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ON THE RELATION BETWEEN ORDERED SETS AND
LORENTZ-MINKOWSKI DISTANCES IN REAL INNER PRODUCT

SPACES

Oğuzhan Demirel, Emine Soytürk Seyrantepe

Abstract. Let X be a real inner product space of arbitrary finite or infinite
dimension ≥ 2. In [Adv. Geom. 2003, suppl., S1–S12], Benz proved the following
statement for x, y ∈ X with x < y: The Lorentz-Minkowski distance between x and
y is zero (i.e., l(x, y) = 0) if and only if [x, y] is ordered. In [Appl. Sci. 10 (2008), 66–
72], Demirel and Soytürk presented necessary and sufficient conditions for Lorentz-
Minkowski distances l(x, y) > 0, l(x, y) < 0 and l(x, y) = 0 in n-dimensional real
inner product spaces by the means of ordered sets and it’s an orthonormal basis.

In this paper, we shall present necessary and sufficient conditions for Lorentz-
Minkowski distances with the help of ordered sets in an arbitrary dimensional real
inner product spaces. Furthermore, we prove that all the linear Lorentz transforma-
tions of X are continuous.
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1. Introduction

Let X be a real inner product space of arbitrary finite or infinite dimension ≥ 2,
i.e., a real vector space furnished with an inner product

g : X ×X −→ R, g(x, y) = xy

satisfying xy = yx, x(y + z) = xy + xz, α(xy) = (αx)y, x2 > 0 (for all x 6= 0 in X)
for all x, y, z ∈ X, α ∈ R. For a fixed t ∈ X satisfying t2 = 1, define

t⊥ := {x ∈ X : tx = 0}.
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Then, clearly t⊥ ⊕ Rt = X. For any x ∈ X, there are uniquely determined
elements x = x− x0t ∈ t⊥ and x0 = tx ∈ R with

x = x + x0t.

Definition 1. The Lorentz-Minkowski distance of x, y ∈ X defined by the
expression

l(x, y) = (x− y)2 − (x0 − y0)2.

Definition 2. If the mapping ϕ : X → X preserving the Lorentz-Minkowski
distance for each x, y ∈ X, then ϕ is called Lorentz transformation.

Under all translations, Lorentz-Minkowski distances remain invariant and it
might be noticed that the theory does not seriously depend on the chosen t, for
more details we refer readers to [1].

Let p be an element of t⊥ with p2 < 1, and let k 6= −1 be a real number satisfying

k2(1− p2) = 1.

Define
Ap(x) := x0p + (xp)t.

for all x ∈ X. Let E denote the identity mapping of X and define

Bp,k(x) := E + kAp +
k2

k + 1
A2

p.

Since Ap is a linear mapping, Bp,k is also linear. Bp,k is called a Lorentz boost a
proper one for k ≥ 1, an improper one for k ≤ −1. For the characterization of
Lorentz boost, we refer readers to [3].

Theorem 1 (W. Benz [1]).All Lorentz transformations λ of X are exactly
given by

λ(x) = (Bp,kw)(x) + d

with a boost Bp,k, an orthogonal and linear mapping w from X into X satisfying
w(t) = t, and with an element d of X.

Notice that a Lorentz transformation λ of X need not be linear.

Theorem 2 (W. Benz [1]).Let Bp,k and Bq,K be Lorentz boosts of X. Then
Bp,k ◦Bq,K must be a bijective Lorentz transformation of X fixing 0. Moreover,

Bp,k ◦Bq,K = Br,m ◦ w,
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where
m =

1 + pq√
1− p2

√
1− q2

and

p ∗ q := r =
p + q

1 + pq
+

k

k + 1
(pq)p− p2q

1 + pq
.

2. Boundedness of linear Lorentz transformations

Definition 2. Let X and Y be normed linear spaces and let T : X −→ Y be
a linear transformation. T will be called a bounded linear transformation if there
exist a real number K ≥ 0 such that

‖T (x)‖ ≤ K‖x‖

holds for all x ∈ X.

If we take ‖T‖ = inf{K} in the above definition, we immediately obtain that

‖T (x)‖ ≤ ‖T‖‖x‖.

The norm of the linear transformation T defined by the expression

‖T‖ = sup
{
‖T (x)‖
‖x‖

: x ∈ X − {0}
}

.

There are numbers of alternate expressions for ‖T‖ in the classical setting as follows:

‖T‖ =sup {‖T (x)‖ : ‖x‖ ≤ 1}
‖T‖ =sup {‖T (x)‖ : ‖x‖ = 1}

‖T‖ =sup
{
‖T (x)‖
‖x‖

: 0 < ‖x‖ ≤ 1
}

‖T‖ = inf {K : ‖T (x)‖ ≤ K‖x‖ for all x ∈ X}

The last statement is always valid, but the other statements is not if the under-
lying field is not equal to real or complex numbers field, see [6]. The following two
theorems are well known and fundamental in functional analysis.

