ON THE RELATION BETWEEN ORDERED SETS AND LORENTZ-MINKOWSKI DISTANCES IN REAL INNER PRODUCT SPACES

Oğuzhan Demirel, Emine Soytürk Seyrantepe

Abstract. Let X be a real inner product space of arbitrary finite or infinite dimension ≥ 2. In [Adv. Geom. 2003, suppl., S1-S12], Benz proved the following statement for $x, y \in X$ with $x<y$: The Lorentz-Minkowski distance between x and y is zero (i.e., $l(x, y)=0$) if and only if $[x, y]$ is ordered. In [Appl. Sci. 10 (2008), 6672], Demirel and Soytürk presented necessary and sufficient conditions for LorentzMinkowski distances $l(x, y)>0, l(x, y)<0$ and $l(x, y)=0$ in n-dimensional real inner product spaces by the means of ordered sets and it's an orthonormal basis.

In this paper, we shall present necessary and sufficient conditions for LorentzMinkowski distances with the help of ordered sets in an arbitrary dimensional real inner product spaces. Furthermore, we prove that all the linear Lorentz transformations of X are continuous.

2000 Mathematics Subject Classification: 14P99, 46B20, 51F99, 51K99.
Keywords: Real inner product space, Lorentz-Minkowski distance, Lorentz transformation.

1. Introduction

Let X be a real inner product space of arbitrary finite or infinite dimension ≥ 2, i.e., a real vector space furnished with an inner product

$$
g: X \times X \longrightarrow \mathbb{R}, \quad g(x, y)=x y
$$

satisfying $x y=y x, x(y+z)=x y+x z, \alpha(x y)=(\alpha x) y, x^{2}>0($ for all $x \neq 0$ in $X)$ for all $x, y, z \in X, \alpha \in \mathbb{R}$. For a fixed $t \in X$ satisfying $t^{2}=1$, define

$$
t^{\perp}:=\{x \in X: t x=0\} .
$$

Then, clearly $t^{\perp} \oplus \mathbb{R} t=X$. For any $x \in X$, there are uniquely determined elements $\bar{x}=x-x_{0} t \in t^{\perp}$ and $x_{0}=t x \in \mathbb{R}$ with

$$
x=\bar{x}+x_{0} t
$$

Definition 1. The Lorentz-Minkowski distance of $x, y \in X$ defined by the expression

$$
l(x, y)=(\bar{x}-\bar{y})^{2}-\left(x_{0}-y_{0}\right)^{2}
$$

Definition 2. If the mapping $\varphi: X \rightarrow X$ preserving the Lorentz-Minkowski distance for each $x, y \in X$, then φ is called Lorentz transformation.

Under all translations, Lorentz-Minkowski distances remain invariant and it might be noticed that the theory does not seriously depend on the chosen t, for more details we refer readers to [1].

Let p be an element of t^{\perp} with $p^{2}<1$, and let $k \neq-1$ be a real number satisfying

$$
k^{2}\left(1-p^{2}\right)=1
$$

Define

$$
A_{p}(x):=x_{0} p+(\bar{x} p) t
$$

for all $x \in X$. Let E denote the identity mapping of X and define

$$
B_{p, k}(x):=E+k A_{p}+\frac{k^{2}}{k+1} A_{p}^{2}
$$

Since A_{p} is a linear mapping, $B_{p, k}$ is also linear. $B_{p, k}$ is called a Lorentz boost a proper one for $k \geq 1$, an improper one for $k \leq-1$. For the characterization of Lorentz boost, we refer readers to [3].

Theorem 1 (W. Benz [1]).All Lorentz transformations λ of X are exactly given by

$$
\lambda(x)=\left(B_{p, k} w\right)(x)+d
$$

with a boost $B_{p, k}$, an orthogonal and linear mapping w from X into X satisfying $w(t)=t$, and with an element d of X.

