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ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTION TO
FRACTIONAL BURGERS EQUATION

Amar Guesmia and Noureddine Daili

Abstract. In this work, we study local and global solutions of an evolution
problem governed by fractional Bürgers equations. We have generalized Bürgers
equation with a fractional degree of Laplacian in the main part and an algebraic
degree in nonlinear part. Such equations intervene, naturally, in continuum me-
chanics area. Our results prove existence, uniqueness and regularity of solutions of
Cauchy’s problem for Fractional Bürgers equation. These problems arise in a variety
of engineering analysis and design situations.
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1.Introduction

The one-dimensional Bürgers equation

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + u(t, x)

∂u

∂x
(1.1)

was proposed by Bürgers ([3], 1948) in 1948 as a model for turbulent phenomena of
viscous fluids. Since then, Bürgers equation has been investigated in many fields of
application, such as traffic flows and formation of large clusters in the universe.

In order to model solutions of Navier-Stokes equations, several authors have
studied Bürgers equations with random initial conditions, including white and stable
noises.

Equation (1.1) can be solved in closed form (in terms of the initial conditions)
by using the Hopf-Cole substitution, which reduces it to a heat equation.

Bürgers equations involving in their linear parts fractional powers ∆α := −(−∆)α/2

of the Laplacian, α ∈ (0, 2], have been investigated in connection with certain mod-
els of hydrodynamical phenomena ; see Shlesinger and al. ([12], 1995), Funaki and
al. ([4], 1995) and Biler and al. ([2], 1998). In Biler and al. ([2]),
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Biller, Funaki and Woyczynski studied existence, uniqueness, regularity and
asymptotic behavior of solutions to the multidimensional fractal Bürgers-type equa-
tion

∂

∂t
u(t, x) = ν∆αu(t, x)− a∇ur(t, x) (1.2)

where x ∈ Rd, d ≥ 1, α ∈ (0, 2], r ≥ 1, and a ∈ Rd. For α > 3/2 and d = 1 they
prove existence of a unique regular weak solution to (1.2) for initial conditions in
H1(R).

Bürgers equations in financial mathematics arise in connection with the behavior
of the risk premium of the market portfolio of risky assets under Black-Scholes
assumptions.

In this work, we study local and global solutions of an evolution problem gov-
erned by equations of fractional Bürgers kind. Namely, we study the time-fractional
Bürgers equation. We have generalized Bürgers equation with fractional degree of
Laplacian in the main part and algebraic degree in nonlinear part. Such equations
intervene, naturally, in continuum mechanics area and engineering mechanics. These
problems arise in a variety of engineering analysis and design situations.

Our results prove existence, uniqueness and regularity of solutions of Cauchy’s
problem to the following time-Bürgers equation :

ut = uxx −
1
2
(u2)x + f(x, t),

where
x ∈ I ⊂ R, t ≥ 0, u : I × R+ → R.

2.Mains Results

2.1. A Direct Approach to Weak Solutions

We study existence and uniqueness solutions of Cauchy’s problem. We general-
ize the following Bürgers equation

ut = uxx −
1
2
(u2)x + f(x, t)

for one fractional degree of Laplacian in a main part and one algebraic degree in
nonlinear part. We introduce and develop the following generalization:

ut = −Dαu− 1
2
(u2)x + f(x, t), 0 < α ≤ 2, (2.1)
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with
u(x, 0) = u0(x), (2.2)

and Dα ≡ (−∂2/∂x2)
α
2 .

Using a priori elementary estimates, we prove results for Cauchy’s problem (2.1).
In particular, this will prove a role of operator −Dα and its power relative to the
nonlinear term uux.

Define Dα as ([9] and [10]):

(Dαv)(x) =
1

Γ(−α)

∫ x

0
(x− z)−α−1v(z)dz, (2.3)

where Γ(α) =
∫∞
0 zα−1e−zdz denotes Euler’s Gamma function.

We look for weak solutions of problem (2.1) with initial data u(x, 0) = u0(x) in
V2 such that

V2 = L∞(]0, T [ ; L2(I)) ∩ L2(]0, T [ ; H1(I))

satisfying the identity∫
u(x, t)φ(x, t)dx−

∫ t
0

∫
u(x, t)φt(x, t)dxdt+∫ t

0

∫
D

α
2 u(x, t)D

α
2 φ(x, t)dxdt−

∫ t
0

∫
1
2u2(x, t)φx(x, t)dxdt

=
∫

u0(x)φ(x, 0)dx +
∫ t
0

∫
f(x, t)dxdt,

for t ∈ ]0, T [ and φ(x, t) ∈ H1(I × ]0, T [).

