THE CUBIC CONGRUENCE $X^{3}+A X^{2}+B X+C \equiv 0(M O D P)$ AND BINARY QUADRATIC FORMS $F(X, Y)=A X^{2}+B X Y+C Y^{2}$ II

Ahmet Tekcan

Abstract. Let $F(x, y)=a x^{2}+b x y+c y^{2}$ be an integral binary quadratic form of discriminant $\Delta=b^{2}-4 a c$, let $p \geq 5$ be a prime number and let \mathbf{F}_{p} be a finite field. In the first section, we give some preliminaries from cubic congruence and binary quadratic forms. In the second section, we consider the number of integer solutions of quadratic congruence $x^{2} \equiv \pm k(\bmod p)$, where k is an integer such that $1 \leq k \leq 10$. In the third section, we consider the number of integer solutions of cubic congruences $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$ over \mathbf{F}_{p} for two specific binary quadratic forms $F_{1}^{k}(x, y)=2 k x^{2}+k x y+2 k^{2} y^{2}$ and $F_{2}^{k}(x, y)=-3 k x^{2}-k x y+3 k^{2} y^{2}$. In the last section, we consider representation of primes by F_{1}^{k} and F_{2}^{k}.

2000 Mathematics Subject Classification: 11E16, 11E25, 11D25, 11D79.
Keywords and phrases: Binary quadratic form, cubic congruence, representation of primes by quadratic forms.

1. Introduction

In 1896, Voronoi [15] presented his algorithm for computing a system of fundamental units of a cubic number field. His technique, described in terms of binary quadratic forms. Recall that a real binary quadratic form F (or just a form) is a polynomial in two variables x and y of the type

$$
\begin{equation*}
F=F(x, y)=a x^{2}+b x y+c y^{2} \tag{1}
\end{equation*}
$$

with real coefficients a, b, c. The discriminant of F is defined by the formula $b^{2}-4 a c$ and is denoted by $\Delta=\Delta(F)$. If $a, b, c \in \mathbf{Z}$, then F is called integral, and if $\operatorname{gcd}(a, b, c)=1$, then F is called primitive (for further details on binary quadratic forms see $[2,4,8]$). Later Voronoi's technique was restarted in the language of multiplicative lattices by Delone and Faddeev [5]. In 1985, Buchmann [3] generalized the Voronoi's algorithm.

Let $p \geq 5$ be a prime number. Then a cubic congruence over a finite field \mathbf{F}_{p} is given by

$$
\begin{equation*}
x^{3}+a x^{2}+b x+c \equiv 0(\bmod p), \tag{2}
\end{equation*}
$$

where $a, b, c \in \mathbf{F}_{p}$. Solutions of cubic congruence (including cubic residues) were considered by many authors. Dietmann [6] considered the small solutions of additive cubic congruences, Manin [10] considered the cubic congruence on prime modules, Mordell $[11,12]$ considered the cubic congruence in three variables and also the congruence $a x^{3}+b y^{3}+c z^{3}+d x y z \equiv n(\bmod p)$, Williams and Zarnke [16] gave some algorithms for solving the cubic congruence on prime modules.

Let $H(\Delta)$ denote the group of classes of primitive integral binary quadratic forms F of discriminant Δ, let K be a quadratic field $\mathbf{Q}(\sqrt{\Delta})$, let L be the splitting field of $x^{3}+a x^{2}+b x+c$, let $f_{0}=f_{0}(L / K)$ be the part of the conductor of the extension L / K and let f be a positive integer with $f_{0} \mid f$. In [13], Spearman and Williams considered the cubic congruence $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$ and binary quadratic forms $F(x, y)=a x^{2}+b x y+c y^{2}$. They proved that the cubic congruence $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$ has three solutions if and only if p is represented by a quadratic form F in J, where $J=J(L, K, F)$ is a subgroup of index 3 in $H\left(\Delta(K) f^{2}\right)$. Now we can give the following two Lemmas.

Lemma 1.1. Let $a \in \mathbf{F}_{p}$. Then

$$
a^{(p-1) / 2}=\left\{\begin{aligned}
1 & \text { if } a \in Q_{p} \\
-1 & \text { if } a \notin Q_{p} .
\end{aligned}\right.
$$

In other words $\left(\frac{a}{p}\right)=a^{(p-1) / 2}$, where $(\dot{\bar{p}})$ denotes the Legendre symbol and Q_{p} denotes the set of quadratic residues in \mathbf{F}_{p}.

