CERTAIN APPLICATION OF DIFFERENTIAL SUBORDINATION ASSOCIATED WITH GENERALIZED DERIVATIVE OPERATOR

Ma‘moun Harayzeh Al-Abbadi and Maslina Darus

Abstract.The purpose of the present paper is to introduce several new subclasses of analytic function defined in the unit disk $D=\{z \in \mathbb{C}:|z|<1\}$, using derivative operator for analytic function, introduced in [1]. We also investigate various inclusion properties of these subclasses. In addition we determine inclusion relationships between these new subclasses and other known classes.

2000 Mathematics Subject Classification: 30C45.
Key words: Analytic function; Hadamard product (or convolution); Univalent function; Convex function; Starlike function; Subordination; Derivative operator.

1. Introduction and Definitions

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad a_{k} \quad \text { is complex number } \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ on the complex plane \mathbb{C}. Let $S, S^{*}(\alpha), K(\alpha)(0 \leq \alpha<1)$ denote the subclasses of A consisting of functions that are univalent, starlike of order α and convex of order α in U, respectively. In particular, the classes $S^{*}(0)=S^{*}$ and $K(0)=K$ are the familiar classes of starlike and convex functions in U, respectively.

Let be given two functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$. Then the Hadamard product (or convolution) $f * g$ of two functions f, g is defined by

$$
f(z) * g(z)=(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}
$$

Next, we give simple knowledge in subordination. If f and g are analytic in U, then the function f is said to be subordinate to g, and can be written as

$$
f \prec g \quad \text { and } \quad f(z) \prec g(z) \quad(z \in U),
$$

if and only if there exists the Schwarz function w, analytic in U, with $w(0)=$ 0 and $|w(z)|<1$ such that $f(z)=g(w(z)) \quad(z \in U)$.
If g is univalent in U, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$. [9, p.36]. Now, $(x)_{k}$ denotes the Pochhammer symbol (or the shifted factorial) defined by

$$
(x)_{k}= \begin{cases}1 & \text { for } k=0, x \in \mathbb{C} \backslash\{0\}, \\ x(x+1)(x+2) \ldots(x+k-1) & \text { for } k \in \mathbb{N}=\{1,2,3, \ldots\} \text { and } x \in \mathbb{C} .\end{cases}
$$

Let

$$
k_{a}(z)=\frac{z}{(1-z)^{a}}
$$

where a is any real number. It is easy to verify that $k_{a}(z)=z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(1)_{k-1}} z^{k}$. Thus $k_{a} * f$, denotes the Hadamard product of k_{a} with f that is

$$
\left(k_{a} * f\right)(z)=z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(1)_{k-1}} a_{k} z^{k} .
$$

Let N denotes the class of functions which are analytic, convex, univalent in U, with normalization $h(0)=1$ and $\operatorname{Re}(h(z))>0 \quad(z \in U)$ Al_Shaqsi and Darus [1] defined the following generalized derivative operator.

Definition 1 ([1]). For $f \in A$ the operator κ_{λ}^{n} is defined by $\kappa_{\lambda}^{n}: A \rightarrow A$

$$
\begin{equation*}
\kappa_{\lambda}^{n} f(z)=(1-\lambda) R^{n} f(z)+\lambda z\left(R^{n} f(z)\right)^{\prime}, \quad(z \in U), \tag{2}
\end{equation*}
$$

where $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \lambda \geq 0$ and $R^{n} f(z)$ denote for Ruscheweyh derivative operator [11].
If f is given by (1), then we easily find from the equality (2) that

$$
\kappa_{\lambda}^{n} f(z)=z+\sum_{k=2}^{\infty}(1+\lambda(k-1)) c(n, k) a_{k} z^{k}, \quad(z \in U)
$$

where $n \in \mathbb{N}_{0}=\{0,1,2 \ldots\}, \lambda \geq 0$ and $c(n, k)=\binom{n+k-1}{n}=\frac{(n+1)_{k-1}}{(1)_{k-1}}$.
Let $\phi_{\lambda}^{n}(z)=z+\sum_{k=2}^{\infty}(1+\lambda(k-1)) c(n, k) z^{k}$, where $n \in \mathbb{N}_{0}, \lambda \geq 0$ and $(z \in U)$, the operator κ_{λ}^{n} written as Hadamard product of $\phi_{\lambda}^{n}(z)$ with $f(z)$, that is

$$
\kappa_{\lambda}^{n} f(z)=\phi_{\lambda}^{n}(z) * f(z)=\left(\phi_{\lambda}^{n} * f\right)(z) .
$$

Note that for $\lambda=0, \kappa_{0}^{n} f(z)=R^{n} f(z)$ which Ruscheweyh derivative operator [11]. Now, let remind the well known Carlson-Shaffer operator $L(a, c)$ [3] associated with the incomplete beta function $\phi(a, c ; z)$, defined by

$$
\begin{aligned}
& L(a, c): A \rightarrow A \\
& L(a, c):=\phi(a, c ; z) * f(z) \quad(z \in U), \text { where } \quad \phi(a, c ; z)=z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^{k} .
\end{aligned}
$$

It is easily seen that $\kappa_{0}^{0} f(z)=L(0,0) f(z)=f(z)$ and $\kappa_{0}^{1} f(z)=L(2,1) f(z)=z f^{\prime}$ and also if $\lambda=0, n=a-1$, we see $\kappa_{0}^{a-1} f(z)=L(a, 1) f(z)$, where $a=1,2,3, \ldots$. Therefore, we write the following equality which can be verified easily for our result.

$$
\begin{equation*}
(1-\beta) \kappa_{\lambda}^{n} f(z)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}=\beta(1+n) \kappa_{\lambda}^{n+1} f(z)-(\beta(1+n)-1) \kappa_{\lambda}^{n} f(z) \tag{3}
\end{equation*}
$$