Notice that a Lorentz transformation λ of X need not be linear.
Theorem 2 (W. Benz [1]). Let $B_{p, k}$ and $B_{q, K}$ be Lorentz boosts of X. Then $B_{p, k} \circ B_{q, K}$ must be a bijective Lorentz transformation of X fixing 0. Moreover,

$$
B_{p, k} \circ B_{q, K}=B_{r, m} \circ w
$$

O. Demirel, E. Soytürk Seyrantepe - On the relation between ordered sets and...
where

$$
m=\frac{1+p q}{\sqrt{1-p^{2}} \sqrt{1-q^{2}}}
$$

and

$$
p * q:=r=\frac{p+q}{1+p q}+\frac{k}{k+1} \frac{(p q) p-p^{2} q}{1+p q}
$$

2. Boundedness of Linear Lorentz transformations

Definition 2. Let X and Y be normed linear spaces and let $T: X \longrightarrow Y$ be a linear transformation. T will be called a bounded linear transformation if there exist a real number $K \geq 0$ such that

$$
\|T(x)\| \leq K\|x\|
$$

holds for all $x \in X$.

If we take $\|T\|=\inf \{K\}$ in the above definition, we immediately obtain that

$$
\|T(x)\| \leq\|T\|\|x\|
$$

The norm of the linear transformation T defined by the expression

$$
\|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \in X-\{0\}\right\} .
$$

There are numbers of alternate expressions for $\|T\|$ in the classical setting as follows:

$$
\begin{aligned}
& \|T\|=\sup \{\|T(x)\|:\|x\| \leq 1\} \\
& \|T\|=\sup \{\|T(x)\|:\|x\|=1\} \\
& \|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: 0<\|x\| \leq 1\right\} \\
& \|T\|=\inf \{K:\|T(x)\| \leq K\|x\| \text { for all } x \in X\}
\end{aligned}
$$

The last statement is always valid, but the other statements is not if the underlying field is not equal to real or complex numbers field, see [6]. The following two theorems are well known and fundamental in functional analysis.

Theorem 3. Let E and F be normed linear spaces and let $T: E \longrightarrow F$ be a linear transformation. The followings are equivalent:
(i) T is continuous at 0 ,
(ii) T is continuous,
(iii) There exists $c \geq 0$ such that $\|T x\| \leq c\|x\|$ for all $x \in E$,
(iv) $\sup \{\|T x\|: x \in E,\|x\| \leq 1\}<\infty$.

Theorem 4. Let $C(X, X)$ denote the all continuous linear transformations space. For all $T, G \in C(X, X)$ the followings hold:
(i) $T \circ G \in C(X, X)$,
(ii) $\|T \circ G\| \leq\|T\|\|G\|$.

Theorem 5. All Lorentz boosts of X are bounded.
Proof. Let $B_{p, k}$ be a Lorentz boost of X. Clearly E is bounded and $\|E\|=1$. For all $p \in t^{\perp}$ with $p^{2}<1, A_{p}$ is bounded. In fact,

$$
\begin{aligned}
\left\|A_{p}(x)\right\|^{2} & =\left(x_{0} p+(\bar{x} p) t\right)^{2} \\
& =x_{0}^{2} p^{2}+(\bar{x} p)^{2} \\
& =x_{0}^{2} p^{2}+|\bar{x} p|^{2} \\
& \leq x_{0}^{2} p^{2}+\bar{x}^{2} p^{2} \\
& =\left(x_{0}^{2}+\bar{x}^{2}\right)\|p\|^{2}
\end{aligned}
$$

and we get $\left\|A_{p}(x)\right\| \leq\|p\|\|x\|$, i.e., A_{p} is a bounded transformation of X. Conversely,

$$
\begin{aligned}
\|p\|^{2} & =p^{2} \\
& =\left\|p^{2} t\right\| \\
& =\sqrt{\left(A_{p}(p)\right)^{2}} \\
& =\left\|A_{p}(p)\right\| \\
& \leq\left\|A_{p}\right\|\|p\|
\end{aligned}
$$

and this implies $\left\|A_{p}\right\|=\|p\|$. Clearly, A_{p}^{2} is a bounded transformation of X and we get

