ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY RUSCHEWEYH DERIVATIVE AND GENERALIZED SALAGEAN OPERATOR

Alina Alb Lupaş

Abstract. Let $\mathcal{A}(p, n)=\left\{f \in \mathcal{H}(U): f(z)=z^{p}+\sum_{j=p+n}^{\infty} a_{j} z^{j}, z \in U\right\}$, with $\mathcal{A}(1,1)=\mathcal{A}$. We consider in this paper the operator $R D_{\lambda, \gamma}^{n}: \mathcal{A} \rightarrow \mathcal{A}$, defined by $R D_{\lambda, \gamma}^{n} f(z):=(1-\gamma) R^{n} f(z)+\gamma D_{\lambda}^{n} f(z)$, where $D_{\lambda}^{n} f(z)=D_{\lambda}\left(D_{\lambda}^{n-1} f(z)\right)$ is the generalized Sălăgean operator and $(n+1) R^{n+1} f(z)=z\left(R^{n} f(z)\right)^{\prime}+n R^{n} f(z)$, $n \in \mathbb{N}_{0}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ is the Ruscheweyh operator. By making use of the above mentioned differential operator, a new subclass of univalent functions in the open unit disc is introduced. The new subclass is denoted by $\mathcal{R D}{ }^{\lambda}(n, \mu, \alpha, \lambda)$. Parallel results, for some related classes including the class of starlike and convex functions respectively, are also obtained.

2000 Mathematics Subject Classification: 30C45

1. Introduction and definitions

Denote by U the unit disc of the complex plane, $U=\{z \in \mathbb{C}:|z|<1\}$ and $\mathcal{H}(U)$ the space of holomorphic functions in U.

Let

$$
\mathcal{A}(p, n)=\left\{f \in \mathcal{H}(U): f(z)=z^{p}+\sum_{j=p+n}^{\infty} a_{j} z^{j}, \quad z \in U\right\},
$$

with $\mathcal{A}(1, n)=\mathcal{A}_{n}, \mathcal{A}(1,1)=\mathcal{A}_{1}=\mathcal{A}$ and

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}(U): f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots, z \in U\right\},
$$

where $p, n \in \mathbb{N}, a \in \mathbb{C}$.
Let \mathcal{S} denote the subclass of functions that are univalent in U.
By $\mathcal{S}^{*}(\alpha)$ we denote a subclass of \mathcal{A} consisting of starlike univalent functions of order $\alpha, 0 \leq \alpha<1$ which satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad z \in U . \tag{1}
\end{equation*}
$$

Further, a function f belonging to \mathcal{S} is said to be convex of order α in U, if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>\alpha, \quad z \in U, \tag{2}
\end{equation*}
$$

for some $\alpha,(0 \leq \alpha<1)$. We denote by $\mathcal{K}(\alpha)$ the class of functions in \mathcal{S} which are convex of order α in U and denote by $\mathcal{R}(\alpha)$ the class of functions in \mathcal{A} which satisfy

$$
\begin{equation*}
\operatorname{Re} f^{\prime}(z)>\alpha, \quad z \in U . \tag{3}
\end{equation*}
$$

It is well known that $\mathcal{K}(\alpha) \subset \mathcal{S}^{*}(\alpha) \subset \mathcal{S}$.
If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with $w(0)=0,|w(z)|<1$, for all $z \in U$ such that $f(z)=g(w(z))$ for all $z \in U$. If g is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subseteq g(U)$.

Definition 1. (Al Oboudi [5]) For $f \in \mathcal{A}, \lambda \geq 0$ and $n \in \mathbb{N}$, the operator D_{λ}^{n} is defined by $D_{\lambda}^{n}: \mathcal{A} \rightarrow \mathcal{A}$,

$$
\begin{aligned}
D_{\lambda}^{0} f(z)= & f(z) \\
D_{\lambda}^{1} f(z)= & (1-\lambda) f(z)+\lambda z f^{\prime}(z)=D_{\lambda} f(z) \\
& \cdots \\
D_{\lambda}^{n+1} f(z)= & (1-\lambda) D_{\lambda}^{n} f(z)+\lambda z\left(D_{\lambda}^{n} f(z)\right)^{\prime}=D_{\lambda}\left(D_{\lambda}^{n} f(z)\right), \text { for } z \in U .
\end{aligned}
$$

Remark 1. If $f \in \mathcal{A}$ and $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, then

$$
D_{\lambda}^{n} f(z)=z+\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{n} a_{j} z^{j},
$$

for $z \in U$.
Remark 2. For $\lambda=1$ in the above definition we obtain the Sălăgean differential operator [10].

Definition 2. (Ruscheweyh [9]) For $f \in \mathcal{A}$ and $n \in \mathbb{N}$, the operator R^{n} is defined by $R^{n}: \mathcal{A} \rightarrow \mathcal{A}$,

$$
\begin{aligned}
R^{0} f(z)= & f(z) \\
R^{1} f(z)= & z f^{\prime}(z) \\
& \cdots \\
(n+1) R^{n+1} f(z)= & z\left(R^{n} f(z)\right)^{\prime}+n R^{n} f(z), \quad \text { for } \quad z \in U .
\end{aligned}
$$

Remark 3. If $f \in \mathcal{A}$ and $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, then $R^{n} f(z)=z+\sum_{j=2}^{\infty} C_{n+j-1}^{n} a_{j} z^{j}$, for $z \in U$.