By using the generalized derivative operator κ_{λ}^{n} we define new subclasses of A : For some $\beta(0 \leq \beta \leq 1)$, some $h \in N$ and for all $z \in U$.

$$
P_{\lambda}^{n}(h, \beta)=\left\{f \in A: \frac{z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda}^{n} f(z)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}} \prec h(z)\right\} .
$$

For some $\alpha(\alpha \geq 0)$, some $h \in N$ and for all $z \in U$.

$$
T_{\lambda}^{n}(h, \alpha)=\left\{f \in A:(1-\alpha) \frac{\kappa_{\lambda}^{n} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime} \prec h(z)\right\}
$$

and finally $R_{\lambda}^{n}(h, \alpha)=\left\{f \in A:\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\alpha z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime} \prec h(z)\right\}$.
We note that the class $P_{0}^{a-1}(h, 0)=S_{a}(h)$ was studied by Padmanabhan Parvatham in [8], $P_{0}^{a-1}(h, 1)=k_{a}(h), T_{0}^{a-1}(h, 0)=R_{a}(h)$ and $T_{0}^{a-1}(h, 1)=p_{a}(h)$ were studied by Padmanabhan and Manjini in [7] and the classes $P_{0}^{a-1}(h, \beta)=$ $P_{a}(h, \beta), T_{0}^{a-1}(h, \beta)=T_{a}(h, \beta)$ and $R_{0}^{a-1}(h, \beta)=R_{a}(h, \beta)$ were studied by Ozkan and Altintas [6]. Also note that the class $P_{0}^{0}\left(\frac{1+(1-2 \alpha) z}{1-z}, \beta\right)$ was studied by Altintas [2]. Obviously, for the special choices function h and variables $\alpha, \beta, \lambda, n$ we have the following relationships:

$$
P_{0}^{0}\left(\frac{1+z}{1-z}, 0\right)=S^{*}, \quad P_{0}^{0}\left(\frac{1+z}{1-z}, 1\right)=K, \quad P_{0}^{1}\left(\frac{1+z}{1-z}, 0\right)=K
$$

and $P_{0}^{0}\left(\frac{1+(1-2 \alpha) z}{1-z}, 0\right)=S^{*}(\alpha), \quad P_{0}^{0}\left(\frac{1+(1-2 \alpha) z}{1-z}, 1\right)=K(\alpha) \quad(0 \leq \alpha<1)$.

2. The main inclusion relationships

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

In proving our main results, we need the following lemmas.
Lemma 1 (Ruscheweyh and Sheil-Small [12,p.54]). If $f \in K, g \in S^{*}$, then for each analytic function h,

$$
\frac{(f * h g)(U)}{(f * g)(U)} \subset \overline{\operatorname{coh}}(U),
$$

where $\overline{\operatorname{co}} h(U)$ denotes the closed convex hull of $h(U)$.
Lemma 2 (Ruscheweyh [10]). Let $0<\alpha \leq \beta$, if $\beta \geq 2$ or $\alpha+\beta \geq 3$, then the function

$$
\phi(\alpha, \beta, z)=z+\sum_{k=2}^{\infty} \frac{(\alpha)_{k-1}}{(\beta)_{k-1}} z^{k} \quad(z \in U)
$$

belongs to the class K of convex functions.
Lemma 3 ([5]). Let h be analytic, univalent, convex in U, with $h(0)=1$ and

$$
\operatorname{Re}(\beta h(z)+\gamma)>o \quad(\beta, \gamma \in \mathbb{C} ; z \in U) .
$$

If $p(z)$ is analytic in U, with $p(0)=h(0)$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \Rightarrow p(z) \prec h(z) .
$$

Lemma 4 ([5]). Let h be analytic, univalent, convex in U, with $h(0)=1$. Also let $p(z)$ be analytic in U, with $p(0)=h(0)$. If $p(z)+\frac{z p^{\prime}(z)}{\gamma} \prec h(z)$ then $p(z) \prec q(z) \prec h(z)$, where $q(z)=\frac{\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} h(t) d t \quad(z \in U ; \operatorname{Re}(\gamma) \geq 0 ; \gamma \neq 0)$.

Lemma 5 ([4, p.248]). If $\psi \in K$ and $g \in S^{*}$, and F is an analytic function with $\operatorname{Re} F(z)>0$ for $z \in U$, then we have

$$
\operatorname{Re} \frac{(\psi * F g)(z)}{(\psi * g)(z)}>0 \quad(z \in U)
$$

Lemma 6 ([13]). If $0<a \leq c$ then $\operatorname{Re}\left(\frac{\phi(a, c ; z)}{z}\right)>\frac{1}{2}$ for all $z \in U$.

Theorem 1. $f(z) \in P_{\lambda}^{n}(h, \beta)$ if and only if $g(z)=\beta z f^{\prime}(z)+(1-\beta) f(z) \in$ $P_{\lambda}^{n}(h, 0)$.

