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Abstract. In this paper, we prove a common fixed point theorem for maps sat-
isfying a general contractive condition of integral type with compatibility conditions
of type (I) and of type (II).
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1. Introduction

There are a lot of generalization of Banach contraction principle in the literature.
One of the most interesting generalization of it is the Branciari’s [7] fixed point result.
Branciari was proved a fixed point theorem for a single mapping satisfying an ana-
logue of Banach contraction principle for an integral type inequality. After then the
authors in [1], [3], [4] , [5] , [10] , [11] , [17] , [25] , [27] and [29] proved some fixed point
theorems involving more general contractive conditions. Also in [26], Suzuki shows
that Meir-Keeler contractions of integral type are still Meir-Keeler contractions. In
this paper, we establish a fixed point theorem for single valued maps satisfying a
general contractive inequality of integral type with compatibility condition of type
(I) and of type (II).

Jungck [12] initiated and provided a soothing machinery for obtaining common
fixed points in metric spaces by using commuting mappings. Inspired by the above
work, many authors developed much weaker conditions. Let (X, d) be a metric
spaces.

Definition 1. Mappings S, T : X → X are said to be
(a) compatible [13] if lim d(STxn, TSxn) = 0,
(b) compatible of type (A) [15] if

lim d(STxn, TTxn) = 0 and lim d(TSxn, SSxn) = 0,
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(c) compatible of type (B) [21] if

lim d(STxn, TTxn) ≤ 1
2
[lim d(STxn, St) + lim d(St, SSxn)]

and
lim d(TSxn, SSxn) ≤ 1

2
[lim d(TSxn, T t) + lim d(Tt, TTxn)],

(d) compatible of type (P ) [22] if

lim d(SSxn, TTxn) = 0,

whenever {xn} is a sequence in X such that limSxn = limTxn = t for some t ∈ X.

We can find some examples, propositions and lemmas about the above definitions
in [13] , [15] , [21] , [22].

Lemma 1 ([13] resp.[15] , [21] , [22]). Let S and T be a compatible (resp. com-
patible of type (A), compatible of type (B), compatible of type (P )) self mapping of
a metric space (X, d). If Sx = Tx for some x ∈ X, then STx = TSx.

In 1996 Jungck [14] defines S and T to be weakly compatible if Sx = Tx implies
STx = TSx. By Lemma 1, follows that every compatible (compatible of type
(A), compatible of type (B), compatible of type (P )) pair of mapping is weakly
compatible. There is an example in [23] shows that implication is not reversible.
Many fixed point results have been obtained for weakly compatible mappings (see
[8] , [9] , [16] , [24] and [27])

Now we give the definitions of compatible of type (I) and of type (II) mappings,
which were given in [20].

Definition 2. Let S, T : X → X be mappings. The pair (S, T ) is said to be
compatible of type (I) if

d(t, T t) ≤ limd(t, STxn),

whenever {xn} is a sequence in X such that limSxn = limTxn = t for some t ∈ X.
The pair (S, T ) is said to be compatible of type (II) if and only if (T, S) is compatible
of type (I).

Again many fixed point results have been obtained for maps satisfying compat-
ibility condition of type (I) and of type (II) (see [2] , [6] , [20] , [28]).

Now we give some examples which shows that the concepts of weakly compatible
maps and compatible maps of type (I) and of type (II) are independent from each
other.
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Example 1. Let X = [0,∞) be with the usual metric. Define S, T : X → X by

Sx =
{

2 if x ∈ [0, 2]
2 + x if x ∈ (2,∞)

and Tx =
{

2 + x if x ∈ [0, 2)
4 + x if x ∈ [2,∞)

.

Note that 2 is a fixed point of S, then the pair (S, T ) is compatible of type (II)
but the mappings S and T are not weak compatible because S0 = 2 = T0 but
ST0 = 2 6= 6 = TS0.

Example 2 ([19]). Let X = [0,∞) be with the usual metric. Define S, T : X →
X by

Sx = 2x+ 1 and Tx = x2 + 1.

Then at x = 0, Sx = Tx. Also STx = 3 and TSx = 2, which shows that S and
T are not weak compatible. Now suppose that {xn} be a sequence in X such that
limSxn = limTxn = t for some t ∈ X. By definition of S and T , t = 1. For this
value we have d(t, T t) = 1 ≤ 2 = limd(t, STxn), which shows that the pair (S, T ) is
compatible mappings of type (I).

