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Abstract. The measure of the influence of an observation on a statistical
estimator is the φ-divergence. We present a comparative computational study of
the estimators of the φ-divergence, Monte-Carlo and bootstrap estimators, used for
detection of the outliers data. We also give estimators for the prediction density
of the Random Coefficient Autoregressive (RCA) models which have cryptographic
implications.
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1. Introduction

Practical problems which appeared in the last years in the mathematical statis-
tics domain have a computational approach. We present new computational meth-
ods which solves the problem of outliers data detection for a large class of statistical
models.

Outliers data detection has applications in regression models - time series forecast
from the financial-economy domain which leads to better estimations and thus to
smaller errors (see [4] and [5]), in symmetric cryptography - detection key exchange
time for some cipher systems (see [3], [20] and [21]) or statistical test for hardware
random generators (see [11]), in the theory of secure transmission of information
over public communication channel (see [20]).

Section 2 presents the statistical model which is considered in this paper. This
model includes the dynamic regression model and intervention models on the time
series (see [15] for details). The intervention models are a combination of pulse
interventions, gradual or abrupt permanent interventions. Section 3 presents some
perturbed models which generalize the computational problem in the case of non
perturbation of the a priori distribution. The perturbations are only in the observa-
tions that we make. The hardest point of this problem is to compute the a posteriori
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probability. To avoid this inconvenient we can also use bootstrap techniques (more
details can be found in [14], [17] and [18]). In conformity with this estimation tech-
nique the distribution function, which depends of one or more unknown parameters,
is replaced by the empirical distribution function in which the parameter is replaced
by with his estimation reported to the empirical distribution. Our problem is now
transformed from a parametric problem into a non parametric problem. More ex-
actly in the real problem we have the independent observations x1, ..., xn with the
distribution function F (x). Parameter θ = g(F (.)) is defined by distribution func-
tion and is estimated by θ̂ = θ̂(x1, ..., xn). This estimator can be obtained using
several methods such as maximum likelihood method. Bootstrap problem is like the
real problem with the difference that the distribution function F is replaced by the
empirical distribution function Fn (or a sequence of estimators of the distribution
F ) and θ̃ = g(Fn(.)). After that we simulate a number m of random variables (called
bootstrap samples) X∗

1 , ..., X∗
m with distribution Fn. Estimation of the parameter

θ̃ will be θ̂∗ = θ̂(X∗
1 , ..., X∗

m). The properties of the bootstrap estimator allow us
to derive properties of the estimator from the real problem. Therefore in section
4 we perform a comparative study of Monte Carlo and bootstrap methods (see [7])
in which the estimator of the a posteriori distribution is kernel estimator. Sections
5 is dedicated to estimators prediction density of RCA models in connection with
cryptographic applications.

2. Statistical model

Let {f(y|θ,x); θ ∈ Θ} be a statistical model for the random variable y =
(y1, ..., yn), θ a p-dimensional parameter, and x a covariance matrix. The considered
model can be extended to the general dynamic regression model. In particular, in
the regression model, the vector x can be seen like a vector of independent variables
and y like a vector of dependent variables (see [1], [2] and [13] for details). We
try to develop a method for the detection of outliers data which can influence the
decision on parameter θ. A measure of the influence of one observation yr on θ is
the discrepancy π(θ|y) between π(θ|y(r)) where y(r) = (y1, ...yr−1, yr+1, ..., yn).

Following [12] and [16] we define the discrepancy, also known as φ-divergence,
between two a posteriori densities π(θ|y) and πδ(θ|y) by the formula

Dφ = D(π(θ|y), πδ(θ|y)) =
∫

φ(
πδ(θ|y)
π(θ|y)

)π(θ|y)dθ,

where δ is a symbol for the perturbation of the a priori density and φ is a convex
function with φ(1) = 0.
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Example 1. For different forms of φ we obtain different divergences.
(i) φ(x) = − log x, Kullback-Leibler divergence.