Proof. (\Rightarrow) Let $f \in P_{\lambda}^{n}(h, \beta)$, we want to show $\frac{z\left(\kappa_{\lambda}^{n} g(z)\right)^{\prime}}{\kappa_{\lambda}^{n} g(z)} \prec h(z)$. Using the well-known property of convolution $z(f * g)^{\prime}(z)=\left(f * z g^{\prime}\right)(z)$ we obtain

$$
\begin{gathered}
\frac{z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda}^{n} f(z)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}}=\frac{z\left(\phi_{\lambda}^{n}(z) * f(z)\right)^{\prime}+\beta z^{2}\left(\phi_{\lambda}^{n}(z) * f(z)\right)^{\prime \prime}}{(1-\beta)\left(\phi_{\lambda}^{n}(z) * f(z)\right)+\beta z\left(\phi_{\lambda}^{n}(z) * f(z)\right)^{\prime}}= \\
=\frac{\phi_{\lambda}^{n}(z) * z\left[f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right]}{\phi_{\lambda}^{n}(z) *\left[(1-\beta) f(z)+\beta z f^{\prime}(z)\right]}=\frac{\phi_{\lambda}^{n}(z) * z g^{\prime}(z)}{\phi_{\lambda}^{n}(z) * g(z)} \prec h(z) .
\end{gathered}
$$

Therefore $g(z) \in P_{\lambda}^{n}(h, 0)$.
(\Leftarrow) Obvious. Let $g(z) \in P_{\lambda}^{n}(h, 0)$, by using same property of convolution and arguments, in the last proof, we obtain

$$
\frac{z\left(\kappa_{\lambda}^{n} g(z)\right)^{\prime}}{\kappa_{\lambda}^{n} g(z)}=\frac{\phi_{\lambda}^{n}(z) * z g^{\prime}(z)}{\phi_{\lambda}^{n}(z) * g(z)}=\frac{z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda}^{n} f(z)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}} \prec h(z) .
$$

Therefore $f(z) \in P_{\lambda}^{n}(h, \beta)$.
Remark 1. If $\beta=1$ in Theorem 1, then we deduce Theorem 3(i) of Padmanabhan and Manjini [7].

Theorem 2. Let $h \in N, 0 \leq \beta \leq 1,0 \leq n_{1} \leq n_{2}$ and $n_{1}, n_{2} \in \mathbb{N}_{0}$, if $n_{2} \geq$ 1 or $n_{1}+n_{2} \geq 1$, then $P_{\lambda}^{n_{2}}(h, \beta) \subset P_{\lambda}^{n_{1}}(h, \beta)$.

Proof. We suppose that $f \in P_{\lambda}^{n_{2}}(h, \beta)$. Then by the definition of the class $P_{\lambda}^{n_{2}}(h, \beta)$ we have

$$
\frac{z\left(\kappa_{\lambda}^{n_{2}} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n_{2}} f(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda}^{n_{2}} f(z)+\beta z\left(\kappa_{\lambda}^{n_{2}} f(z)\right)^{\prime}}=h(w(z)),
$$

where h is convex univalent in U with $\operatorname{Re}(h(z))>0 \quad(z \in U)$, and $|w(z)|<1$ in U with $w(0)=h(0)-1$. By using the fact $c(n, k)=\frac{(n+1)_{k-1}}{(1)_{k-1}}$.

$$
\begin{gather*}
\text { Setting } k_{\lambda}^{n_{1}} f(z)=k_{\lambda}^{n_{2}} f(z) * \varphi_{n_{2}}^{n_{1}}(z) \quad \text { where } \varphi_{n_{2}}^{n_{1}}(z)=z+\sum_{k=2}^{\infty} \frac{\left(n_{1}+1\right)_{k-1}}{\left(n_{2}+1\right)_{k-1}} z^{k} \text { we get } \\
\frac{z\left(\kappa_{\lambda}^{n_{1}} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n_{1}} f(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda}^{n_{1}} f(z)+\beta z\left(\kappa_{\lambda}^{n_{1}} f(z)\right)^{\prime}}=\frac{z\left(\kappa_{\lambda}^{n_{2}} f(z) * \varphi_{n_{2}}^{n_{1}}(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n_{2}} f(z) * \varphi_{n_{2}}^{n_{1}}(z)\right)^{\prime \prime}}{(1-\beta)\left(\kappa_{\lambda}^{n_{2}} f(z) * \varphi_{n_{2}}^{n_{1}}(z)\right)+\beta z\left(\kappa_{\lambda}^{n_{2}} f(z) * \varphi_{n_{2}}^{n_{1}}(z)\right)^{\prime}} \\
\quad=\frac{\varphi_{n_{2}}^{n_{1}}(z) *\left[z\left(\kappa_{\lambda}^{n_{2}} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n_{2}} f(z)\right)^{\prime \prime}\right]}{\varphi_{n_{2}}^{n_{1}}(z) *\left[(1-\beta)\left(\kappa_{\lambda}^{n_{2}} f(z)\right)+\beta z\left(\kappa_{\lambda}^{n_{2}} f(z)\right)^{\prime}\right]}=\frac{\varphi_{n_{2}}^{n_{1}}(z) * h(w(z)) p(z)}{\varphi_{n_{2}}^{n_{1}}(z) * p(z)}, \tag{4}
\end{gather*}
$$

where $p(z)=(1-\beta)\left(\kappa_{\lambda}^{n_{2}} f(z)\right)+\beta z\left(\kappa_{\lambda}^{n_{2}} f(z)\right)^{\prime}$. It follows from Lemma 2 that $\varphi_{n_{2}}^{n_{1}}(z) \in K$ and it follows from the Theorem 1 and from the definition of $P_{\lambda}^{n}(h, \beta)$ that $p(z) \in S^{*}$. Therefor applying Lemma 1 we get

$$
\frac{\left\{\varphi_{n_{2}}^{n_{1}}(z) * h(w(z)) p\right\}(U)}{\left\{\varphi_{n_{2}}^{n_{1}}(z) * p\right\}(U)} \subset \overline{c o} h(w(U)) \subset h(U) .
$$

Since h is convex univalent, thus (4) is subordinate to h in U and consequently $f(z) \in P_{\lambda}^{n_{1}}(h, \beta)$. This completes the proof of the Theorem 2 .

