DIFFERENTIAL SUBORDINATION DEFINED BY USING EXTENDED MULTIPLIER TRANSFORMATIONS OPERATOR AT THE CLASS OF MEROMORPHIC FUNCTIONS

R. M. EL-ASHWAH

ABSTRACT. By using the generalized multiplier transformations, $I^m(\lambda, \ell) f(z)$ ($z \in U$), we obtain interesting properties of certain subclass of p-valent meromorphic functions.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let H(U) be the class of analytic functions in the unit disk $U = \{z : |z| < 1\}$ and denote by $U^* = U \setminus \{0\}$. We can let

 $A(n) = \{ f \in H(U), f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \dots, z \in U \}$ with A(1) = A. Let $\sum_{p,k}$ denote the class of functions in U^* of the form:

$$f(z) = \frac{1}{z^p} + a_k z^k + a_{k+1} z^{z+1} + \dots, (p \in N = \{1, 2, 3, \dots, \}),$$

where k is integer, $k \geq -p+1, p \in N$ which are regular in the punctured disk U^* . If f(z) and g(z) are analytic in U, we say that f(z) is subordinate to g(z) written symbolically as follows:

$$f \prec g \ (z \in U) \ or \ f(z) \prec g(z) \ (z \in U),$$

if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 ($z \in U$), such that f(z) = g(w(z)) ($z \in U$). Indeed it is known that $f(z) \prec g(z)$ ($z \in U$) $\Rightarrow f(0) = g(0)$ and $f(U) \subset g(U)$. Further, if the function g(z) is univalent in U, then we have the following equivalent (see [7, p.4])

$$f(z) \prec g(z) \ (z \in U) \Leftrightarrow f(0) = g(0) \ \text{and} \ f(U) \prec g(U).$$

A function $f \in H(U)$ is said to be convex if it is univalent and f(U) is a convex domain. It is well known that the function f is convex if and only if $f'(0) \neq 0$ and

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>0 \quad (z\in U).$$

We denote by that class of functions by K.

Definition 1. [2] Let the function $f(z) \in A(n)$. For $m \in N_0 = N \cup \{0\}, \lambda \ge 0$, $\ell \ge 0$. The extended muliplier transformation $I^m(\lambda, \ell)$ on A(n) is defined by the following infinite series:

$$I^{m}(\lambda, \ell)f(z) = z + \sum_{k=n+1}^{\infty} \left[\frac{1 + \lambda(k-1) + \ell}{1 + \ell} \right]^{m} a_{k} z^{k}.$$
 (1.1)

It follows from (1.1) that

$$I^0(\lambda, \ell)f(z) = f(z),$$

$$\lambda z (I^{m}(\lambda, \ell) f(z))' = (\ell + 1 - \lambda) I^{m}(\lambda, \ell) f(z) - (\ell + 1) I^{m+1}(\lambda, \ell) f(z) \quad (\lambda > 0) \quad (1.2)$$

and

$$I^{m_1}(\lambda, \ell)(I^{m_2}(\lambda, \ell))f(z) = I^{m_1+m_2}(\lambda, \ell)f(z) = I^{m_2}(\lambda, \ell)(I^{m_1}(\lambda, \ell))f(z). \tag{1.3}$$

for all integers m_1 and m_2 .

We note that:

$$I^{0}(1,0)f(z) = f(z)$$
 and $I^{1}(1,0)f(z) = zf'(z)$.

By specializing the parameters m, λ and ℓ , we obtain the following operators studied by various authors:

- (i) $I^m(1,\ell)f(z) = I_\ell^m f(z)$ (see [3] and [4]);
- (ii) $I^{m}(\lambda, 0)f(z) = D_{\lambda}^{m}f(z)$ (see [1]);
- (iii) $I^m(1,0)f(z) = D^m f(z)$ (see [9]);
- (iv) $I^m(1,1)f(z) = I_m f(z)$ (see [10]).

Also if $f \in A(n)$, then we can write

$$I^{m}(\lambda, \ell)f(z) = (f * \varphi_{\lambda, \ell}^{m})(z),$$

where

$$\varphi_{\lambda,\ell}^m(z) = z + \sum_{k=n+1}^{\infty} \left[\frac{1 + \lambda(k-1) + \ell}{1 + \ell} \right]^m z^k. \tag{1.4}$$

To establish our main results, we shall need the following lemmas.

Lemma 1 [5]. Let the function h(z) be analytic and convex (univalent) in U with h(0) = 1. Suppose also the function $\varphi(z)$ given by

$$\varphi(z) = 1 + c_n z^n + c_{n+1} z^{n+1} + \dots \tag{1.5}$$

be analytic in U. If

$$\varphi(z) + \frac{z\varphi'(z)}{\delta} \prec h(z) \quad (\operatorname{Re}(\delta) \geqslant 0; \delta \neq 0; z \in U),$$

then

$$\varphi(z) \prec \psi(z) = \frac{\delta}{n} z^{-\left(\frac{\delta}{n}\right)} \int_{0}^{z} t^{\left(\frac{\delta}{n}\right) - 1} h(t) dt \prec h(z) \quad (z \in U), \tag{1.6}$$

and ψ is the best dominant.