Example 3 ([19]). Let X = [0,∞) be with the usual metric. Define S, T : X →
X by

Sx =
{

cosx if x 6= 1
0 if x = 1

and Tx =
{
ex if x 6= 1
0 if x = 1

.

Then it is clear that Sx = Tx if and only if x = 0 and x = 1. Also at these
points STx = TSx. It means that S and T are weakly compatible. Now suppose
that {xn} be a sequence in X such that limSxn = limTxn = t for some t ∈ X. By
definition of S and T , t = 1. For this value we have d(t, T t) = 1 and limd(t, STxn) =
(1− cosx) < 1. Therefore the pair (S, T ) is not compatible mappings of type (I).

Preposition 1 ([20]). Let S, T : X → X be such that the pair (S, T ) is
compatible of type (I) (resp. type (II)) and Sp = Tp for some p ∈ X. Then
d(Sp, TTp) ≤ d(Sp, STp) (resp. d(Tp, SSp) ≤ d(Tp, TSp)).

Lemma 2 ([18]). Let ψ : R+ → R+ be a right continuous function such that
ψ(t) < t for every t > 0, then limn→∞ ψn(t) = 0, where ψn denotes the n-times
repeated composition of ψ with itself.

2. Main result

Let (X, d) be a metric space and let A,B, S and T be self-maps defined on X.
We consider the following:

(i) S(X) ⊆ B(X), T (X) ⊆ A(X),
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(ii) for all x, y ∈ X, there exists a right continuous function ψ : R+ → R+, ψ(0) =
0 and ψ(s) < s for s > 0 such that∫ d(Sx,Ty)

0
ϕ(t)dt ≤ ψ

(∫ M(x,y)

0
ϕ(t)dt

)
,

where ϕ : R+ → R+ is a Lebesque integrable mapping which is summable, non-
negative and such that ∫ ε

0
ϕ(t)dt > 0 for each ε > 0, (1)

and

M(x, y) =
1
2

max{2d(Ax,By), d(Sx,Ax), d(Ty,By), d(Sx,By), d(Ty,Ax)},

(iii) A or B is continuous and the pairs (S,A) and (T,B) are compatible of type
(I),

(iv) S or T is continuous and the pairs (S,A) and (T,B) are compatible of type
(II).

Now we prove the following theorem.

Theorem 1. Let (X, d) be a complete metric space, A,B, S and T be self-maps
defined on X satisfying the conditions (i), (ii) and any one of (iii) or (iv), then
A,B, S and T have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point of X. From (i) we can construct a
sequence {yn} in X as follows:

y2n+1 = Sx2n = Bx2n+1 and y2n+2 = Tx2n+1 = Ax2n+2

for all n = 0, 1, .... Define dn = d(yn, yn+1), then, by (ii),∫ d(Sx2n,Tx2n+1)

0
ϕ(t)dt ≤ ψ

(∫ M(x2n,x2n+1)

0
ϕ(t)dt

)
(2)

where

M(x2n, x2n+1) =
1
2

max{2d(Ax2n, Bx2n+1), d(Sx2n, Ax2n), d(Tx2n+1, Bx2n+1),

d(Sx2n, Bx2n+1), d(Tx2n+1, Ax2n)}

= max{d2n,
d2n+1

2
,
d(y2n, y2n+2)

2
}

≤ max{d2n, d2n+1}
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Thus from (2) we have∫ d2n+1

0
ϕ(t)dt ≤ ψ

(∫ max{d2n,d2n+1}

0
ϕ(t)dt

)
. (3)

Now, if d2n+1 ≥ d2n for some n, then, from (3) we have∫ d2n+1

0
ϕ(t)dt ≤ ψ

(∫ d2n+1

0
ϕ(t)dt

)
<

∫ d2n+1

0
ϕ(t)dt

which is a contradiction. Thus d2n > d2n+1 for all n, and so, from (3) we have∫ d2n+1

0
ϕ(t)dt ≤ ψ

(∫ d2n

0
ϕ(t)dt

)
.

Similarly, ∫ d2n

0
ϕ(t)dt ≤ ψ

(∫ d2n−1

0
ϕ(t)dt

)
.

In general, we have for all n = 1, 2, ...,∫ dn

0
ϕ(t)dt ≤ ψ

(∫ dn−1

0
ϕ(t)dt

)
. (4)

From (4), we have ∫ dn

0
ϕ(t)dt ≤ ψ

(∫ dn−1

0
ϕ(t)dt

)
≤ ψ2

(∫ dn−2

0
ϕ(t)dt

)
...