Theorem 3.Let E and F be normed linear spaces and let T : E −→ F be a
linear transformation. The followings are equivalent:
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(i) T is continuous at 0,

(ii) T is continuous,

(iii) There exists c ≥ 0 such that ‖Tx‖ ≤ c‖x‖ for all x ∈ E,

(iv) sup{‖Tx‖ : x ∈ E, ‖x‖ ≤ 1} < ∞.

Theorem 4.Let C(X, X) denote the all continuous linear transformations space.
For all T,G ∈ C(X, X) the followings hold:

(i) T ◦G ∈ C(X, X),

(ii) ‖T ◦G‖ ≤ ‖T‖‖G‖.

Theorem 5.All Lorentz boosts of X are bounded.

Proof. Let Bp,k be a Lorentz boost of X. Clearly E is bounded and ‖E‖ = 1.
For all p ∈ t⊥ with p2 < 1 , Ap is bounded. In fact,

‖Ap(x)‖2 =(x0p + (xp)t)2

=x2
0p

2 + (xp)2

=x2
0p

2 + |xp|2

≤x2
0p

2 + x2p2

=(x2
0 + x2)‖p‖2

and we get ‖Ap(x)‖ ≤ ‖p‖‖x‖, i.e., Ap is a bounded transformation of X. Conversely,

‖p‖2 =p2

=‖p2t‖

=
√

(Ap(p))2

=‖Ap(p)‖
≤‖Ap‖‖p‖,

and this implies ‖Ap‖ = ‖p‖. Clearly, A2
p is a bounded transformation of X and we

get
‖A2

p(x)‖ ≤ ‖p‖2‖x‖.

Conversely,
p2‖p‖ =‖A2

p(p)‖
≤‖A2

p‖‖p‖,
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and then obtain
‖A2

p‖ = ‖p‖2.
Finally, for k ≥ 1, we get

‖Bp,k‖ =sup
{
‖Bp,k(x)‖
‖x‖

: 0 < ‖x‖ ≤ 1
}

≤1 + k‖p‖+
k2

k + 1
‖p‖2

=k(‖p‖+ 1).

A simple calculation shows that ‖Bp,k‖ ≤ 2+|k|(‖p‖+1) holds for k ≤ −1. Obviously
all the Lorentz boosts are bounded.

Corollary 1.All the linear Lorentz transformations are continuous.

3. On the relation between ordered sets and Lorentz-Minkowski
Distances in real inner product spaces

Let X be a real inner product space of arbitrary finite or infinite dimension ≥ 2
and take x, y ∈ X. Define a relation on X by

x ≤ y ⇔ l(x, y) ≤ 0 and x0 ≤ y0

Observe that an element of X that need not be comparable to another element of
X, for example neither e ≤ 0 nor 0 ≤ e if we take e from t⊥. For the properties
of “≤”, we refer readers to [2]. For the two elements of x, y ∈ X satisfying x < y
(x ≤ y, x 6= y) and define

[x, y] = {z ∈ X : x ≤ z ≤ y}.

[x, y] is called ordered if and only if,

u ≤ v or v ≤ u

is true for all u, v ∈ [x, y].
W. Benz proved the following result:

Theorem 6 (W. Benz [2]).Let x, y ∈ X with x < y, then l(x, y) = 0 if and
only if [x, y] is ordered.

In this section, we present necessary and sufficient conditions for Lorentz-Minkowski
distances by the means of ordered sets in a real inner product space of arbitrary finite
or infinite dimension ≥ 2.

Theorem 7.Let X be a real inner product space of dimension ≥ 2 and x, y be
elements of X with x 6= y and x0 ≤ y0. Then the followings are equivalent:
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(i) l(x, y) > 0,

(ii) There exists at least one s ∈ X−{x, y} such that [x, s], [y, s] are ordered while
[x, y] is not ordered.

Proof. By the terminology of “[x, y] is not ordered”, we mean that x ≤ y and
[x, y] = φ or x 6≤ y. Since all Lorentz-Minkowski distances remains invariant under
translations, see [1], instead of considering x and y, we may prove the theorem with
respect to 0 and y − x.
(i) ⇒ (ii) . Let us put

z := y − x and u := z + ‖z‖t.