Lemma 1.2. Let $a \in \mathbf{F}_{p}^{*}=\mathbf{F}_{p}-\{0\}$ and let $\left\{a, 2 a, 3 a, \cdots, \frac{p-1}{2} a\right\}$ be the set of multiplies of a. Represent each of these elements of \mathbf{F}_{p} by an integer in the range $\left(\frac{-p}{2}, \frac{p}{2}\right)$, and let v denote the number of negative integers in this set. Then $\left(\frac{a}{p}\right)=(-1)^{v}$.

2. The Quadratic Congruence $x^{2} \equiv \pm k(\bmod p)$.

In this section, we will consider the quadratic congruence $x^{2} \equiv \pm k(\bmod p)$ over finite fields, where k is an integer such that $1 \leq k \leq 10$. We want to determine when this congruence has two solutions or not, that is, when $\left(\frac{ \pm k}{p}\right)=1$ or $\left(\frac{ \pm k}{p}\right)=-1$. First we start with $x^{2} \equiv k(\bmod p)$.

Theorem 2.1. Let \mathbf{F}_{p} be a finite field. Then

$$
\begin{aligned}
& \left(\frac{1}{p}\right)=1 \text { for every prime } p \geq 5 \\
& \left(\frac{2}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1,7(\bmod 8) \\
-1 & \text { if } p \equiv 3,5(\bmod 8)
\end{aligned}\right. \\
& \left(\frac{3}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1,11(\bmod 12) \\
-1 & \text { if } p \equiv 5,7(\bmod 12)
\end{aligned}\right. \\
& \left(\frac{4}{p}\right)=1 \text { for every prime } p \geq 5 \\
& \left(\frac{5}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1,9(\bmod 10) \\
-1 & \text { if } p \equiv 3,7(\bmod 10)
\end{aligned}\right. \\
& \left(\frac{6}{p}\right)=\left\{\begin{array}{rc}
1 \quad \text { if } p \equiv 1,5,19,23(\bmod 24) \\
-1 & \text { ifp } \equiv 7,11,13,17(\bmod 24)
\end{array}\right. \\
& \left(\frac{7}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1,3,9,19,25,27(\bmod 28) \\
-1 & \text { if } p \equiv 5,11,13,15,17,23(\bmod 28)
\end{aligned}\right. \\
& \left(\frac{8}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1,7,17,23(\bmod 24) \\
-1 & \text { if } p \equiv 5,11,13,19(\bmod 24)
\end{aligned}\right. \\
& \left(\frac{9}{p}\right)=1 \text { for every prime } p \geq 11 \\
& \left(\frac{10}{p}\right)=\left\{\begin{array}{rl}
1 & \text { if } p \equiv 1,3,9,13,27,31,37,39(\bmod 40) \\
-1 & \text { if } p \equiv 7,11,17,19,21,23,29,33,37(\bmod 40)
\end{array} .\right.
\end{aligned}
$$

Proof. Let $p \geq 5$ be any prime number. Then $p-1$ is always even. Hence the first assertion is clear by Lemma 1.1 since $1^{(p-1) / 2}=1$ for all prime $p \geq 5$.

Now we consider the second case, that is, the case ($\frac{2}{p}$). Let us consider the set $\{2,4,6, \cdots, p-1\}$. We know that 2 is an quadratic residue $\bmod p$ if and only if v lie in the interval $\left(-\frac{p}{2}, 0\right)$ is even by Lemma 1.2 . Note that v is the number of even integers in the interval $\left[\frac{p+1}{2}, p-1\right]$. Let $\frac{p+1}{2}$ is even. Then $p \equiv 3(\bmod 4)$ and hence $v=\frac{(p-1)-\frac{p+1}{2}}{2}+1=\frac{p+1}{4}$. So $\left(\frac{2}{p}\right)=(-1)^{(p+1) / 4}=1$ if $p \equiv 7(\bmod 8)$ or -1 if $p \equiv 3(\bmod 8)$. Similarly let $\frac{p+1}{2}$ is odd. Then $p \equiv 1(\bmod 4)$, and hence $v=\frac{(p-1)-\frac{p+3}{2}}{2}+1=\frac{p-1}{4}$. Therefore $\left(\frac{2}{p}\right)=(-1)^{(p-1) / 4}=1$ if $p \equiv 1(\bmod 8)$ or -1 if $p \equiv 5(\bmod 8)$. Consequently,

$$
\left(\frac{2}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1,7(\bmod 8) \\
-1 & \text { if } p \equiv 3,5(\bmod 8) .
\end{aligned}\right.
$$