$$
\left\|A_{p}^{2}(x)\right\| \leq\|p\|^{2}\|x\|
$$

Conversely,

$$
\begin{aligned}
p^{2}\|p\| & =\left\|A_{p}^{2}(p)\right\| \\
& \leq\left\|A_{p}^{2}\right\|\|p\|
\end{aligned}
$$

and then obtain

$$
\left\|A_{p}^{2}\right\|=\|p\|^{2}
$$

Finally, for $k \geq 1$, we get

$$
\begin{aligned}
\left\|B_{p, k}\right\| & =\sup \left\{\frac{\left\|B_{p, k}(x)\right\|}{\|x\|}: 0<\|x\| \leq 1\right\} \\
& \leq 1+k\|p\|+\frac{k^{2}}{k+1}\|p\|^{2} \\
& =k(\|p\|+1)
\end{aligned}
$$

A simple calculation shows that $\left\|B_{p, k}\right\| \leq 2+|k|(\|p\|+1)$ holds for $k \leq-1$. Obviously all the Lorentz boosts are bounded.

Corollary 1. All the linear Lorentz transformations are continuous.
3. On the relation between ordered sets and Lorentz-Minkowski

Distances in real inner product spaces
Let X be a real inner product space of arbitrary finite or infinite dimension ≥ 2 and take $x, y \in X$. Define a relation on X by

$$
x \leq y \Leftrightarrow l(x, y) \leq 0 \text { and } x_{0} \leq y_{0}
$$

Observe that an element of X that need not be comparable to another element of X, for example neither $e \leq 0$ nor $0 \leq e$ if we take e from t^{\perp}. For the properties of " \leq ", we refer readers to [2]. For the two elements of $x, y \in X$ satisfying $x<y$ $(x \leq y, x \neq y)$ and define

$$
[x, y]=\{z \in X: x \leq z \leq y\}
$$

$[x, y]$ is called ordered if and only if,

$$
u \leq v \text { or } v \leq u
$$

is true for all $u, v \in[x, y]$.
W. Benz proved the following result:

Theorem 6 (W. Benz [2]). Let $x, y \in X$ with $x<y$, then $l(x, y)=0$ if and only if $[x, y]$ is ordered.

In this section, we present necessary and sufficient conditions for Lorentz-Minkowski distances by the means of ordered sets in a real inner product space of arbitrary finite or infinite dimension ≥ 2.

Theorem 7. Let X be a real inner product space of dimension ≥ 2 and x, y be elements of X with $x \neq y$ and $x_{0} \leq y_{0}$. Then the followings are equivalent:
(i) $l(x, y)>0$,
(ii) There exists at least one $s \in X-\{x, y\}$ such that $[x, s],[y, s]$ are ordered while $[x, y]$ is not ordered.

Proof. By the terminology of " $[x, y]$ is not ordered", we mean that $x \leq y$ and $[x, y]=\phi$ or $x \not \leq y$. Since all Lorentz-Minkowski distances remains invariant under translations, see [1], instead of considering x and y, we may prove the theorem with respect to 0 and $y-x$.
$(i) \Rightarrow(i i)$. Let us put

$$
z:=y-x \text { and } u:=\bar{z}+\|\bar{z}\| t
$$

Obviously, $\|\bar{y}-\bar{x}\|>y_{0}-x_{0}$, i.e., $\|\bar{z}\|>\left|z_{0}\right|$ and $l(0, u)=0$. Since $u_{0}=\|\bar{z}\|>0$ we get $[0, u]$ is ordered. In addition to this, $[z, u]$ is not ordered since $l(z, u)=$ $-\left(\left(y_{0}-x_{0}\right)-\|\bar{y}-\bar{x}\|\right)^{2}<0$. Now define

$$
w:=\frac{1}{2\|\bar{z}\|}\left(z_{0}+\|\bar{z}\|\right) u
$$

It is easy to see that $l(0, w)=0$ and $w_{0}=\frac{1}{2}\left(z_{0}+\|\bar{z}\|\right)>0$, and thus, we get $[0, w]$ is ordered. Now, we have