Remark 2. Özkan and Altintas in [6] obtained the result: for $a \geq 1, P_{a+1}(h, \lambda) \subset$ $P_{a}(h, \lambda)$. If we take $\lambda=0, n_{1}=a_{1}-1$ and $n_{2}=a_{2}-1$ in Theorem 2 we obtain following result improving the above mentiond.

Corollary 1. Let $0<a_{1} \leq a_{2}$, if $a_{2} \geq 2$ or $a_{1}+a_{2} \geq 3$, then $P_{a_{2}}(h, \lambda) \subset$ $P_{a_{1}}(h, \lambda)$.

Theorem 3. For $\lambda \geq 0, n \in \mathbb{N}_{0}$ and $0 \leq \beta \leq 1$, then $P_{\lambda}^{n+1}(h, \beta) \subset P_{\lambda}^{n}(h, \beta)$.
Proof. We suppose that $f \in P_{\lambda}^{n+1}(h, \beta)$. Then by the definition of the class $P_{\lambda}^{n+1}(h, \beta)$ we have

$$
\frac{z\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda}^{n+1} f(z)+\beta z\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime}}=h(w(z)),
$$

where h is convex univalent in U with $\operatorname{Re}(h(z))>0 \quad(z \in U)$, and $|w(z)|<1$ in U with $w(0)=h(0)-1$. By using the fact $c(n, k)=\frac{(n+1)_{k-1}}{(1)_{k-1}}$.

Setting $\kappa_{\lambda}^{n} f(z)=\kappa_{\lambda}^{n+1} f(z) * \varphi_{n}(z)$, where $\varphi_{n}(z)=z+\sum_{k=2}^{\infty} \frac{(n+1)_{k-1}}{(n+2)_{k-1}} z^{k}$, we get

$$
\begin{align*}
& \frac{z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda}^{n} f(z)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}}=\frac{z\left(\kappa_{\lambda}^{n+1} f(z) * \varphi_{n}(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n+1} f(z) * \varphi_{n}(z)\right)^{\prime \prime}}{(1-\beta)\left(\kappa_{\lambda}^{n+1} f(z) * \varphi_{n}(z)\right)+\beta z\left(\kappa_{\lambda}^{n+1} f(z) * \varphi_{n}(z)\right)^{\prime}} \\
& \quad=\frac{\varphi_{n}(z) *\left[z\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime \prime}\right]}{\varphi_{n}(z) *\left[(1-\beta)\left(\kappa_{\lambda}^{n+1} f(z)\right)+\beta z\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime}\right]}=\frac{\varphi_{n}(z) * h(w(z)) p(z)}{\varphi_{n}(z) * p(z)} \tag{5}
\end{align*}
$$

Here $p(z)=(1-\beta)\left(\kappa_{\lambda}^{n+1} f(z)\right)+\beta z\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime}$. It follows from Lemma 2 that $\varphi_{n}(z) \in K$ and it follows form the Theorem 1 and from the definition of $P_{\lambda}^{n}(h, \beta)$ that $p(z) \in S^{*}$. Therefore applying Lemma 1 we get

$$
\frac{\left\{\varphi_{n}(z) * h(w(z)) p\right\}(U)}{\left\{\varphi_{n}(z) * p\right\}(U)} \subset \overline{c o} h(w(U)) \subset h(U) .
$$

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

Since h is convex univalent, thus (5) is subordinate to h in U and consequently $f(z) \in P_{\lambda}^{n}(h, \beta)$. This completes the proof of Theorem 3.
Theorem 4. Let $h \in N, 0 \leq \beta \leq 1$ and $0 \leq \lambda_{1} \leq \lambda_{2}$ then $P_{\lambda_{2}}^{n}(h, \beta) \subset P_{\lambda_{1}}^{n}(h, \beta)$.
Proof. Let $f \in P_{\lambda_{2}}^{n}(h, \beta)$. Applying the definition of the class $P_{\lambda_{2}}^{n}(h, \beta)$. And using the same arguments as in the proof of Theorem 2. We get

$$
\begin{aligned}
\frac{z\left(\kappa_{\lambda_{1}}^{n} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda_{1}}^{n} f(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda_{1}}^{n} f(z)+\beta z\left(\kappa_{\lambda_{1}}^{n} f(z)\right)^{\prime}} & =\frac{z\left(\kappa_{\lambda_{2}}^{n} f(z) * \psi_{\lambda_{2}}^{\lambda_{1}}(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda_{2}}^{n} f(z) * \psi_{\lambda_{2}}^{\lambda_{1}}(z)\right)^{\prime \prime}}{(1-\beta)\left(\kappa_{\lambda_{2}}^{n} f(z) * \psi_{\lambda_{2}}^{\lambda_{1}}(z)\right)+\beta z\left(\kappa_{\lambda_{2}}^{n} f(z) * \psi_{\lambda_{2}}^{\lambda_{1}}(z)\right)^{\prime}} \\
& =\frac{\psi_{\lambda_{2}}^{\lambda_{1}}(z) * h(w(z)) q(z)}{\psi_{\lambda_{2}}^{\lambda_{1}}(z) * q(z)}
\end{aligned}
$$

where $|w(z)|<1$ in U with $w(0)=0, q(z)=(1-\beta) \kappa_{\lambda_{2}}^{n} f(z)+\beta z\left(\kappa_{\lambda_{2}}^{n} f(z)\right)^{\prime}$ and $\psi_{\lambda_{2}}^{\lambda_{1}}(z)=z+\sum_{k=2}^{\infty} \frac{1+\lambda_{1}(k-1)}{1+\lambda_{2}(k-1)} z^{k}$. It follows from the Theorem 1 and the definition of $P_{\lambda}^{n}(h, \beta)$ that $q(z) \in S^{*}$. And by classical results in the class of convex, the coefficients problem for convex: $\left|a_{n}\right| \leq 1$ we find $\psi_{\lambda_{2}}^{\lambda_{1}}(z) \in K$. Hence it follows from Lemma 1 that