≤ ψn

(∫ d0

0
ϕ(t)dt

)
,

and, taking the limit as n→∞ and using Lemma 2, we have

lim
n→∞

∫ dn

0
ϕ(t)dt ≤ lim

n→∞
ψn

(∫ d0

0
ϕ(t)dt

)
= 0,

which, from (1), implies that

lim
n→∞

dn = lim
n→∞

d(yn, yn+1) = 0. (5)
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We now show that {yn} is a Cauchy sequence. For this it is sufficient to show that
{y2n} is a Cauchy sequence. Suppose that {y2n} is not a Cauchy sequence. Then
there exists an ε > 0 such that for each even integer 2k there exist even integers
2m(k) > 2n(k) > 2k such that

d(y2n(k), y2m(k)) ≥ ε. (6)

For every even integer 2k, let 2m(k) be the least positive integer exceeding 2n(k)
satisfying (6) such that

d(y2n(k), y2m(k)−2) < ε. (7)

Now

0 < δ :=
∫ ε

0
ϕ(t)dt

≤
∫ d(y2n(k),y2m(k))

0
ϕ(t)dt

≤
∫ d(y2n(k),y2m(k)−2)+d2m(k)−2+d2m(k)−1

0
ϕ(t)dt.

Then by (5), (6) and (7) it follows that

lim
k→∞

∫ d(y2n(k),y2m(k))

0
ϕ(t)dt = δ. (8)

Also, by the triangular inequality,∣∣d(y2n(k), y2m(k)−1)− d(y2n(k), y2m(k))
∣∣ ≤ d2m(k)−1

and ∣∣d(y2n(k)+1, y2m(k)−1)− d(y2n(k), y2m(k))
∣∣ ≤ d2m(k)−1 + d2n(k)

and so ∫ |d(y2n(k),y2m(k)−1)−d(y2n(k),y2m(k))|

0
ϕ(t)dt ≤

∫ d2m(k)−1

0
ϕ(t)dt,

and ∫ |d(y2n(k)+1,y2m(k)−1)−d(y2n(k),y2m(k))|

0
ϕ(t)dt ≤

∫ d2m(k)−1+d2n(k)

0
ϕ(t)dt.

Using (8), we get ∫ d(y2n(k),y2m(k)−1)

0
ϕ(t)dt→ δ (9)
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and ∫ d(y2n(k)+1,y2m(k)−1)

0
ϕ(t)dt→ δ (10)

as k →∞. Thus

d(y2n(k), y2m(k)) ≤ d2n(k) + d(y2n(k)+1, y2m(k))
≤ d2n(k) + d(Sx2n(k), Tx2m(k)−1),

and so ∫ d(y2n(k),y2m(k))

0
ϕ(t)dt ≤

∫ d2n(k)+d(Sx2n(k),Tx2m(k)−1)

0
ϕ(t)dt.

Letting k →∞ on both sides of the last inequality, we have

δ ≤ lim
k→∞

∫ d(Sx2n(k),Tx2m(k)−1)

0
ϕ(t)dt

≤ lim
k→∞

ψ

(∫ M(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
, (11)

where

M(x2n(k), x2m(k)−1) =
1
2

max{2d(y2n(k), y2m(k)−1), d2n(k), d2m(k)−1,

d(y2n(k)+1, y2m(k)−1), d(y2n(k), y2m(k))}.

Combining (5), (6), (7), (8), (9) and (10), yields the following contradiction from
(11):

δ ≤ ψ(δ) < δ.

Thus {y2n} is a Cauchy sequence and so {yn} is a Cauchy sequence. Since X is
complete it converges to a point z in X. Since {Sx2n}, {Bx2n+1}, {Tx2n+1} and
{Ax2n+2} are subsequences of {yn}, then Sx2n, Bx2n+1, Tx2n+1, Ax2n+2 → z as
n→∞.

Now, suppose that the condition (iii) holds with B is continuous. Then, since
the pair (T,B) is compatible of type (I) and B is continuous, we have

d(z,Bz) ≤ limd(z, TBx2n+1), BBx2n+1 → Bz. (12)

Now setting x = x2n and y = Bx2n+1 in (ii), we obtain∫ d(Sx2n,TBx2n+1)

0
ϕ(t)dt ≤ ψ

(∫ M(x2n,Bx2n+1)

0
ϕ(t)dt

)
, (13)
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where

M(x2n, Bx2n+1) =
1
2

max{2d(Ax2n, BBx2n+1), d(Sx2n, Ax2n),

d(TBx2n+1, BBx2n+1), d(Sx2n, BBx2n+1), d(TBx2n+1, Ax2n)}.