(ii) φ(x) =
(
√

x− 1)2

2
, Hellinger divergence.

(iii) φ(x) = (x− 1)2, χ2 divergence.

(iv) φ(x) =
1
2
|x− 1|, variational divergence L1.

(v) φ(x) =
xλ − 1

λ(λ + 1)
, λ 6= 0,−1, pondered power divergence.

3. Perturbed models

Perturbation factor δ can depend of parameter θ, response variable y and co-
variance matrix x. The model take under study allows perturbation both a priori
density and likelihood. As in [17] we define:

δ(θ,y,x) =
fδ(y|θ,x)πδ(θ)
f(y|θ,x)π(θ)

,

where fδ is the likelihood and πδ is the a priori density under some perturbations. In
[17] was considered the case in which we have perturbation only on the likelihood i.e.
πδ(θ) = π(θ). In this paper we consider the case in which πδ(θ) 6= π(θ). There are
several methods to choose the a priori distributions; see for example [18] or [8], [9].
Proceed like in classic cases we consider the perturbations on the response variable
y and covariance x. More exactly we have

δ1(θ,y,x) =
fδ(y(r)|θ,x)πδ(θ)

f(y|θ,x)π(θ)
=

fδ(y(r)|θ,x)πδ(θ)
f(yr|θ,x,y(r))f(y(r)|θ,x)π(θ)

=
πδ(θ)

f(yr|θ,xr,y(r))π(θ)
,

and

δ2(θ,y,x) =
fδ(y|θ,x[r(s)])πδ(θ)

f(y|θ,x)π(θ)
=

fδ(y(r)|θ,x[r(s)], yr)f(yr|θ,x[r(s)])πδ(θ)
f(y(r)|θ,x, yr)f(yr|θ,x)π(θ)

=
fδ(y(r)|θ,x[r], yr)f(yr|θ,xr(s))πδ(θ)

f(y(r)|θ,x[r], yr)f(yr|θ,xr)π(θ)
=

f(yr|θ,xr(s))πδ(θ)
f(yr|θ,xr)π(θ)

.

The first case called deletion observation case is a measure of the effect of the
deletion of the r-th observation from the model. The second case studies the effect of
the covariances where x[r(s)] is obtained by deleting the s-th component of the r-th
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covariate vector form x, xr(s) is the r-th covariate vector with the s-th component
deleted and x[r] is the covariance matrix with the r-th covariate vector deleted.
The problem can be generalized if we consider the case of the influence of a set of
observations. We can choose different models to get the perturbations for example
the pondered case. In [6] is studied a class of observations for linear models and for
generalized linear models. The study can be performed for image recognition using
Bayesian adaptive method (see [10] for details) and can be used also in the case of
truncated a priori distribution (see [22], [23] and [24] for details). Thus the method
is computational and can be used for every class of perturbation models.

4. Monte Carlo estimation and bootstrap estimation

Using Bayes theorem (see for example [18])

δ(θ,y,x) =
fδ(y|θ,x)πδ(θ)
f(y|θ,x)π(θ)

=
fδ(y|x)πδ(θ|y)
f(y|x)π(θ|y)

,

we obtain
πδ(θ|y)
π(θ|y)

= δ(θ,y,x)
f(y|x)
fδ(y|x)

and
Dφ =

∫
φ(δ(θ,y,x)

f(y|x)
fδ(y|x)

)π(θ|y)dθ.

Marginal distributions are easy to compute (see [8], [9] and [19]) only in particular
cases. Let us consider:

fδ(y|x)
f(y|x)

=
∫

fδ(y|θ,x)π(θ)dθ

f(y|x)
=

∫ fδ(y|θ,x)
f(y|θ,x) f(y|θ,x)π(θ)dθ

f(y|x)

=
∫

fδ(y|θ,x)
f(y|θ,x)

f(y|θ,x)π(θ)
f(y|x)

dθ =
∫

fδ(y|θ,x)
f(y|θ,x)

π(θ|y)dθ

=
∫

fδ(y|θ,x)πδ(θ)
f(y|θ,x)π(θ)

π(θ)
πδ(θ)

π(θ|y)dθ =
∫

δ(θ,y,x)
π(θ)
πδ(θ)

π(θ|y)dθ.