The others can be proved in the same way that $\left(\frac{2}{p}\right)$ was proved.
Now we consider the quadratic congruence $x^{2} \equiv-k(\bmod p)$ for $1 \leq k \leq 10$.
Theorem 2.2. Let \mathbf{F}_{p} be a finite field. Then

$$
\begin{aligned}
\left(\frac{-1}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1(\bmod 4) \\
-1 & \text { if } p \equiv 3(\bmod 4)
\end{aligned}\right. \\
\left(\frac{-2}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,3(\bmod 8) \\
-1 & \text { if } p \equiv 5,7(\bmod 8)
\end{aligned}\right. \\
\left(\frac{-3}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,7(\bmod 12) \\
-1 & \text { if } p \equiv 5,11(\bmod 12)
\end{aligned}\right. \\
\left(\frac{-4}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,5(\bmod 12) \\
-1 & \text { if } p \equiv 7,11(\bmod 12)
\end{aligned}\right. \\
\left(\frac{-5}{p}\right) & =\left\{\begin{aligned}
1 & \text { ifp } \equiv 1,3,7,9(\bmod 20) \\
-1 & \text { if } p \equiv 11,13,17,19(\bmod 20)
\end{aligned}\right. \\
\left(\frac{-6}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,5,7,11,25,29,31,35(\bmod 48) \\
-1 & \text { if } p \equiv 13,17,19,23,37,41,43,47(\bmod 48)
\end{aligned}\right. \\
\left(\frac{-7}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,9,11,15,23,25(\bmod 28) \\
-1 & \text { if } p \equiv 3,5,13,17,19,27(\bmod 28)
\end{aligned}\right. \\
\left(\frac{-8}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,11,17,19,25,35,41,43(\bmod 48) \\
-1 & \text { if } p \equiv 5,7,13,23,29,31,37,47(\bmod 48)
\end{aligned}\right. \\
\left(\frac{-9}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,5,13,17(\bmod 24) \\
-1 & \text { if } p \equiv 7,11,19,23(\bmod 24)
\end{aligned}\right. \\
\left(\frac{-10}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,7,9,11,13,19,23,37(\bmod 40) \\
-1 & \text { if } p \equiv 3,17,21,27,29,31,33,39(\bmod 40) .
\end{aligned}\right.
\end{aligned}
$$

Proof. Let $p \equiv 1(\bmod 4)$, say $p=1+4 t$ for an integer $t \geq 1$. Then by Lemma 1.1, we get $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}=(-1)^{2 t}=1$. Similarly it can be shown that when $p \equiv 3(\bmod 4)$, then $\left(\frac{-1}{p}\right)=-1$.

Let us consider the set $\{2,4,6, \cdots, p-1\}$. We know by Theorem 2.1 that 2 is a quadratic residue $\bmod p$ if and only if v lie in the interval $\left(-\frac{p}{2}, 0\right)$ is even. We also proved in above theorem that $\left(\frac{2}{p}\right)=1$ if $p \equiv 1,7(\bmod 8)$ or -1 if $p \equiv 3,5(\bmod 8)$. Further we see as above that $\left(\frac{-1}{p}\right)=1$ if $p \equiv 1(\bmod 4)$ or -1 if $p \equiv 3(\bmod 4)$.

Combining these two results we conclude that $\left(\frac{-2}{p}\right)=1$ if $p \equiv 1,3(\bmod 8)$ or -1 if $p \equiv 5,7(\bmod 8)$. The others are similar.