To prove our main theorem we shall need the following lemma.
Lemma 1. [8] Let p be analytic in U with $p(0)=1$ and suppose that

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z p^{\prime}(z)}{p(z)}\right)>\frac{3 \alpha-1}{2 \alpha}, \quad z \in U \tag{4}
\end{equation*}
$$

Then $\operatorname{Re} p(z)>\alpha$ for $\quad z \in U$ and $1 / 2 \leq \alpha<1$.

2. MAIN RESULTS

Definition 3. For a function $f \in \mathcal{A}$ we define the differential operator

$$
\begin{equation*}
R D_{\lambda, \gamma}^{n} f(z)=(1-\gamma) R^{n} f(z)+\gamma D_{\lambda}^{n} f(z) \tag{5}
\end{equation*}
$$

where $n \in \mathbb{N}_{0}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
Remark 4. For $\lambda=1$ the above defined operator was introduced in [1].
Definition 4. We say that a function $f \in \mathcal{A}$ is in the class $\mathcal{R D}^{\gamma}(n, \mu, \alpha, \lambda)$, $n \in \mathbb{N}, \mu \geq 0, \alpha \in[0,1), \gamma \geq 0$ if

$$
\begin{equation*}
\left|\frac{R D_{\lambda, \gamma}^{n+1} f(z)}{z}\left(\frac{z}{R D_{\lambda, \gamma}^{n} f(z)}\right)^{\mu}-1\right|<1-\alpha, \quad z \in U \tag{6}
\end{equation*}
$$

Remark 5. The family $\mathcal{R D}^{\gamma}(n, \mu, \alpha, \lambda)$ is a new comprehensive class of analytic functions which includes various new classes of analytic univalent functions as well as some very well-known ones. For example, $\mathcal{R} \mathcal{D}^{1}(n, \mu, \alpha, \lambda)$ was studied in [6], $\mathcal{R D}^{0}(n, \mu, \alpha, \lambda)$ was studied in [3], $\mathcal{R D}^{\gamma}(n, \mu, \alpha, 1)$ was studied in [4], $\mathcal{R D}^{1}(0,1, \alpha, 1)=\mathcal{S}^{*}(\alpha), \mathcal{R D}^{1}(1,1, \alpha, 1)=\mathcal{K}(\alpha)$ and $\mathcal{R} \mathcal{D}^{1}(0,0, \alpha, 1)=\mathcal{R}(\alpha)$. Another interesting subclass is the special case $\mathcal{R D}^{1}(0,2, \alpha, 1)=\mathcal{B}(\alpha)$ which has been introduced by Frasin and Darus [7] and also the class $\mathcal{R D}^{1}(0, \mu, \alpha, 1)=\mathcal{B}(\mu, \alpha)$ which has been introduced by Frasin and Jahangiri [8].

In this note we provide a sufficient condition for functions to be in the class $\mathcal{R D}^{\gamma}(n, \mu, \alpha, \lambda)$. Consequently, as a special case, we show that convex functions of order $1 / 2$ are also members of the above defined family.

Theorem 2. For the function $f \in \mathcal{A}, n \in \mathbb{N}, \mu \geq 0,1 / 2 \leq \alpha<1$ if

$$
\begin{gather*}
(n+2) \frac{R D_{\lambda, \gamma}^{n+2} f(z)}{R D_{\lambda, \gamma}^{n+1} f(z)}-\mu(n+1) \frac{R D_{\lambda, \gamma}^{n+1} f(z)}{R D_{\lambda, \gamma}^{n} f(z)}- \\
\gamma\left(n+2-\frac{1}{\lambda}\right) \frac{D_{\lambda}^{n+2} f(z)-D_{\lambda}^{n+1} f(z)}{R D_{\lambda, \gamma}^{n+1} f(z)}+\mu \gamma\left(n+1-\frac{1}{\lambda}\right) \frac{D_{\lambda}^{n+1} f(z)-D_{\lambda}^{n} f(z)}{R D_{\lambda, \gamma}^{n} f(z)} \\
+(\mu-1)(n+1) \prec 1+\beta z, \quad z \in U \tag{7}
\end{gather*}
$$

where

$$
\beta=\frac{3 \alpha-1}{2 \alpha},
$$

then $f \in \mathcal{R D}^{\gamma}(n, \mu, \alpha, \lambda)$.
Proof. If we consider

$$
\begin{equation*}
p(z)=\frac{R D_{\lambda, \gamma}^{n+1} f(z)}{z}\left(\frac{z}{R D_{\lambda, \gamma}^{n} f(z)}\right)^{\mu} \tag{8}
\end{equation*}
$$

