f ∗ g)′(z) + βz2(φnλ ∗ f ∗ g)′′(z)

(1− β)
(
φnλ ∗ f ∗ g

)
(z) + βz

(
φnλ ∗ f ∗ g

)′ (z) =

=
g ∗

[
z(κnλf(z))′ + βz2(κnλf(z))′′

]
g ∗

[
(1− β)κnλf(z) + βz(κnλf(z))′

] =
g ∗ h(w(z))p(z)

g ∗ p(z)
≺ h(z).

Consequently f ∗ g ∈ Pnλ (h, β).

Theorem 18. Let h ∈ N, n ∈ N0, α ≥ 0 and Re
(
g(z)
z

)
> 1/2. If g ∈ K and

f ∈ Tnλ (h, α) then f ∗ g ∈ Tnλ (h, α).
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Proof. By observing that

(1− α)
κnλ (f ∗ g) (z)

z
+ α(κnλ (f ∗ g) (z))′ =

g(z)
z

∗
[
(1− α)

κnλf(z)
z

+ α(κnλf(z))′
]

and by applying the same methods in the proof of Theorem 7 we get Theorem 18.

Theorem 19. Let h ∈ N, n ∈ N0, α ≥ 0 and Re
(
g(z)
z

)
> 1/2. If g ∈ K and

f ∈ Rnλ(h, α) then f ∗ g ∈ Rnλ(h, α).

Proof. If f ∈ Rnλ(h, α) then, from Theorem 10 we have zf ′ ∈ Tnλ (h, α) and using
Theorem 18, we obtain zf ′ ∗ g ∈ Tnλ (h, α). Therefore

zf ′(z) ∗ g(z) = z(f ∗ g)′(z) ∈ Tnλ (h, α).

By applying Theorem 10 again, we conclude that f ∗ g ∈ Rnλ(h, α) . The proof is
complete.

Acknowledgement: This work is fully supported by UKM-GUP-TMK-07-02-
107, Malaysia.

References

[1] K. Al Shaqsi and M. Darus, On univalent function with respect to k symmetric
points defined by a generalization Ruscheweyh derivative operators, Jour. Anal.
Appl., 7 (1), (2009), 53-61.
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