3. Cubic Congruence $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$.

In [14], we consider the number of integer solutions of cubic congruences $x^{3}+$ $a x^{2}+b x+c \equiv 0(\bmod p)$ for two specific binary quadratic forms. In this section, we will consider the same problem for quadratic forms $F_{1}^{k}(x, y)=2 k x^{2}+k x y+2 k^{2} y^{2}$ and $F_{2}^{k}(x, y)=-3 k x^{2}-k x y+3 k^{2} y^{2}$, where k is an integer such that $1 \leq k \leq 10$. Here we choice these forms be able to use the results we obtained in the previous chapter. Because, the cubic congruences corresponding to these forms are

$$
\begin{align*}
& C_{1}^{k}: x^{3}+2 k x^{2}+k x+2 k^{2} \equiv 0(\bmod p) \Leftrightarrow\left(x^{2}+k\right)(x+2 k) \equiv 0(\bmod p) \\
& C_{2}^{k}: x^{3}-3 k x^{2}-k x+3 k^{2} \equiv 0(\bmod p) \Leftrightarrow\left(x^{2}-k\right)(x-3 k) \equiv 0(\bmod p), \tag{3}
\end{align*}
$$

respectively, that is, we come face to face with the quadratic congruences $x^{2} \equiv-k$ $(\bmod p)$ and $x^{2} \equiv k(\bmod p)$, respectively. For C_{1}^{k}, we set $\# C_{1}^{k}\left(\mathbf{F}_{p}\right)=\left\{x \in \mathbf{F}_{p}: x^{3}+\right.$ $\left.2 k x^{2}+k x+2 k^{2} \equiv 0(\bmod p)\right\}$. Then we have the following theorem.

Theorem 3.1. For the cubic congruence C_{1}^{k}, we have

$$
\begin{aligned}
& \# C_{1}^{1}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1(\bmod 4) \\
1 & \text { if } p \equiv 3(\bmod 4) \\
2 & \text { if } p=5\end{cases} \\
& \# C_{1}^{2}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,3(\bmod 8) \\
1 & \text { if } p \equiv 5,7(\bmod 8)\end{cases} \\
& \# C_{1}^{3}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,7(\bmod 12) \\
1 & \text { if } p \equiv 5,11(\bmod 12) \\
2 & \text { if } p=13\end{cases} \\
& \# C_{1}^{4}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,5(\bmod 12) \\
1 & \text { if } p \equiv 7,11(\bmod 4) \\
2 & \text { if } p=17\end{cases} \\
& \# C_{1}^{5}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,3,7,9(\bmod 20) \\
1 & \text { if } p \equiv 11,13,17,19(\bmod 20) \\
2 & \text { if } p=7\end{cases} \\
& \# C_{1}^{6}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,5,7,11,25,29,31,35(\bmod 48) \\
1 & \text { if } p \equiv 13,17,19,23,37,41,43,47(\bmod 48) \\
2 & \text { if } p=5\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \# C_{1}^{7}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,9,11,15,23,25(\bmod 28) \\
1 & \text { if } p \equiv 3,5,13,17,19,27(\bmod 28) \\
2 & \text { if } p=29\end{cases} \\
& \# C_{1}^{8}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,11,17,19,25,35,41,43(\bmod 48) \\
1 & \text { if } p \equiv 5,7,13,23,29,31,37,47(\bmod 48) \\
2 & \text { if } p=11\end{cases} \\
& \# C_{1}^{9}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,5,13,17(\bmod 24) \\
1 & \text { if } p \equiv 7,11,19,23(\bmod 24) \\
2 & \text { if } p=37\end{cases} \\
& \# C_{1}^{10}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,7,9,11,13,19,23,37(\bmod 40) \\
1 & \text { if } p \equiv 3,17,21,27,29,31,33,39(\bmod 40) \\
2 & \text { if } p=41\end{cases}
\end{aligned}
$$

Proof. For the cubic congruence C_{1}^{k}, we have

$$
x^{3}+2 k x^{2}+k x+2 k^{2} \equiv 0(\bmod p) \Leftrightarrow\left(x^{2}+k\right)(x+2 k) \equiv 0(\bmod p)
$$