We claim that limd(z, TBx2n+1) = 0, Suppose limd(z, TBx2n+1) > 0. Now, by
letting the limit superior on both sides of (13), we have∫ limd(z,TBx2n+1)

0
ϕ(t)dt = lim

∫ d(Sx2n,TBx2n+1)

0
ϕ(t)dt

≤ limψ

(∫ M(x2n,Bx2n+1)

0
ϕ(t)dt

)

≤ ψ

∫ max{d(z,Bz),
limd(TBx2n+1,Bz)

2
,
limd(TBx2n+1,z)

2
}

0
ϕ(t)dt


≤ ψ

(∫ limd(TBx2n+1,z)

0
ϕ(t)dt

)

<

∫ limd(TBx2n+1,z)

0
ϕ(t)dt,

which is a contradiction. Thus limd(z, TBx2n+1) = 0 and so from (12) Bz = z.
Again replacing x by x2n and y by z in (ii), we have∫ d(Sx2n,T z)

0
ϕ(t)dt ≤ ψ

(∫ M(x2n,z)

0
ϕ(t)dt

)
,

where

M(x2n, z) =
1
2

max{2d(Ax2n, Bz), d(Sx2n, Ax2n), d(Tz,Bz),

d(Sx2n, Bz), d(Tz,Ax2n)}

=
1
2

max{d(Ax2n, z), d(Sx2n, Ax2n), d(Tz, z), d(Sx2n, z), d(Tz,Ax2n)}

and letting n→∞, we have∫ d(z,Tz)

0
ϕ(t)dt ≤ ψ

(∫ d(z,Tz)
2

0
ϕ(t)dt

)
<

∫ d(z,Tz)
2

0
ϕ(t)dt
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which is a contradiction if d(z, Tz) > 0. Thus d(z, Tz) = 0, i.e. Tz = z. Since
T (X) ⊆ A(X), there is a point u ∈ X such that Tz = Au = z. From (ii), we have,∫ d(Su,z)

0
ϕ(t)dt =

∫ d(Su,Tz)

0
ϕ(t)dt

≤ ψ

(∫ d(Su,z)

0
ϕ(t)dt

)

<

∫ d(Su,z)

0
ϕ(t)dt,

which is a contradiction if d(Su, z) > 0. Thus Su = z = Au. By Proposition 1,
we have d(Su,AAu) ≤ d(Su, SAu) and so d(z,Az) ≤ d(z, Sz). Again from (ii), we
have ∫ d(Sz,z)

0
ϕ(t)dt =

∫ d(Sz,Tz)

0
ϕ(t)dt

≤ ψ

(∫ d(Sz,z)
2

0
ϕ(t)dt

)

<

∫ d(Sz,z)
2

0
ϕ(t)dt,

which is a contradiction if d(Sz, z) > 0. This shows that Sz = z = Az = Bz = Tz
and z is a common fixed point of A,B, S and T .

If we suppose that A is continuous instead of B, similarly we can show that z is
a common fixed point of A,B, S and T .

The other case (iv) can be disposed from a similar argument as above.
It is easy to see that the common fixed point of A,B, S and T is unique.

Remark 1. By Theorem 1, we have a different version of Theorem 2.1 of [5],
since we use compatibility condition of type (I) and of type (II) for mappings.

If we use d(Ax,By) instead of M(x, y) in Theorem 1, we have the following
corollary.

Corollary 1. Let (X, d) be a complete metric space, A,B, S and T be self-maps
defined on X satisfying the conditions (i) and

(ii∗) for all x, y ∈ X, there exists a right continuous function ψ : R+ →
R+, ψ(0) = 0 and ψ(s) < s for s > 0 such that∫ d(Sx,Ty)

0
ϕ(t)dt ≤ ψ

(∫ d(Ax,By)

0
ϕ(t)dt

)
,
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where ϕ is as in Theorem 1. If (iii) or (iv) holds, then A,B, S and T have a unique
common fixed point.

If we choose ϕ(t) ≡ 1 and ψ(s) = αs, 0 < α < 1 in Corollary 1, we have Corollary
3.1 of [20].
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