Lemma 2 [7, p.66, Corollary 2.6.g.2]. Let $f \in A$ and F is given by

$$F(z) = \frac{2}{z} \int_0^z f(t)dt$$

If

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > -\frac{1}{2} \ (z \in U),$$

then $F \in K$.

For the case when F(z) has a more elaborate form, Lemma 2, can be rewritten in the following form.

Lemma 3 [8]. Let $f \in A, \delta > 1$ and F is given by

$$F(z) = \frac{1+\delta}{\delta z^{\frac{1}{\delta}}} \int_{0}^{z} f(t) t^{\frac{1}{\delta}-1} dt.$$

If

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > -\frac{1}{2} \ (z \in U),$$

then $F \in K$.

2. Main results

Unless otherwise mentioned, we assume throughout this paper that $m \in N_0, \ p, n \in N, \ell \geq 0$ and $\lambda > 0$.

Theorem 1. Let $h \in H(U)$, with h(0) = 1, which verifies the inequality:

$$\operatorname{Re}\left[1 + \frac{zh''(z)}{h'(z)}\right] > -\frac{\left(\frac{\ell+1}{\lambda}\right)}{2(p+k)} \quad (z \in U). \tag{2.1}$$

If $f \in \sum_{p,k}$ and verifies the differentianal subordination

$$[I^{m+1}(\lambda,\ell)(z^{p+1}f(z))]' \prec h(z) \quad (z \in U),$$
 (2.2)

then

$$\left[I^m(\lambda,\ell)\left(z^{p+1}f(z)\right)\right]' \prec g(z) \quad (z \in U),$$

where

$$g(z) = \frac{\left(\frac{\ell+1}{\lambda}\right)}{\left(p+k\right)z^{\frac{\left(\frac{\ell+1}{\lambda}\right)}{p+k}}} \int_{0}^{z} h(t)t^{\frac{\left(\frac{\ell+1}{\lambda}\right)}{p+k}-1} dt. \tag{2.3}$$

The function g is convex and is the best (1,p+k)-dominant.

Proof. From the identity (1.2), we have

$$I^{m+1}(\lambda,\ell)(z^{p+1}f(z)) = \left(\frac{\lambda}{\ell+1}\right) \left[z\left(I^{m}(\lambda,\ell)\left[z^{p+1}f(z)\right]\right)' + \left(\frac{\ell+1}{\lambda} - 1\right)I^{m}(\lambda,\ell)\left(z^{p+1}f(z)\right)\right](z \in U).$$
(2.4)

Differentiating (2.4) with respect to z, we obtain

$$\left[I^{m+1}(\lambda,\ell)(z^{p+1}f(z))\right]' = \left(\tfrac{\lambda}{\ell+1}\right) \left\{z \left[I^m(\lambda,\ell)(z^{p+1}f(z))\right]''$$

$$+ \left(\frac{\ell+1}{\lambda}\right) \left[I^m\left(\lambda,\ell\right) \left(z^{p+1}f(z)\right)\right]' \right\} \quad (\lambda > 0; z \in U). \tag{2.5}$$

If we put

$$q(z) = \left[I^m(\lambda, \ell) \left(z^{p+1} f(z) \right) \right]' \quad (z \in U), \tag{2.6}$$

then (2.5) becomes

$$\left[I^{m+1}(\lambda+\ell)\left(z^{p+1}f(z)\right)\right]'=q(z)+\left(\frac{\lambda}{\ell+1}\right)zq'(z) \quad (z\in U). \tag{2.7}$$

Using (2.7), subordination (2.2) is equivalent to

$$q(z) + \left(\frac{\lambda}{\ell+1}\right) z q'(z) \prec h(z) \quad (z \in U),$$
 (2.8)

where

$$q(z) = 1 + c_{p+k+1}z^{p+k} + \dots$$

By using Lemma 1, for $\delta = \frac{\ell+1}{\lambda}, n = p + k$, we have $q(z) \prec g(z) \prec h(z)$, we have

$$g(z) = \frac{\left(\frac{\ell+1}{\lambda}\right)}{(p+k)z^{\frac{\left(\frac{\ell+1}{\lambda}\right)}{p+k}}} \int_{0}^{z} h(t) t^{\frac{\left(\frac{\ell+1}{\lambda}\right)}{p+k}-1} dt \quad (z \in U),$$

is the best (1,p+k)-dominant.

By applying Lemma 3 for the function given by (2.3) and function h with the property in (2.1) for $\delta = \frac{\ell+1}{\lambda}$, we obtain that the function g is convex.

Putting $p = \lambda = 1$ and $m = k = \ell = 0$ in Theorem 1, we obtain the result due to Libera [6] (see also [7 p. 64,Theorem 2.6.g]).