$$
l(z, w)=\left(1-\frac{1}{2\|\bar{z}\|}\left(z_{0}+\|\bar{z}\|\right)\right)^{2}\|\bar{z}\|^{2}-\left(z_{0}-\frac{1}{2}\left(z_{0}+\|\bar{z}\|\right)\right)^{2}=0
$$

and

$$
z_{0} \leq \frac{z_{0}+\|\bar{z}\|}{2}=w_{0}
$$

Therefore, we immediately obtain that $[z, w]$ is ordered.
$(i i) \Rightarrow(i)$. Assume that $[x, s],[y, s]$ are ordered while $[x, y]$ is not ordered. In this way, we get

$$
\begin{aligned}
l(x, y) & =l(-x,-y) \\
& =l(s-x, s-y) \\
& =2\left((-(\bar{s}-\bar{x})(\bar{s}-\bar{y}))+\left(s_{0}-x_{0}\right)\left(s_{0}-y_{0}\right)\right) \\
& >0
\end{aligned}
$$

Notice that

$$
\begin{aligned}
(\bar{s}-\bar{x})(\bar{s}-\bar{y}) & \leq|(\bar{s}-\bar{x})(\bar{s}-\bar{y})| \\
& \leq\|\bar{s}-\bar{x}\|\|\bar{s}-\bar{y}\| \\
& =\left(s_{0}-x_{0}\right)\left(s_{0}-y_{0}\right),
\end{aligned}
$$

by Cauchy-Schwarz inequality, i.e., we get $\left(s_{0}-x_{0}\right)\left(s_{0}-y_{0}\right)-(\bar{s}-\bar{x})(\bar{s}-\bar{y}) \geq 0$.
The following theorem can be easily proved when using $-y,-x$ instead of x, y in previous theorem.

Theorem 8. Let X be a real inner product space of dimension ≥ 2 and x, y be elements of X with $x \neq y$ and $x_{0} \leq y_{0}$. Then followings are equivalent:
(i) $l(x, y)>0$,
(ii) There exists at least one $k \in X-\{x, y\}$ such that $[k, x],[k, y]$ are ordered while $[x, y]$ is not ordered.

Theorem 9. Let X be a real inner product space of dimension ≥ 2 and x, y be elements of X with $x \neq y$ and $x_{0} \leq y_{0}$. Then followings are equivalent:
(i) $l(x, y)=0$,
(ii) There exists at least $m, s \in X-\{x, y\}$ such that the $[m, s]$ is ordered and $x, y \in[m, s]$.

Proof. $(i) \Rightarrow(i i)$. Let us set

$$
s:=\eta(y-x)+x
$$

for a real number $\eta>1$. Obviously, we get $l(x, s)=0$ and $0<y_{0}-x_{0}<\eta\left(y_{0}-x_{0}\right)$, i.e., $x_{0}<\eta\left(y_{0}-x_{0}\right)+x_{0}=s_{0}$, i.e., $[x, s]$ is ordered. Likewise, $l(y, s)=0$ and $y_{0}-x_{0}<\eta\left(y_{0}-x_{0}\right)$, i.e., $y_{0}<\eta\left(y_{0}-x_{0}\right)+x_{0}=s_{0}$, i.e., $[y, s]$ is ordered.
Now, define

$$
m:=\lambda(y-x)+x
$$

for a real number $\lambda<0$. It is easy to see that $l(m, x)=l(m, y)=0$ and $m_{0}=$ $\lambda\left(y_{0}-x_{0}\right)+x_{0}$ since $\lambda\left(y_{0}-x_{0}\right)<0$, i.e., $[m, x],[m, y]$ are ordered sets. Finally, $[m, s]$ is ordered.
$(i i) \Rightarrow(i)$. Demirel and Soytürk, in [5], proved this result for finite dimensional real inner product spaces and it follows verbatimly same as in the proof of them.