(2.4)

In order to simplify our construction, suppose u(t) ∈ H1(I) for t ∈ ]0, T [
instead of u(t) ∈ H

α
2 (I) for t ∈ ]0, T [ which will can be waiting for an ordinary

generalization of a definition of a weak solution of one parabolic (see [7]).
Suppose, also, initial condition u0(x) ∈ H1(I).

Theorem 1. ([2]) Let 3
2 < α ≤ 2, T > 0, and u0(x) ∈ H1(I). Then Cauchy’s

problem (2.1)-(2.2) has an unique weak solution u ∈ V2. Moreover, u satisfies the
following regularity properties:

u ∈ L∞(]0, T [ ; H1(I)) ∩ L2(]0, T [ ; H1+α
2 (I)) (2.5)

and
ut ∈ L∞(]0, T [ ; L2(I)) ∩ L2(]0, T [ ; H

α
2 (I)) (2.6)
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Proof. Suppose u is a weak solution of (2.1)-(2.2) and let Sn be a trunca-
tion operator such that un = Snu then we can consider the following approximate
problem:

(un)t = −Dαun −
1
2
(u2

n)x + f(x, t), 0 < α ≤ 2 (2.7)

with initial data un|t=0
= Snu0.

Let us multiply (2.7) by un, then

d

dt

∫
u2

n(x, t) +
∫

(D
α
2 un(x, t))2 +

∫
un(x, t)(un)x(x, t)un(x, t) =

∫
f(x, t)un(x, t)

which implies

d

dt

∫
u2

n(x, t) +
∫

(D
α
2 un(x, t))2 +

∫
u2

n(x, t)(un)x(x, t) =
∫

f(x, t)un(x, t).

One has ∫
u2

n(x, t)(un)x(x, t) = (
1
3
u3

n(x, t))
∣∣∣∣
I

= CS(t) = C1 |un|2 .

Then it holds that

d

dt
|un|22 +

∣∣∣D α
2 un(t)

∣∣∣2
2
≤ (|f |2 + C1) |un|2 . (2.8)

Likewise, upon differentiation in formula (2.7) according to x and multiply by
(un)x, we obtain

d
dt

∫
un(x, t)(un)x(x, t) +

∫
(D

α
2 un(x, t))(un)x(x, t)

+
∫

1
2(u2

n(x, t))x(un)x(x, t) =
∫

f(x, t)(un)x(x, t),

which implies

1
2

d
dt

∫
u2

n(x, t) +
∫

(D
α
2 un(x, t))(un)x(x, t)

+
∫

1
2(u2

n(x, t))x(un)x(x, t) =
∫

f(x, t)(un)x(x, t)

It holds that

d

dt
|(un)x|22 + 2

∣∣∣D1+α
2 un(t)

∣∣∣2
2
≤ |(un)x|33 + 2 |f |2 |un|2 (2.9)
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because

−
∫

1
2
(u2

n)xux =
∫

un (un)x(un)xx =
1
2

∫
un ((un)2x)x = −1

2

∫
(un)3x.

Now, a part of right member of (2.9) can be approximated by

|(un)x|33 ≤ ‖un‖31,3 ≤ C ‖un‖7/(2+α)
1+α/2 |un|3−7/(2+α)

2 ≤ ‖un‖21+α/2 + C |un|m2 ,

for any m > 0.
Assumption α > 3/2 has been used in the interpolation of W 1,3 of norm of u by

norms of its fractional derivative 7/(2+α). Indeed, that one follows from ([6], 1982;
p. 99). Devising this with (2.7), (2.8) and (2.9) we obtain

d

dt
‖un‖21 + ‖un‖21+α/2 ≤ C(|f |2 |un|2 + |un|22 + |un|m2 + C1)

and by (2.8) one has

d

dt
|un|22 ≤ (|f |2 + C1) |un|2 ⇒ |un(t)|2 ≤ M + |(un)0|2 , ∀ t ∈ [0, T ],

hence, we obtain

‖un(t)‖21 +
∫ t

0
‖un(t)‖21+α/2 ds ≤ C = C(T, f, ‖(un)0‖1). (2.10)

Now, approximate a derivative according to the time of a solution. Multiply
(2.1) by (un)t

d
dt

∫
un(x, t)(un)t(x, t) +

∫
(D

α
2 un(x, t))(un)t(x, t)

+
∫

un(x, t)(un)x(x, t)(un)t(x, t) =
∫

f(x, t)(un)t(x, t).

Hence
1
2

d
dt

∫
(u2

n(x, t))t + 1
2

∫
D

α
2 (u2

n(x, t))t+∫
un(x, t)(un)x(x, t)(un)t(x, t) =

∫
f(x, t)(un)t(x, t).