$$
\frac{\left\{\psi_{\lambda_{2}}^{\lambda_{1}}(z) * h(w(z)) q\right\}(U)}{\left\{\psi_{\lambda_{2}}^{\lambda_{1}}(z) * q\right\}(U)} \subset \overline{c o} h(w(U)) \subset h(U)
$$

because h is convex univalent, and consequently $f \in P_{\lambda_{1}}^{n}(h, \beta)$.
Theorem 5. If $f(z) \in P_{\lambda}^{n}(h, \beta)$ for $n \in \mathbb{N}_{0}$ then $F_{\mu}(f) \in P_{\lambda}^{n}(h, \beta)$ where F_{μ} is the integral operator defind by

$$
\begin{equation*}
F_{\mu}(f)=F_{\mu}(f)(z):=\frac{\mu+1}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t \quad(\mu \geq 0) \tag{6}
\end{equation*}
$$

Proof. Let $f(z) \in P_{\lambda}^{n}(h, \beta)$ and

$$
p(z)=\frac{z\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)^{\prime}(z)+\beta z^{2}\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)^{\prime \prime}(z)}{(1-\beta)\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)(z)+\beta z\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)^{\prime}(z)}
$$

from (6), we have $z\left(F_{\mu}(f)\right)^{\prime}(z)+\mu F_{\mu}(f)(z)=(\mu+1) f(z)$ and so

$$
\left(\phi_{\lambda}^{n} * z\left(F_{\mu}(f)\right)^{\prime}\right)(z)+\mu\left(\phi_{\lambda}^{n} * F_{\mu}(f)\right)(z)=(\mu+1)\left(\phi_{\lambda}^{n} * f\right)(z) .
$$

Using the fact $z\left(\phi_{\lambda}^{n} * F_{\mu}(f)\right)^{\prime}(z)=\left(\phi_{\lambda}^{n} * z F_{\mu}^{\prime}(f)\right)(z)$ we obtain

$$
\begin{equation*}
z\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)^{\prime}(z)+\mu\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)(z)=(\mu+1) \kappa_{\lambda}^{n} f(z) . \tag{7}
\end{equation*}
$$

Differentiating (7), we have

$$
\begin{equation*}
p(z)+\mu=(\mu+1)\left[\frac{(1-\beta)\left(\kappa_{\lambda}^{n} f(z)\right)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}}{(1-\beta)\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)(z)+\beta z\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)^{\prime}(z)}\right] . \tag{8}
\end{equation*}
$$

Making use of the logarithmic differentiation on both sides of (8) and multiplying the resulting equation by z, we have

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{p(z)+\mu}=\frac{z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}}{(1-\beta)\left(\kappa_{\lambda}^{n} f(z)\right)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}} . \tag{9}
\end{equation*}
$$

By applying Lemma 3 to (9), it follows that $p \prec h$ in U, that is $F_{\mu}(f) \in P_{\lambda}^{n}(h, \beta)$.
Remark 3. Special cases of Theorems 3 and 5 with $\beta=0, \lambda=0, n=$ $a-1$ and $\beta=1, \lambda=0, n=a-1$ were given earlier in [8,7], respectively.

Remark 4. By putting $\beta=0, \lambda=0, n=0$ and $h(z)=\frac{1+z}{1-z}(z \in U)$ in Theorem 3, we obtain $K \subset S^{*}$.

Theorem 6. If $f \in p_{\lambda}^{n}(h, \beta)$ then $\psi=\beta f+(1-\beta) \int_{0}^{z} \frac{f(t)}{t} d t \in p_{\lambda}^{n}(h, 1)$.
Proof. Let $f \in P_{\lambda}^{n}(h, \beta)$. Applying Theorem 1 at $\beta=1$ we get

$$
\begin{equation*}
f \in P_{\lambda}^{n}(h, 1) \Leftrightarrow z f^{\prime} \in P_{\lambda}^{n}(h, 0) \tag{10}
\end{equation*}
$$

now $z \psi^{\prime}=\beta z f^{\prime}+(1-\beta) f$ that is $z \psi^{\prime} \in P_{\lambda}^{n}(h, 0)$, by (10) we see $\psi \in P_{\lambda}^{n}(h, 1)$.
Theorem 7. Let $h \in N, \alpha \geq 0$ and $0 \leq n_{1} \leq n_{2}$ if $n_{2} \geq 1$ or $n_{1}+n_{2} \geq 1$ then $T_{\lambda}^{n_{2}}(h, \alpha) \subset T_{\lambda}^{n_{1}}(h, \alpha)$.

Proof. Let $f \in T_{\lambda}^{n_{2}}(h, \alpha)$. We obtain that

$$
\begin{equation*}
(1-\alpha) \frac{\kappa_{\lambda}^{n_{2}} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n_{2}} f(z)\right)^{\prime} \prec h(z), \tag{11}
\end{equation*}
$$

where $h \in N$.
Setting, $\kappa_{\lambda}^{n_{1}} f(z)=\kappa_{\lambda}^{n_{2}} f(z) * \psi_{n_{2}}^{n_{1}}(z)$, where $\psi_{n_{2}}^{n_{1}}(z)=z+\sum_{k=2}^{\infty} \frac{c\left(n_{1}, k\right)}{c\left(n_{2}, k\right)} z^{k}$. Applying
(11) and the properties of convolution we find that

$$
\begin{equation*}
(1-\alpha) \frac{\kappa_{\lambda}^{n_{1}} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n_{1}} f(z)\right)^{\prime}=\frac{\psi_{n_{2}}^{n_{1}}(z)}{z} *\left[(1-\alpha) \frac{\kappa_{\lambda}^{n_{2}} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n_{2}} f(z)\right)^{\prime}\right] . \tag{12}
\end{equation*}
$$