We get

Dφ =
∫

φ(
δ(θ,y,x)∫

δ(θ,y,x) π(θ)
πδ(θ)π(θ|y)dθ

)π(θ|y)dθ.

Remark 1. If π(θ) = πδ(θ) we obtain the same result as in [17].
Remark 2. If π(θ) = 1 (uniform distribution) then Dφ can be used like a

measure of the deviation of the distribution πδ(θ) from the uniformity. This has
applications in testing hardware key generators (see [11] for details).
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Remark 3. If π(θ) = 1 (uniform distribution) we can take

πδ(θ) =
Γ(α)Γ(β)
Γ(α + β)

θα−1(1− θ)β−1, δ = (α, β).

For α → 1 and β → 1 we have πδ(θ) → π(θ).

4.1. Calibration of the φ-divergence

From the above results we see that for every divergence we have no perturbation
if and only if divergence is zero. We must indicate a cutoff point to decide if the
perturbation is or not significant. Next we present a calibration method of the φ-
divergence. For example let us consider the case of random binary variable with
Pr(X = 0) = p and Pr(X = 1) = 1 − p. Divergence between this biased variable
and a binary unbiased random variable (p = 0.5) is:

D(f0, f1) =
∫
X

φ(
f0(x)
f1(x)

)f1(x)dx,

where X = {0, 1} and f0(x) = px(1 − p)1−x and f1(x) = 0.5. Observe that for
D(f0, f1) = d then d is a solution of the equation

d =
φ(2p)− φ(2(1− p))

2
.

For example for L1 norm we get d =
|1− 2p|

2
. It is obvious that for p = 0 or 1 we

have d = 1
2 and for p = 0.5 we have d = 0. Function d is symmetric around p = 0.5

and attains its minimum in the point for which f0 = f1. Let us consider the case in
which p > 0.5 such that d ∈ [0, 0.5]. For p ≤ 0.5 d will have the same property due
to symmetry. Thus p = 0.6 can indicate an influent observation, which corresponds
to d = 0.1. Similarly for p = 0.75 is corresponding d is 0.25. We can design a scale
in which d > 0.25 indicates a influent observation and d ∈ [0.1; 0.25] a medium
influence. In general L1 norm is between 0 and 1. For different divergences φ and
different f0 and f1 we can decide in a similar way the cutoff point for detection of
the outliers data.

4.2. Monte Carlo estimator

The evaluation of Dφ is hard even for more simple expressions of δ(θ,y,x). One
method is based on the estimation of the integral using Monte Carlo method (see
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[7]). Thus Monte Carlo estimator will be:

D̂MC
φ =

1
N

N∑
s=1

φ(
δ(θ(s))

1
N

N∑
s=1

δ(θ(s)) π(θs)
πδ(θs)

) =
1
N

N∑
s=1

φ(
δ(θ(s))

1
N

N∑
s=1

fδ(y|θ(s),x)

f(y|θ(s),x)

),

where {θs}N
s=1 is a selection of size N from the a posteriori distribution π(θ|y).

For the case in which φ is Kullback divergence we have

D̂MC
KL,δ = − 1

N

N∑
s=1

log(
δ(θ(s))

1
N

N∑
s=1

δ(θ(s)) π(θs)
πδ(θs)

) = − 1
N

log

N∏
s=1

δ(θ(s))

1
N

N∑
s=1

δ(θ(s)) π(θs)
πδ(θs)

= − log
(

N∏
s=1

1
δ(θ(s))

)
1
N

1
N

N∑
s=1

δ(θ(s)) π(θs)
πδ(θs)

= log
PAM(δ(θ), π(θ)

πδ(θ))

GM(δ(θ))
,

where GM(δ(θ)) is the geometric mean of the values {δ(θs)}N
s=1, and

PAM(δ(θ), π(θ)
πδ(θ)) is the pondered arithmetic mean of the values {δ(θs)}N

s=1 with

ponders { π(θs)
πδ(θs)}

N
s=1.