After some calculations, we obtain

d

dt
|(un)t|22 +

∣∣∣D α
2 (un)t

∣∣∣2
2

= −
∫

(un)x(un)2t + 2
∫

f(x, t)(un)t(x, t) (2.11)
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since

−
∫

(un (un)x)t(un)t = −
∫

(un)x(un)2t −
1
2

∫
un ((un)2t )x −

1
2

∫
(un)x(un)2t .

Now, approximate a right member (2.7) by

1
2

∫
|(un)x| (un)2t ≤ C ‖(un)t‖1/α

α/2 |(un)t|2−1/α
2 |(un)x|2

≤ 1
2 ‖(un)t‖21+α/2 + C |(un)t|22

and ∫
f(x, t)(un)t(x, t) ≤ |f |2 |(un)t|2 .

A classical Gronwall inequality gives

|(un)t(t)|22 +
∫ t

0
‖(un)t(s)‖2α/2 ds ≤ C(T ) (2.12)

It holds, from (2.10) and (2.12), that a solution un is bounded. Then it is suffi-
cient in order to apply approximation Galerkin’s procedure. Hence, we can extract a
subsequence which converges to a limit u in L∞(]0, T [ ; H1(I))∩L2(]0, T [ ; H1+α

2 (I)).
To finish, it remains to know if u is a solution of problem?

Since injection of H1(I) into L2(I) is compact, we can apply Ascoli theorem and
conclude a strongly convergence of (un)n∈N to u in L2(]0, T [ ; L2(I)).

In order to conclude, it is enough to prove that (un)2 converges strongly to u2

in L1(]0, T [ ; L2(I)). Remark that∥∥(un)2 − u2
∥∥

L1(]0, T [ ; L2(I))
≤ ‖un − u‖L1(]0, T [ ; L4(I)) (‖un‖L1(]0, T [ ; L4(I))

+ ‖u‖L1(]0, T [ ; L4(I))),

it is enough to prove that un − u converges strongly in L1(]0, T [ ; L4(I)). This
last result holds by Gagliardo-Nirenberg’s inequality ([1], [2])

‖un − u‖L2(]0, T [; L4(I)) ≤ C ‖un − u‖1−
1
4

L2(]0, T [ ; L4(I))
‖∇(un − u)‖

1
4

L2(]0, T [ ; L4(I))

≤ C ‖un − u‖1−
1
4

L2(]0, T [ ; L4(I))

and to prove that Dαun converges strongly to Dαu in L1(]0, T [ ; L2(I)).
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In the same way, we remark that

‖Dαun −Dαu‖L1(]0, T [ ; L2(I)) ≤∥∥∥∂2un
∂x2 − ∂2u

∂x2

∥∥∥
L1(]0, T [ ; H1+ α

2 (I))
(
∥∥∥∂2un

∂x2

∥∥∥
L1(]0, T [ ; H1+ α

2 (I))
+

∥∥∥∂2u
∂x2

∥∥∥
L1(]0, T [ ; H1+ α

2 (I))
)

and since the term ∂2/∂x2 is linear, approach problem converges weakly to a
limit point, then the existence holds.

Now we prove uniqueness solution. Consider two weak solutions u and v of (2.1).
Then their difference w = u− v satisfies

d
dt |w|

2
2 + 2

∣∣∣D α
2 w(t)

∣∣∣2
2

= 2
∫

(vvx − u ux)w

= −2
∫

(vwwx − w2 ux) = 2
∫

w2(vx/2− ux).

(2.13)

A right member of (2.13) can be limited and we obtain

|w|24 |vx − 2 ux|2 ≤ C ‖w‖1/α
α/2 |w|

2−1/α
2 (|ux|2 + |vx|2)

≤ 1
2 ‖w‖

2
1+α/2 + C |w|22 .

From (2.10), a factor (|ux|2 + |vx|2) is bounded. By Gronwall’s lemma it holds
that w(t) ≡ 0 on [0, T ]

2.2. Parabolic Reguralization

• For α > 3/2, a diffusion operator Dα is strong in order to control a nonlinear
part 1

2(u2)x, furthermore Cauchy problem (2.1) has one and only one solution.
• For α ≤ 3/2, we cannot wait to prove uniqueness of weak solution according

to the time for initial data (2.2). We shall use an other technical to obtain weak
solutions. The construction will be done by a parabolic regularization method.
Namely, we study the problem

ut = −Dαu− 1
2(u2)x + εuxx + f(x, t)

u(x, 0) = u0(x),
(2.14)

with uε = u, ε > 0 (see, for example, ([1], 1979) ; ([8], 1969)).