Under the hypothesis $0 \leq n_{1} \leq n_{2}$, it follows from Lemma 6 that the function $z \rightarrow \frac{\psi_{n_{2}}^{n_{1}}(z)}{z}$ has its real part greater than or equal to $\frac{1}{2}$ in U. From the Herglotz Theorem we thus obtain $\frac{\psi_{n_{2}}^{n_{1}}(z)}{z}=\int_{|x|=1} \frac{d \mu(x)}{1-x z} \quad(z \in U)$, when $\mu(x)$ is a probability measure on the unit circle $|x|=1$, that is, $\int_{|x|=1} d \mu(x)=1$. It follows from (12) that

$$
(1-\alpha) \frac{\kappa_{\lambda}^{n_{1}} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n_{1}} f(z)\right)^{\prime}=\int_{|x|=1} h(x z) d \mu(x) \prec h(z)
$$

because h is convex univalent in U. This proves Theorem 7 .
Remark 5. By putting $\lambda=0, n_{2}+1=a_{2}$, and $n_{1}+1=a_{1}$ in the Theorem 7 we deduce the following result which improves Theorem 5 of [6].

Corollary 2. If $0<a_{1} \leq a_{2}$ then $T_{a_{2}}(h, \alpha) \subset T_{a_{1}}(h, \alpha)$.
Theorem 8. For $n \in \mathbb{N}_{0}$ and $\lambda \geq 0$ then $T_{\lambda}^{n+1}(h, \alpha) \subset T_{\lambda}^{n}(h, \alpha)$.
Proof. Let $f \in T_{\lambda}^{n+1}(h, \alpha)$ and $p(z)=(1-\alpha) \frac{\kappa_{\lambda}^{n} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}$. Taking $\beta=1$ in (3), we obtain the following equality:

$$
\begin{equation*}
z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}=(n+1) \kappa_{\lambda}^{n+1} f(z)-n \kappa_{\lambda}^{n} f(z) . \tag{13}
\end{equation*}
$$

Using (13) and the differentiation of (13), we have

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{n+1}=(1-\alpha) \frac{\kappa_{\lambda}^{n+1} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime} \prec h(z) . \tag{14}
\end{equation*}
$$

By applying Lemma 4 to (14), we can write $p \prec h(z)$ in U. Thus $f \in T_{\lambda}^{n}(h, \alpha)$.
Theorem 9. If $f \in T_{\lambda}^{n}(h, \alpha)$ then $F_{\mu}(f) \in T_{\lambda}^{n}(h, \alpha)$.
Proof. We assume that if $f \in T_{\lambda}^{n}(h, \alpha)$ and $p(z)=(1-\alpha) \frac{\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)(z)}{z}+\alpha\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)^{\prime}(z)$. Differentiating (7), we have

$$
p(z)+\frac{z p^{\prime}(z)}{\mu+1}=(1-\alpha) \frac{\left(\kappa_{\lambda}^{n} f(z)\right)}{z}+\alpha\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}
$$

from Lemma 4 , we write $p(z) \prec h(z)$ in U and hence $F_{\mu}(f) \in T_{\lambda}^{n}(h, \alpha)$.

Theorem 10. $f \in R_{\lambda}^{n}(h, \alpha)$ if and only if $z f^{\prime} \in T_{\lambda}^{n}(h, \alpha)$.
Proof. Using the equality $z\left(\phi_{\lambda}^{n}(z) * f\right)^{\prime}=\left(\phi_{\lambda}^{n} * z f^{\prime}\right)(z)$ we see that.

$$
\begin{gathered}
(1-\alpha) \frac{\kappa_{\lambda}^{n}\left(z f^{\prime}\right)(z)}{z}+\alpha\left(\kappa_{\lambda}^{n}\left(z f^{\prime}\right)\right)^{\prime}(z)=(1-\alpha) \frac{\left(\phi_{\lambda}^{n} *\left(z f^{\prime}\right)\right)(z)}{z}+\alpha\left(\phi_{\lambda}^{n} *\left(z f^{\prime}\right)\right)^{\prime}(z) \\
=(1-\alpha)\left(\phi_{\lambda}^{n} * f\right)^{\prime}(z)+\alpha\left(z\left(\phi_{\lambda}^{n} * f\right)^{\prime}(z)\right)^{\prime}=\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\alpha z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime} .
\end{gathered}
$$

Theorem 11. Let $h \in N, \alpha \geqslant 0$ and $n_{1}, n_{2} \in \mathbb{N}_{0}$. If $0 \leqslant n_{1} \leq n_{2}$ then

$$
R_{\lambda}^{n_{2}}(h, \alpha) \subset R_{\lambda}^{n_{1}}(h, \alpha) .
$$

Proof. Applying Theorem 10 we immediately find that

$$
f \in R_{\lambda}^{n_{2}}(h, \alpha) \Leftrightarrow z f^{\prime} \in T_{\lambda}^{n_{2}}(h, \alpha) \Rightarrow z f^{\prime} \in T_{\lambda}^{n_{1}}(h, \alpha) \Leftrightarrow f \in R_{\lambda}^{n_{1}}(h, \alpha) .
$$

This completes the proof of Theorem 11.
Theorem 12. $R_{\lambda}^{n+1}(h, \alpha) \subset R_{\lambda}^{n}(h, \alpha)$. Proof. Let $f \in R_{\lambda}^{n+1}(h, \alpha)$ and $p(z)=$ $\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\alpha z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}$.
Differentiating (13), we have

$$
p(z)+\frac{z p^{\prime}(z)}{\alpha}=\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime}+\alpha z\left(\kappa_{\lambda}^{n+1} f(z)\right)^{\prime \prime} .
$$