If $k=1$, then $C_{1}^{1}:\left(x^{2}+1\right)(x+2) \equiv 0(\bmod p)$. Hence $x=p-2$ is a solution of C_{1}^{1}. If $p \equiv 1(\bmod 4)$, then we know from Theorem 2.2 that the quadratic congruence $x^{2}+1 \equiv 0(\bmod p)$ has two solutions since $-1 \in Q_{p}$. Hence there are three solutions of C_{1}^{1}. If $p \equiv 3(\bmod 4)$, then the quadratic congruence $x^{2}+1 \equiv 0(\bmod p)$ has no solution since $-1 \notin Q_{p}$. Hence there are one solution of C_{1}^{1}. If $p=5$, then $C_{1}^{1}:\left(x^{2}+1\right)(x+2) \equiv 0(\bmod 5)$. Hence we have $x=2,3$ from $x^{2}+1 \equiv 0(\bmod 5)$ and $x=3$ from $x+2 \equiv 0(\bmod 5)$. Therefore there are two solutions $x=2,3$ of C_{1}^{1} over \mathbf{F}_{5}.

Let $k=2$. Then $C_{1}^{2}:\left(x^{2}+2\right)(x+4) \equiv 0(\bmod p)$. Hence $x=p-4$ is a solution of C_{1}^{2}. If $p \equiv 1,3(\bmod 8)$, then $x^{2}+2 \equiv 0(\bmod p)$ has two solutions since $-2 \in Q_{p}$. Hence there are three solutions of C_{1}^{2}. If $p \equiv 5,7(\bmod 8)$, then $x^{2}+2 \equiv 0(\bmod p)$ has no solution since $-2 \notin Q_{p}$. Hence there are one solution of C_{1}^{2}.

Now we only prove the special case, that is, the case $\# C_{k}\left(\mathbf{F}_{p}\right)=2$, since the others can be proved in the same way that $\# C_{1}^{1}\left(\mathbf{F}_{p}\right)$ and $\# C_{1}^{2}\left(\mathbf{F}_{p}\right)$ were proved.

Let $k=3$ and $p=13$. Then $C_{1}^{3}:\left(x^{2}+3\right)(x+6) \equiv 0(\bmod 13)$. Hence we get $x=6,7$ from $x^{2}+3 \equiv 0(\bmod 13)$ and $x=7$ from $x+6 \equiv 0(\bmod 13)$. Therefore there are two integer solutions $x=6,7$ of C_{1}^{3} over \mathbf{F}_{13}, that is, $\# C_{1}^{3}\left(\mathbf{F}_{13}\right)=2$.

Let $k=4$ and $p=17$. Then $C_{1}^{4}:\left(x^{2}+4\right)(x+8) \equiv 0(\bmod 17)$. Hence we get $x=8,9$ from $x^{2}+4 \equiv 0(\bmod 17)$ and $x=9$ from $x+8 \equiv 0(\bmod 17)$. Therefore there are two integer solutions $x=8,9$ of C_{1}^{4} over \mathbf{F}_{17}.

Let $k=5$ and $p=7$. Then $C_{1}^{5}:\left(x^{2}+5\right)(x+10) \equiv 0(\bmod 7)$. Hence we get $x=3,4$ from $x^{2}+5 \equiv 0(\bmod 7)$ and $x=4$ from $x+10 \equiv 0(\bmod 7)$. Therefore there are two integer solutions $x=3,4$ of C_{1}^{5} over \mathbf{F}_{7}.

Let $k=6$ and $p=5$. Then $C_{1}^{6}:\left(x^{2}+6\right)(x+12) \equiv 0(\bmod 5)$. Hence we get $x=2,3$ from $x^{2}+6 \equiv 0(\bmod 5)$ and $x=3$ from $x+12 \equiv 0(\bmod 5)$. Therefore there are two integer solutions $x=2,3$ of C_{1}^{6} over \mathbf{F}_{5}.

Let $k=7$ and $p=29$. Then $C_{1}^{7}:\left(x^{2}+7\right)(x+14) \equiv 0(\bmod 29)$. Hence we get $x=14,15$ from $x^{2}+7 \equiv 0(\bmod 29)$ and $x=15$ from $x+14 \equiv 0((\bmod 29)$. Therefore there are two integer solutions $x=14,15$ of C_{1}^{7} over \mathbf{F}_{29}.

Let $k=8$ and $p=11$. Then $C_{1}^{8}:\left(x^{2}+8\right)(x+16) \equiv 0(\bmod 11)$. Hence we get $x=5,6$ from $x^{2}+8 \equiv 0(\bmod 11)$ and $x=6$ from $x+16 \equiv 0(\bmod 11)$. Therefore there are two integer solutions $x=5,6$ of C_{1}^{8} over \mathbf{F}_{11}.