In particular, solutions of Bürgers equation can be obtained as limits of solutions
of

ut = −1
2
(u2)x + f(u) + εuxx as ε → 0.
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Theorem 2. ([2]) Let 0 < α ≤ 2. Let uε = u, (ε > 0), be a solution of Cauchy
problem (2.14), with u0 ∈ L1 ∩H1, (u0)x ∈ L1. Then, for all t ≥ 0, we have

|u(t)|2 ≤ C2, |u(t)|1 ≤ C1, |ux(t)|1 ≤ Cx,1.

Proof. The existence of solutions for regularized equation (2.14) is standard as
previously. Denote the operator A = −Dα−D2. Then for every v ∈ D(A) (domain
of A)([1]), one has ∫

(Av)sgn(v(x)) ≤ 0 (2.15)

In fact, ∫
(Av)sgn(v(x)) = −

∫
(Dαv + D2v)sgn(v(x))

and ∫
(Av)sgn(v(x)) = lim

(s→0)
s−1

∫
(esAv(x)− v(x))sgn(v(x))

≤ lim
(s→0)

sup s−1(
∫

(
∣∣esAv(x)

∣∣− ∫
|v(x))|) ≤ 0

Then, let us multiply (2.14) by sgn(u) and integrate on I, we obtain

d
dt

∫
|u(x, t)| = −

∫
(Dαu + εuxx)sgn(u)−

∫
1
2(u2)xsgn(u)

+
∫

f(x, t)sgn(u) ≤ −
∫

1
2(u2)xsgn(u) +

∫
f(x, t)sgn(u).

What allows to conclude that d
dt |u(t)|1 is bounded. By integration, on [0, t], of this

last quantity we prove that |u(t)|1 is bounded.
Introduce a function sgnη called function of sign ([5]) of increasing regularization,

η > 0, such that sgnη → sgn as η → 0. For such regularization we have∫
(u2)xsgnηu =

[
(u2)sgnηu

]
I
−

∫
u2(sgn′ηu)ux

= trace((u2)sgnηu)
∣∣
I
−

∫
u2(sgn′ηu)ux = MTr −

∫
u2(sgn′ηu)ux.

Therefore ux is bounded in H1 for every ε > 0. We see that the integral∫
u2(sgn′ηu)ux converges to 0 as η → 0.

Then by multiplying (2.14) by sgn(ux) we obtain

d

dt
|ux|1 ≤ −

∫
(u ux)xsgn(ux) +

∫
f(x, t)sgn(ux).
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Still, let us approach sgn by functions sgnη, we transform the integral∫
(u ux)xsgn(ux) = trace((u ux)sgnηux)|I −

∫
u uxxux(sgn′η(ux)).

We see that the integral
∫

u uxxuxsgn′η(ux) converges to 0 as η → 0. We can
now pass to a limit on ε when ε → 0 in regularized equation (2.14).

In what follows, by a weak solution of (2.1) we hear u ∈ L∞((0, T ) ; L2(I)) and
satisfying the following equation:∫

u(x, t)φ(x, t)−
∫ t
0

∫
u(x, t)φt(x, t) +

∫ t
0

∫
(uDαφ− 1

2u2φx

=
∫

u0(x)φ(x, 0) +
∫ t
0

∫
f(x, t) for t ∈ (0, T ),

φ ∈ C∞(I × [0, T ]) with compact support. Let us note that we do not assume
u(t) ∈ Hα/2.

Corolary 1. Let 0 < α < 2, u0 ∈ L1 ∩H1 with (u0)x ∈ L1, there is a weak
solution u of (2.1) obtained as a limit of a sequence uε such that

u ∈ L∞((0,∞) ; L∞(I)) ∩ L∞((0,∞) ; H1/2−δ(I)),

for every δ > 0. Furthermore, u ∈ L∞((0,∞) ; BV (I)) with

‖u(t)‖BV (I) ≤ |(u0)x|1

Proof. From injection W 1,1 ⊂ H1/2−δ we conclude that a subsequence uε con-
verges weakly to a limit function u in L∞((0,∞) ; H1/2−δ(I)). A sequence uε is
bounded in L∞ holds from obvious inequality |u|∞ ≤ |ux|1. The strong convergence
in L∞((0,∞) ; H1/2−δ(I)) is a consequence of Aubin-Lions’s lemma ([8], p. 57).

Remark 1.
• If α > 1/2 then weak solutions of (2.14) (constructed by a parabolic regular-

ization method) remain in H1(R) for t ∈ [0, T ) for some T > 0. Moreover, if ‖u0‖1
is enough small, then these regulary solutions are global in the time.

• If α < 1 these weak solutions, defined on time-finite interval, introduce shocks.
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