From Lemma 4, we have $p \prec h$ in U. Thus $f \in R_{\lambda}^{n}(h, \alpha)$.
Theorem 13. If $f \in R_{\lambda}^{n}(h, \alpha)$ then $F_{\mu}(f) \in R_{\lambda}^{n}(h, \alpha)$.
Proof. We assume that $f \in R_{\lambda}^{n}(h, \alpha)$ and $p(z)=\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)^{\prime}+\alpha z\left(\kappa_{\lambda}^{n} F_{\mu}(f)\right)^{\prime \prime}$. Differentiating (7), we have

$$
p(z)+\frac{z p^{\prime}(z)}{\mu+1}=\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\alpha z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime} \prec h(z) .
$$

From Lemma 4, we write $p \prec h$ in U. Thus $F_{\mu}(f) \in R_{\lambda}^{n}(h, \alpha)$.
Theorem 14. $R_{\lambda}^{n}(h, \alpha) \subset T_{\lambda}^{n}(h, \alpha)$.
Proof. Let $f \in R_{\lambda}^{n}(h, \alpha)$ and $p(z)=(1-\alpha) \frac{\kappa_{\lambda}^{n} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}$.
Thus, we obtain

$$
p(z)+z p^{\prime}(z)=\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\alpha z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime} \prec h(z) .
$$

Hence, from Lemma 4, we have $f \in T_{\lambda}^{n}(h, \alpha)$.

Theorem 15.

(i) If $f \in T_{\lambda}^{n}(h, \alpha)$ then $f \in T_{\lambda}^{n}(h, 0)$.
(ii) For $\alpha>\beta \geqslant 0, T_{\lambda}^{n}(h, \alpha) \subset T_{\lambda}^{n}(h, \beta)$.

Proof.
(i) Let $f \in T_{\lambda}^{n}(h, \alpha)$ and $p(z)=\frac{\kappa_{\lambda}^{n} f(z)}{z}$. Then, we find that

$$
p(z)+\alpha z p^{\prime}(z)=(1-\alpha) \frac{\kappa_{\lambda}^{n} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}
$$

From Lemma 4, we have $p \prec h$ in U. Thus $f(z) \in T_{\lambda}^{n}(h, 0)$.
(ii) If $\beta=0$, then the statement reduces to (i). Hence we suppose that $\beta \neq 0$ and let $f \in T_{\lambda}^{n}(h, \alpha)$. Let z_{1} be arbitrary point in U. Then
$(1-\alpha) \frac{\kappa_{\lambda}^{n} f\left(z_{1}\right)}{z_{1}}+\alpha\left(\kappa_{\lambda}^{n} f\left(z_{1}\right)\right)^{\prime} \in h(U)$. From (i), since $\frac{\kappa_{\lambda}^{n} f(z)}{z} \in h(U)$, we write the following equality:
$(1-\beta) \frac{\kappa_{\lambda}^{n} f(z)}{z}+\beta\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}=\left(1-\frac{\beta}{\alpha}\right) \frac{\kappa_{\lambda}^{n} f(z)}{z}+\frac{\beta}{\alpha}\left[(1-\alpha) \frac{\kappa_{\lambda}^{n} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}\right]$.
Since $\beta / \alpha<1$ and $h(U)$ is convex,

$$
(1-\beta) \frac{\kappa_{\lambda}^{n} f(z)}{z}+\beta\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime} \in h(U) .
$$

Thus $f \in T_{\lambda}^{n}(h, \beta)$.

Theorem 16.

(i) If $f \in R_{\lambda}^{n}(h, \alpha)$ then $f \in R_{\lambda}^{n}(h, 0)$.
(ii) For $\alpha>\beta \geqslant 0, R_{\lambda}^{n}(h, \alpha) \subset R_{\lambda}^{n}(h, \beta)$.

Proof. (i) Let $f \in R_{\lambda}^{n}(h, \alpha)$ and $p(z)=\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}$ then we have

$$
p(z)+\alpha z p^{\prime}(z)=\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\alpha z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}
$$

Hence from Lemma 4, we have $p \prec h$ in U. Thus $f(z) \in R_{\lambda}^{n}(h, 0)$.
(ii) If $\beta=0$, then the statement reduces to (i). Hence we suppose that $\beta \neq 0$ and let $f \in R_{\lambda}^{n}(h, \alpha)$. Let z_{1} be arbitrary point in U. Then

$$
\left(\kappa_{\lambda}^{n} f\left(z_{1}\right)\right)^{\prime}+\alpha z_{1}\left(\kappa_{\lambda}^{n} f\left(z_{1}\right)\right)^{\prime \prime} \in h(U) .
$$

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

From (i) we write the following equality:

$$
\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}=\left(1-\frac{\beta}{\alpha}\right)\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\frac{\beta}{\alpha}\left[\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\alpha z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}\right] .
$$

Since $\beta / \alpha<1$ and $h(U)$ is convex,

$$
\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}(z) \in h(U) .
$$

Thus $f \in R_{\lambda}^{n}(h, \beta)$.

3. Convolution results and its applications

Theorem 17. Let $h \in N, n \in \mathbb{N}_{0}$ and $0 \leqslant \beta \leqslant 1$. If $g \in K$ and $f \in P_{\lambda}^{n}(h, \beta)$ then $f * g \in P_{\lambda}^{n}(h, \beta)$.