Obviously, ‖y − x‖ > y0 − x0, i.e., ‖z‖ > |z0| and l(0, u) = 0. Since u0 = ‖z‖ > 0
we get [0, u] is ordered. In addition to this, [z, u] is not ordered since l(z, u) =
−((y0 − x0)− ‖y − x‖)2 < 0. Now define

w :=
1

2‖z‖
(z0 + ‖z‖)u.

It is easy to see that l(0, w) = 0 and w0 = 1
2(z0 + ‖z‖) > 0, and thus, we get [0, w]

is ordered. Now, we have

l (z, w) =
(

1− 1
2 ‖z‖

(z0 + ‖z‖)
)2

‖z‖2 −
(

z0 −
1
2

(z0 + ‖z‖)
)2

= 0

and
z0 ≤

z0 + ‖z‖
2

= w0.

Therefore, we immediately obtain that [z, w] is ordered.
(ii) ⇒ (i). Assume that [x, s], [y, s] are ordered while [x, y] is not ordered. In this
way, we get

l(x, y) =l(−x,−y)
=l (s− x, s− y)
=2 ((− (s− x) (s− y)) + (s0 − x0) (s0 − y0))
>0.

Notice that
(s− x) (s− y) ≤ |(s− x) (s− y)|

≤ ‖s− x‖ ‖s− y‖
=(s0 − x0) (s0 − y0) ,
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by Cauchy-Schwarz inequality, i.e., we get (s0 − x0) (s0 − y0)− (s− x) (s− y) ≥ 0.

The following theorem can be easily proved when using −y,−x instead of x, y in
previous theorem.

Theorem 8.Let X be a real inner product space of dimension ≥ 2 and x, y be
elements of X with x 6= y and x0 ≤ y0. Then followings are equivalent:

(i) l(x, y) > 0,

(ii) There exists at least one k ∈ X−{x, y} such that [k, x], [k, y] are ordered while
[x, y] is not ordered.

Theorem 9.Let X be a real inner product space of dimension ≥ 2 and x, y be
elements of X with x 6= y and x0 ≤ y0. Then followings are equivalent:

(i) l(x, y) = 0,

(ii) There exists at least m, s ∈ X − {x, y} such that the [m, s] is ordered and
x, y ∈ [m, s].

Proof. (i) ⇒ (ii). Let us set

s := η (y − x) + x

for a real number η > 1. Obviously, we get l (x, s) = 0 and 0 < y0−x0 < η (y0 − x0),
i.e., x0 < η (y0 − x0) + x0 = s0, i.e., [x, s] is ordered. Likewise, l (y, s) = 0 and
y0 − x0 < η (y0 − x0), i.e., y0 < η (y0 − x0) + x0 = s0, i.e., [y, s] is ordered.
Now, define

m := λ (y − x) + x

for a real number λ < 0. It is easy to see that l (m,x) = l (m, y) = 0 and m0 =
λ (y0 − x0) + x0 since λ (y0 − x0) < 0, i.e., [m,x], [m, y] are ordered sets. Finally,
[m, s] is ordered.
(ii) ⇒ (i). Demirel and Soytürk, in [5], proved this result for finite dimensional real
inner product spaces and it follows verbatimly same as in the proof of them.

Theorem 10.Let X be a real inner product space of dimension ≥ 2 and x, y be
elements of X with x 6= y and x0 ≤ y0. Then followings are equivalent.

(i) l(x, y) < 0,

(ii) There exists at least s ∈ X such that [x, s], [s, y] are ordered but [x, y] is not
ordered.
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Proof. (i) ⇒ (ii). Let us set

z := y − x and u := z + ‖z‖ t.

Clearly, [0, u] is ordered since l (0, u) = 0 and 0 ≤ ‖z‖ = u0, but [z, u] is not ordered
since l (z, u) = − (z0 − ‖z‖)2 < 0. Put

w :=
1

2 ‖z‖
(z0 + ‖z‖) u,

and this yields l (0, w) = 0 and w0 = 1
2 (z0 + ‖z‖) > 0, i.e., [0, w] is ordered. Finally,

we get l (z, w) = 0, w0 = 1
2 (z0 + ‖z‖) < z0 and this implies [w, z] is ordered.

(ii) ⇒ (i). Using the Cauchy-Schwarz inequality,

− (s− x) (s− y) ≤ |(s− x) (s− y)|
≤ ‖s− x‖ ‖s− y‖
=(s0 − x0) (s0 − y0)

we get
− (s0 − x0) (y0 − s0)− (s− x) (s− y) < 0,

i.e.,
(s0 − x0)(s0 − y0)− (s− x)(s− y) < 0

and this inequality yields

l(x, y) =l(s− x, s− y)
=2(−(s− x)(s− y) + (s0 − x0)(s0 − y0))
<0.
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