Let $k=9$ and $p=37$. Then $C_{1}^{9}:\left(x^{2}+9\right)(x+18) \equiv 0(\bmod 37)$. Hence we get $x=18,19$ from $x^{2}+9 \equiv 0(\bmod 37)$ and $x=19$ from $x+18 \equiv 0(\bmod 37)$. Therefore there are two integer solutions $x=18,19$ of C_{1}^{9} over \mathbf{F}_{37}.

Finally let $k=10$ and $p=41$. Then $C_{1}^{10}:\left(x^{2}+10\right)(x+20) \equiv 0(\bmod 41)$. Hence we get $x=20,21$ from $x^{2}+10 \equiv 0(\bmod 41)$ and $x=21$ from $x+20 \equiv 0(\bmod 41)$. Therefore there are two integer solutions $x=20,21$ of C_{1}^{10} over \mathbf{F}_{41}.

For C_{2}^{k}, we set $\# C_{2}^{k}\left(\mathbf{F}_{p}\right)=\left\{x \in \mathbf{F}_{p}: x^{3}-3 k x^{2}-k x+3 k^{2} \equiv 0(\bmod p)\right\}$. Then we have the following theorem.

Theorem 3.2. For the cubic congruence C_{2}^{k}, we have

$$
\begin{aligned}
& \# C_{2}^{1}\left(\mathbf{F}_{p}\right)=3 \text { for every prime } p \\
& \# C_{2}^{2}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,7(\bmod 8) \\
1 & \text { if } p \equiv 3,5(\bmod 8) \\
2 & \text { if } p=17\end{cases} \\
& \# C_{2}^{3}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,11(\bmod 12) \\
1 & \text { if } p \equiv 5,7(\bmod 12) \\
2 & \text { if } p=13\end{cases} \\
& \# C_{2}^{4}\left(\mathbf{F}_{p}\right)= \begin{cases}2 & \text { if } p=5,7 \\
3 & \text { otherwise }\end{cases} \\
& \# C_{2}^{5}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,9(\bmod 10) \\
1 & \text { if } p \equiv 3,7(\bmod 10) \\
2 & \text { if } p=11\end{cases} \\
& \# C_{2}^{6}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,5,19,23(\bmod 24) \\
1 & \text { if } p \equiv 7,11,13,17(\bmod 24) \\
2 & \text { if } p=53\end{cases} \\
& \# C_{2}^{7}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,3,9,19,25,27(\bmod 28) \\
1 & \text { if } p \equiv 5,11,13,15,17,23(\bmod 28) \\
2 & \text { if } p=31\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \# C_{2}^{8}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,7,17,23(\bmod 24) \\
1 & \text { if } p \equiv 5,11,13,19(\bmod 24) \\
2 & \text { if } p=71\end{cases} \\
& \# C_{2}^{9}\left(\mathbf{F}_{p}\right)= \begin{cases}2 & \text { if } p=5 \\
3 & \text { otherwise }\end{cases} \\
& \# C_{2}^{10}\left(\mathbf{F}_{p}\right)= \begin{cases}3 & \text { if } p \equiv 1,3,9,13,27,31,37,39(\bmod 40) \\
1 & \text { if } p \equiv 7,11,17,19,21,23,29,33,37(\bmod 40) \\
2 & \text { if } p=89\end{cases}
\end{aligned}
$$

Proof. For the cubic congruence C_{2}^{k}, we have

$$
x^{3}-3 k x^{2}-k x+3 k^{2} \equiv 0(\bmod p) \Leftrightarrow\left(x^{2}-k\right)(x-3 k) \equiv 0(\bmod p)
$$

If $k=1$, then $C_{2}^{1}:\left(x^{2}-1\right)(x-3) \equiv 0(\bmod p)$. Hence $x=3$ is a solution of C_{2}^{1}. Further the congruence $x^{2} \equiv 1(\bmod p)$ has always two solutions by Theorem 2.1. Therefore there are three integer solutions of C_{2}^{1} over \mathbf{F}_{p} for every prime p.