Corollary 1. Let $h \in H(U)$, with h(0) = 1 which verifies the inequality

$$\operatorname{Re}\left\{1 + \frac{zh''(z)}{h'(z)}\right\} > -\frac{1}{2} \ (z \in U).$$

If $f \in \sum_{1,0}$ and verifies the differential subordination:

$$z\left[z^2f(z)\right]''+\left[z^2f(z)\right]' \prec h(z) \ (z \in U),$$

then

$$(z^2 f(z))' \prec g(z) \quad (z \in U),$$

where

$$g(z) = \frac{1}{z} \int_0^z h(t)dt \quad (z \in U),$$

the function g(z) is convex and is the best (1,1)-dominat.

Theorm 2. Let $h \in H(U)$, with h(0) = 1, which verifies the inequality:

$$\operatorname{Re}\left\{1 + \frac{zh''(z)}{h'(z)}\right\} > -\frac{1}{2(p+k)} \quad (z \in U).$$
 (2.9)

If $f \in \sum_{p,k}$ and verifies the differential subordination

$$\left[I^m(\lambda,\ell)(z^{p+1}f(z))\right]' \prec h(z) \quad (z \in U), \tag{2.10}$$

then

$$\frac{I^m(\lambda,\ell)(z^{p+1}f(z))}{z} \prec g(z) \quad (z \in U),$$

where

$$g(z) = \frac{1}{(p+k)z^{\left(\frac{1}{p+k}\right)}} \int_{0}^{z} h(t)t^{\left(\frac{1}{p+k}\right)-1} dt \quad (z \in U).$$
 (2.11)

The function g is convex and is the best (1,p+k)-dominant.

Proof. We let

$$q(z) = \frac{I^{m}(\lambda, \ell)(z^{p+1}f(z))}{z} \quad (z \in U),$$
 (2.12)

and we obtain

$$\left[I^m(\lambda,\ell)(z^{p+1}f(z))\right]'=q(z)+zq'(z) \quad (z\in U).$$

Then (2.9) gives

$$q(z) + zq'(z) \prec h(z)$$

where

$$q(z) = 1 + q_{p+k+1}z^{p+k} + \dots (z \in U).$$

By using Lemma 1 for $\delta = 1, n = p + k$, we have

$$q(z) \prec g(z) \prec h(z)$$
,

where

$$g(z) = \frac{1}{(p+k)z^{\left(\frac{1}{p+k}\right)}} \int_0^z h(t)t^{\left(\frac{1}{p+k}\right)-1} dt \quad (z \in U),$$

and g is the best (1,p+k)-dominent.

By applying Lemma 3 for the function g(z) given by (2.11) and the function h(z) with the property in (2.9) for n = p + k, we obtain that the function g(z) is convex.

Putting $p = \lambda = 1$ and $m = k = \ell = 0$ in Theorem 2, we obtain the following corollary.

Corollary 2. Let $h \in H(U)$, with h(0) = 1, which verifies the inequality:

Re
$$\left\{ 1 + \frac{zh''(z)}{h'(z)} \right\} > -\frac{1}{2} \quad (z \in U).$$

If $f \in \sum_{1,0}$ and verifies the differential subordination:

$$(z^2 f(z))' \prec h(z) \quad (z \in U),$$

then

$$(zf(z)) \prec g(z) \ (z \in U),$$

where

$$g(z) = \frac{1}{z} \int_0^z h(t)dt, \quad (z \in U).$$

The function g(z) is convex and is the best (1,1)-dominant.

Remark. Putting $\ell = 0$ and $\lambda = 1$ in the above results we obtain the results obtained by Oros [8].

References

- [1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat.J. Math. Math. Sci., 27(2004), 1429-1436.
- [2] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (İstanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatoglu, Editors), pp. 241–250, TC İstanbul Kültür University Publications, Vol. 91, TC İstanbul Kültür University, İstanbul, Turkey, 2008.
- [3] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multipier transformations, Math. Comput. Modelling, 37 (1-2)(2003), 39-49.
- [4] N. E. Cho and T.H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean. Math. Soc., 40(2003), no. 3, 399-410.
- [5] D. J. Hallenbeck and St. Ruscheweyh, Subordinations by convex functions, Proc. Amer. Math. Soc. 52(1975), 191-195.
- [6] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1965), 755-758.
- [7] S. S. Miller and P. T. Mocanu, *Differential subordinations: Theory and Applications*, Series on Monographs and Textbooks in Pure and Appl. Math. No.225 Marcel Dekker, Inc., New York, 2000.
- [8] G. I. Oros, Differential subordinations defined by using Salagean differential operator at the class of meromorphic functions, Acta Univ. Apulensis, (2006), no. 11, 219-224.
- [9] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013, (1983), 362-372.
- [10] B. A. Uralegaddi and C. Somanatha, *Certain classes of univalent functions*, In Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa), 371-374, World Scientific. Publishing, Company, Singapore, 1992.

R. M. El-Ashwah Department of Mathematics Faculty of Science Mansoura University Mansoura 35516, Egypt. email: r_- elashwah@yahoo.com