Proof. We begin by assuming $f \in P_{\lambda}^{n}(h, \beta)$ and $g \in K$. In the proof we use the same idea as in the proof of Theorem 2. Let

$$
\frac{z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda}^{n} f(z)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}}=h(w(z))
$$

and

$$
p(z)=(1-\beta) \kappa_{\lambda}^{n} f(z)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime} .
$$

Using the following equalities:

$$
z\left(\phi_{\lambda}^{n} * f\right)^{\prime}(z)=\left(\phi_{\lambda}^{n} * z f^{\prime}\right)(z) \text { and } z^{2}\left(\phi_{\lambda}^{n} * f\right)^{\prime \prime}(z)=\left(\phi_{\lambda}^{n} * z^{2} f^{\prime \prime}\right)(z)
$$

we write

$$
\begin{gathered}
\frac{z\left(\kappa_{\lambda}^{n}(f * g)(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n}(f * g)(z)\right)^{\prime \prime}}{(1-\beta) \kappa_{\lambda}^{n}(f * g)(z)+\beta z\left(\kappa_{\lambda}^{n}(f * g)(z)\right)^{\prime}}= \\
=\frac{z\left(\phi_{\lambda}^{n} * f * g\right)^{\prime}(z)+\beta z^{2}\left(\phi_{\lambda}^{n} * f * g\right)^{\prime \prime}(z)}{(1-\beta)\left(\phi_{\lambda}^{n} * f * g\right)(z)+\beta z\left(\phi_{\lambda}^{n} * f * g\right)^{\prime}(z)}= \\
=\frac{g *\left[z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}+\beta z^{2}\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime \prime}\right]}{g *\left[(1-\beta) \kappa_{\lambda}^{n} f(z)+\beta z\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}\right]}=\frac{g * h(w(z)) p(z)}{g * p(z)} \prec h(z) .
\end{gathered}
$$

Consequently $f * g \in P_{\lambda}^{n}(h, \beta)$.
Theorem 18. Let $h \in N, n \in \mathbb{N}_{0}, \alpha \geq 0$ and $\operatorname{Re}\left(\frac{g(z)}{z}\right)>1 / 2$. If $g \in K$ and $f \in T_{\lambda}^{n}(h, \alpha)$ then $f * g \in T_{\lambda}^{n}(h, \alpha)$.

Proof. By observing that
$(1-\alpha) \frac{\kappa_{\lambda}^{n}(f * g)(z)}{z}+\alpha\left(\kappa_{\lambda}^{n}(f * g)(z)\right)^{\prime}=\frac{g(z)}{z} *\left[(1-\alpha) \frac{\kappa_{\lambda}^{n} f(z)}{z}+\alpha\left(\kappa_{\lambda}^{n} f(z)\right)^{\prime}\right]$
and by applying the same methods in the proof of Theorem 7 we get Theorem 18 .
Theorem 19. Let $h \in N, n \in \mathbb{N}_{0}, \alpha \geq 0$ and $\operatorname{Re}\left(\frac{g(z)}{z}\right)>1 / 2$. If $g \in K$ and $f \in R_{\lambda}^{n}(h, \alpha)$ then $f * g \in R_{\lambda}^{n}(h, \alpha)$.

Proof. If $f \in R_{\lambda}^{n}(h, \alpha)$ then, from Theorem 10 we have $z f^{\prime} \in T_{\lambda}^{n}(h, \alpha)$ and using Theorem 18, we obtain $z f^{\prime} * g \in T_{\lambda}^{n}(h, \alpha)$. Therefore

$$
z f^{\prime}(z) * g(z)=z(f * g)^{\prime}(z) \in T_{\lambda}^{n}(h, \alpha) .
$$

By applying Theorem 10 again, we conclude that $f * g \in R_{\lambda}^{n}(h, \alpha)$. The proof is complete.

Acknowledgement: This work is fully supported by UKM-GUP-TMK-07-02107, Malaysia.

References

[1] K. Al_Shaqsi and M. Darus, On univalent function with respect to $k_{\text {_symmetric }}$ points defined by a generalization Ruscheweyh derivative operators, Jour. Anal. Appl., 7 (1), (2009), 53-61.
[2] O. Altintas, Ö. Özkan and H.M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl., 47, (2004), 1667-1672.
[3] B.C. Carlson and D.B.Shaffer, Starlike and prestarlike hypergeometric function, SIAM J, Math. Anal., 15, (1984), 737-745.
[4] P.L. Duren, Univalent functions, in: A Series of comprehensive studies in mathematics. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[5] S.S. Miller and P.T.Mocanu, Differential subordinations: Theory and Applications, in: Series on monographs and textbooks in pure and applied mathematics, 225, Marcel Dekker, New York, 2000.
[6] Ö. Özkan and O. Altintas, Applications of differential subordination, Appl. Math. Lett., 19 (2006), 728-734.
[7] K.S. Padmanabhan and R. Manjini, Certain applications of differential subordination, Publ. Inst. Math., (N.S.), Tome 39 (53), (1986), 107-118.
M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...
[8] K.S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc., 32, (1985), 321-330.
[9] CH. Pommerenke, Univalent function, Vanderhoeck and ruprecht, göttingen, 1975.
[10] St. Ruscheweyh, Convolutions in geometric function theory, Les Presses de I‘Univ.de Montreal, 1982.
[11] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., Vol. 49, 1975, pp. 109-115.
[12] St.Ruscheweyh and T.Sheil-small, Hadamard product of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv., 48 (1973), 119-135.
[13] L.T. Spelina, On certain applications of the Hadamard product, Appl. Math. Comput., 199 (2008), 653-662.

Ma‘moun Harayzeh Al-Abbadi, Maslina Darus
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia.
e-mail: mamoun_nn@yahoo.com, maslina@ukm.my