Let $k=2$. Then $C_{2}^{2}:\left(x^{2}-2\right)(x-6) \equiv 0(\bmod p)$. Hence $x=6$ is a solution of C_{2}^{2}. Further by Theorem 2.1, the congruence $x^{2} \equiv 2(\bmod p)$ has two solutions if $p \equiv 1,7(\bmod 8)$, and has no solution if $p \equiv 3,5(\bmod 8)$. Therefore the cubic congruence $C_{2}^{2}: x^{3}-6 x^{2}-2 x+12 \equiv 0(\bmod p)$ has three solutions if $p \equiv 1,7(\bmod 8)$ and has one solution if $p \equiv 3,5(\bmod 8)$. Now let $p=17$. Then the cubic congruence $C_{2}^{2}:\left(x^{2}-2\right)(x-6) \equiv 0(\bmod 17)$ has two solutions $x=6,11$ since $6^{2} \equiv 2(\bmod 17)$, $11^{2} \equiv 2(\bmod 17)$ and also $6 \equiv 6(\bmod 17)$. The others can be proved in the same way that $\# C_{2}^{1}\left(\mathbf{F}_{p}\right)$ and $\# C_{2}^{2}\left(\mathbf{F}_{p}\right)$ were proved.

4. Representation of Primes by Binary Quadratic Forms.

Representation of integers (or primes) by binary quadratic forms has an important role on the theory of numbers and many authors considered this problem. In fact, this problem intimately connected to reciprocity laws. The major problem of the theory of quadratic forms was: Given a form F, find all integers n that can be represented by F, that is, for which

$$
\begin{equation*}
F(x, y)=a x^{2}+b x y+c y^{2}=n \tag{4}
\end{equation*}
$$

This problem was studied for specific quadratic forms by Fermat, and intensively investigated by Euler. Fermat considered the representation of integers as sums of two squares. It was, however, Gauss [9] in the Disquisitiones who made the fundamental breakthrough and developed a comprehensive and beautiful theory of
binary quadratic forms. Most important was his definition of the composition of two forms and his proof that the (equivalence classes of) forms with a given discriminant Δ form a commutative group under this composition. The idea behind composition of forms is simple. If forms F and G represent integers n and m, respectively, then their composition $F * G$ should represent n.m. The implementation of this idea is subtle and extremely difficult to describe [7]. Attempts to gain conceptual insight into Gauss theory of composition of forms inspired the efforts of some of the best mathematicians of the time, among them Dirichlet, Kummer and Dedekind. The main ideal here was to extend the domain of higher arithmetic and view the problem in a broader context. Note that we can rewrite (4) as

$$
\begin{equation*}
F(x, y)=\frac{1}{a}\left(a x+\frac{b+\sqrt{\Delta}}{2} y\right)\left(a x+\frac{b-\sqrt{\Delta}}{2} y\right)=n . \tag{5}
\end{equation*}
$$

Therefore we have thus expressed the problem of representation of integers by binary quadratic forms in terms of domain $R=\left\{\frac{u+v \sqrt{\Delta}}{2}: u, v \in \mathbf{Z}, u \equiv v(\bmod 2)\right\}$. So if we take $\alpha=a$ and $\beta=\frac{b+\sqrt{\Delta}}{2}$, then (5) becomes

$$
\begin{equation*}
F(x, y)=\frac{1}{a}(\alpha x+\beta y)(\bar{\alpha} x+\bar{\beta} y)=\frac{1}{a} N(\alpha x+\beta y), \tag{6}
\end{equation*}
$$

where N denotes the norm. Thus to solve $F(x, y)=n$ is to find $x, y \in \mathbf{Z}$ such that $N(\alpha x+\beta y)=n$. Kummer noted in 1840 that the entire theory of binary quadratic forms can be regarded as the theory of complex numbers of the form $x+y \sqrt{\Delta}$ (see [1]).

In this chapter, we shall deal with the representation of prime numbers by quadratic forms F_{1}^{k} and F_{2}^{k} for $1 \leq k \leq 10$.

Theorem 4.1. For the quadratic form F_{1}^{k}, we have

1. Every prime number $p \equiv 5,17,23(\bmod 30)$ can be represented by F_{1}^{1}.
2. There is no prime number can be represented by $F_{1}^{2}, F_{1}^{3}, F_{1}^{4}, F_{1}^{5}, F_{1}^{6}, F_{1}^{7}, F_{1}^{8}$, F_{1}^{9} and F_{1}^{10}.