then $p(z)$ is analytic in U with $p(0)=1$. A simple differentiation yields

$$
\begin{gather*}
\frac{z p^{\prime}(z)}{p(z)}=(n+2) \frac{R D_{\lambda, \gamma}^{n+2} f(z)}{R D_{\lambda, \gamma}^{n+1} f(z)}-\mu(n+1) \frac{R D_{\lambda, \gamma}^{n+1} f(z)}{R D_{\lambda, \gamma}^{n} f(z)}- \tag{9}\\
\gamma\left(n+2-\frac{1}{\lambda}\right) \frac{D_{\lambda}^{n+2} f(z)-D_{\lambda}^{n+1} f(z)}{R D_{\lambda, \gamma}^{n+1} f(z)}+\mu \gamma\left(n+1-\frac{1}{\lambda}\right) \frac{D_{\lambda}^{n+1} f(z)-D_{\lambda}^{n} f(z)}{R D_{\lambda, \gamma}^{n} f(z)} \\
+\mu(n+1)-(n+2)
\end{gather*}
$$

Using (7) we get

$$
\operatorname{Re}\left(1+\frac{z p^{\prime}(z)}{p(z)}\right)>\frac{3 \alpha-1}{2 \alpha} .
$$

Thus, from Lemma 1 we deduce that

$$
\operatorname{Re}\left\{\frac{R D_{\lambda, \gamma}^{n+1} f(z)}{z}\left(\frac{z}{R D_{\lambda, \gamma}^{n} f(z)}\right)^{\mu}\right\}>\alpha
$$

Therefore, $\quad f \in R D^{\gamma}(n, \mu, \alpha, \lambda)$, by Definition 4 .
As a consequence of the above theorem we have the following interesting corollaries [2].

Corollary 3. If $f \in \mathcal{A}$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z f^{\prime \prime}(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>-\frac{1}{2}, \quad z \in U, \tag{10}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\frac{1}{2}, \quad z \in U . \tag{11}
\end{equation*}
$$

That is, f is convex of order $\frac{1}{2}$, or $f \in \mathcal{R D}^{1}\left(1,1, \frac{1}{2}, 1\right)$.
Corollary 4. If $f \in \mathcal{A}$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z f^{\prime \prime}(z)}\right\}>-\frac{1}{2}, \quad z \in U, \tag{12}
\end{equation*}
$$

then $f \in \mathcal{R D}^{1}\left(1,0, \frac{1}{2}, 1\right)$, that is

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)+z f^{\prime \prime}(z)\right\}>\frac{1}{2}, \quad z \in U . \tag{13}
\end{equation*}
$$

Corollary 5. If $f \in \mathcal{A}$ and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\frac{1}{2}, \quad z \in U \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re} f^{\prime}(z)>\frac{1}{2}, \quad z \in U . \tag{15}
\end{equation*}
$$

In another words, if the function f is convex of order $\frac{1}{2}$ then $f \in \mathcal{R D}^{1}\left(0,0, \frac{1}{2}, 1\right)$ $\equiv \mathcal{R}\left(\frac{1}{2}\right)$.

Corollary 6. If $f \in \mathcal{A}$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right\}>-\frac{3}{2}, \quad z \in U, \tag{16}
\end{equation*}
$$

then f is starlike of order $\frac{1}{2}$, hence $f \in \mathcal{R D}^{1}\left(0,1, \frac{1}{2}, 1\right)$.

References

[1] A. Alb Lupaş, On special differential subordinations using Sălăgean and Ruscheweyh operators, Mathematical Inequalities and Applications, Volume 12, Issue 4, October 2009 (to appear).
[2] A. Alb Lupaş, A subclass of analytic functions defined by Ruscheweyh derivative, Acta Universitatis Apulensis, nr. 19/2009, 31-34.
[3] A. Alb Lupaş and A. Cătaş, On a subclass of analytic functions defined by Ruscheweyh derivative, Analele Universităţii din Oradea, Fascicula Matematica, Tom XVI (2009), 225-228.
[4] A. Alb Lupaş and A. Cătaş, On a subclass of analytic functions defined by a generalized Sălăgean and Ruscheweyh operators, Journal of Approximation Theory and Applications, Vol. 4, No. 1-2 (2008), 1-5.
[5] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Ind. J. Math. Math. Sci., 27 (2004), 1429-1436.
[6] A. Cătaş and A. Alb Lupaş, On a subclass of analytic functions defined by a generalized Sălăgean operator, Romai Journal, vol. 4, nr. 2(2008), 57-60.
[7] B.A. Frasin and M. Darus, On certain analytic univalent functions, Internat. J. Math. and Math. Sci., 25(5), 2001, 305-310.
[8] B.A. Frasin and Jay M. Jahangiri, A new and comprehensive class of analytic functions, Analele Universităţii din Oradea, Tom XV, 2008, 61-64.
[9] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[10] G. St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

Alb Lupaş Alina
Department of Mathematics
University of Oradea
str. Universităţii nr. 1, 410087, Oradea, Romania
email: dalb@uoradea.ro