Theorem 10. Let X be a real inner product space of dimension ≥ 2 and x, y be elements of X with $x \neq y$ and $x_{0} \leq y_{0}$. Then followings are equivalent.
(i) $l(x, y)<0$,
(ii) There exists at least $s \in X$ such that $[x, s],[s, y]$ are ordered but $[x, y]$ is not ordered.

Proof. $(i) \Rightarrow(i i)$. Let us set

$$
z:=y-x \text { and } u:=\bar{z}+\|\bar{z}\| t
$$

Clearly, $[0, u]$ is ordered since $l(0, u)=0$ and $0 \leq\|\bar{z}\|=u_{0}$, but $[z, u]$ is not ordered since $l(z, u)=-\left(z_{0}-\|\bar{z}\|\right)^{2}<0$. Put

$$
w:=\frac{1}{2\|\bar{z}\|}\left(z_{0}+\|\bar{z}\|\right) u
$$

and this yields $l(0, w)=0$ and $w_{0}=\frac{1}{2}\left(z_{0}+\|\bar{z}\|\right)>0$, i.e., $[0, w]$ is ordered. Finally, we get $l(z, w)=0, w_{0}=\frac{1}{2}\left(z_{0}+\|\bar{z}\|\right)<z_{0}$ and this implies $[w, z]$ is ordered. $(i i) \Rightarrow(i)$. Using the Cauchy-Schwarz inequality,

$$
\begin{aligned}
-(\bar{s}-\bar{x})(\bar{s}-\bar{y}) & \leq|(\bar{s}-\bar{x})(\bar{s}-\bar{y})| \\
& \leq\|\bar{s}-\bar{x}\|\|\bar{s}-\bar{y}\| \\
& =\left(s_{0}-x_{0}\right)\left(s_{0}-y_{0}\right)
\end{aligned}
$$

we get

$$
-\left(s_{0}-x_{0}\right)\left(y_{0}-s_{0}\right)-(\bar{s}-\bar{x})(\bar{s}-\bar{y})<0
$$

i.e.,

$$
\left(s_{0}-x_{0}\right)\left(s_{0}-y_{0}\right)-(\bar{s}-\bar{x})(\bar{s}-\bar{y})<0
$$

and this inequality yields

$$
\begin{aligned}
l(x, y) & =l(s-x, s-y) \\
& =2\left(-(\bar{s}-\bar{x})(\bar{s}-\bar{y})+\left(s_{0}-x_{0}\right)\left(s_{0}-y_{0}\right)\right) \\
& <0
\end{aligned}
$$

References

[1] Benz, W., Lorentz-Minkowski distances in Hilbert spaces, Geom. Dedicata 81, 2000, 219-230.
[2] Benz, W., On Lorentz-Minkowski geometry in real inner-product spaces, Advances in Geometry, 2003 (Special Issue), S1-S12.
[3] Benz, W., Schwaiger, J., A characterization of Lorentz boosts, Aequation*es Math. 72, 2006, 288-298.
[4] Benz, W., Classical geometries in modern contexts, Birkhäauser, Basel, 2005.
[5] Demirel, O. and Soytürk, E., On the ordered sets in n-dimensional real inner product spaces, Applied Sciences, Vol. 10 , 2008, 66-72.
O. Demirel, E. Soytürk Seyrantepe - On the relation between ordered sets and...
[6] Narici, L., Beckenstein, E. and Bachman, G., Functional analysis and valuation theory, Pure and Applied Mathematics Series, Vol.5, 1971.

Oğuzhan DEMİREL
Department of Mathematics
Afyon Kocatepe University
Faculty of Science and Arts, ANS Campus
03200 Afyonkarahisar Turkey
email:odemirel@aku.edu.tr
Emine SOYTÜRK SEYRANTEPE
Department of Mathematics
Afyon Kocatepe University
Faculty of Science and Arts, ANS Campus 03200 Afyonkarahisar Turkey
email:soyturk@aku.edu.tr