Proof. 1. Let $p \equiv 5,17,23(\bmod 30)$ be a prime number. The principal binary quadratic form of discriminant -15 is the form $F(x, y)=x^{2}+x y+4 y^{2}$. Further the class number of forms with discriminant -15 is 2 . If we check that $F(x, y)=$ $x^{2}+x y+4 y^{2}$ represents the square classes, then we see that p can be represented by $F_{1}^{1}(x, y)=2 x^{2}+x y+2 y^{2}$.
2. Note that F_{1}^{k} is primitive (since there is a factor k) for $k \geq 2$. So there is no prime p can be represented by F_{1}^{k}.

Now we consider F_{2}^{k}. Then we can give the following theorem without giving its proof since it can be proved in the same way that Theorem 4.1 was proved.

Theorem 4.2. For the quadratic form F_{2}^{k}, we have

1. Every prime number $p \equiv 1,3,7,9,11,25,27,33,37,41,47,49,53,63,65,67,71$, $73(\bmod 74)$ can be represented by F_{2}^{1}.
2. There is no prime number can be represented by $F_{2}^{2}, F_{2}^{3}, F_{2}^{4}, F_{2}^{5}, F_{2}^{6}, F_{2}^{7}, F_{2}^{8}$, F_{2}^{9} and F_{2}^{10}.

References

[1] N. Bourbaki, Elements of Mathematics, Commutative Algebra, Translated from the French. Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972.
[2] J. Buchmann and U. Vollmer, Binary Quadratic Forms: An Algorithmic Approach, Springer-Verlag, Berlin, Heidelberg, 2007.
[3] J. Buchmann, A generalization of Voronoi's unit algorithm I,II, J. Number Theory 20(1985), 177-191, 192-209.
[4] D.A. Buell, Binary Quadratic Forms, Clasical Theory and Modern Computations, Springer-Verlag, New York, 1989.
[5] B.N. Delone and K. Faddeev, The Theory of Irrationalities of the Third Degree, Translations of Mathematical Monographs, Vol. 10 American Mathematical Society, Providence, R.I., 1964.
[6] R. Dietmann, Small Solutions of Additive Cubic Congruences, Arch. Math. 75 (3)(2000), 195-197.
[7] H.M. Edwards, Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory, Graduate Texts in Mathematics, 50. Springer-Verlag, New YorkBerlin, 1977.
[8] D.E. Flath, Introduction to Number Theory, A Wiley-Interscience Publication. John Wiley\& Sons, Inc., New York, 1989.
[9] C.F. Gauss, Disquisitiones Arithmeticae, English translation by Arthur A. Clarke, Yale University Press, 1966.
[10] Y.I. Manin, On Cubic Congruences to a Prime Modulus, Amer. Math. Soc. Transl. 13(2)(1960).
[11] L.J. Mordell, On a Cubic Congruence in Three Variables, II, Proc Amer. Math. Soc. 14(4)(1963), 609-614.
[12] L.J. Mordell, On the Congruence $a x^{3}+b y^{3}+c z^{3}+d x y z \equiv n(\bmod p)$, Duke Math. J. 31(1)(1964), 123-126.
[13] B.K. Spearman and K. Williams, The Cubic Congrunce $x^{3}+A x^{2}+B x+C \equiv$ $0(\bmod p)$ and Binary Quadratic Forms II, J. London Math. Soc. 64(2)(2001), 273274.
[14] A. Tekcan, The Cubic Congruence $x^{3}+a x^{2}+b x+c \equiv 0($ modp $)$ and Binary Quadratic Forms $F(x, y)=a x^{2}+b x y+c y^{2}$, Ars Combinatoria 85(2007), 257-269.
[15] G.F. Voronoi, On a Generalization of the Algorithm of Continued Fractions, (in Russian). Phd Dissertation, Warsaw, 1896.
[16] H.C. Williams and C.R. Zarnke, Some Algoritms for Solving a Cubic Congruence modulo p, Utilitas Mathematica 6(1974), 285-306.

Ahmet Tekcan
Uludag University
Faculty of Science
Department of Mathematics
Görükle, Bursa-TURKIYE
email: tekcan@uludag.edu.tr