Remark 4. Let us observe that for π(θ) = πδ(θ) we have PAM(δ(θ), π(θ)
πδ(θ)) =

AM(δ(θ)) thus the arithmetic mean of the values {δ(θs)}N
s=1. We obtain a general-

ization of the results from [17].
For the r-th deletion case we have:

D̂MC
KL,r,δ

= log
PAM( πδ(θ)

f(yr|θ,xr,y(r))π(θ) ,
π(θ)
πδ(θ))

GM( πδ(θ)
f(yr|θ,xr,y(r))π(θ))

= log
AM( 1

f(yr|θ,xr,y(r))
)

GM( πδ(θ)
f(yr|θ,xr,y(r))π(θ))

= log AM(
1

f(yr|θ,xr,y(r))
)− log GM(

πδ(θ)
f(yr|θ,xr,y(r))π(θ)

)

= log(
N∏

s=1

f(yr|θs,xr,y(r))
π(θs)
πδ(θs)

)
1
N − log

1

1
N

N∑
s=1

1
f(yr|θs,xr,y(r))

= log(
N∏

s=1

f(yr|θs,xr,y(r)))
1
N − log

1

1
N

N∑
s=1

1
f(yr|θs,xr,y(r))

+ log(
N∏

s=1

π(θs)
πδ(θs)

)
1
N
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= D̂MC
KL,r + log(

N∏
s=1

π(θs)
πδ(θs)

)
1
N .

where D̂MC
KL,r is the value of the discrepancy in case of no perturbation of the a pri-

ori distribution, the additional factor, which is an arithmetic mean, log(
N∏

s=1

π(θs)
πδ(θs)

)
1
N

is due to perturbation of the a priori distribution. A big value of D̂MC
KL,r,δ suggests

that the r−th observation is influent.
For the cases in which φ is χ2 divergence and variational divergence we get

D̂MC
χ2,δ

=
1
N

N∑
s=1

(
δ(θ(s))

1
N

N∑
s=1

δ(θ(s)) π(θs)
πδ(θs)

− 1)2

=
1
N

N∑
s=1

(
δ(θ(s))

1
N

N∑
s=1

δ(θ(s)) π(θs)
πδ(θs)

)2 − 2
N

N∑
s=1

δ(θ(s))

1
N

N∑
s=1

δ(θ(s)) π(θs)
πδ(θs)

+ 1

=
AM(δ2(θ))

PAM2(δ(θ), π(θ)
πδ(θ))

− 2
AM(δ(θ))

PAM(δ(θ), π(θ)
πδ(θ))

+ 1,

D̂MC
L1,δ

=

N∑
s=1

|δ(θ(s))− 1
2N

N∑
s=1

δ(θ(s)) π(θs)
πδ(θs) |

N∑
s=1

δ(θ(s)) π(θs)
πδ(θs)

.

As an alternative, the Laplace method can be used to obtain the posterior di-
vergence. In multidimensional problems and in more complicated models the imple-
mentation of this method is difficult while Monte Carlo method is straightforward.

4.3. Bootstrap estimator

Let us suppose that we have the selection X1, ..., Xn of random variables with
unknown density f and we want to generate the variables Y1, ..., Ym with the same
density f . We construct the estimation fn(x) = fn(x,X1, ..., Xn) of the density f(x)
and we take a sample of size m from fn. The new selection depends of the original
selection X1, ..., Xn. We want the new selection to be distributed like the original
one. In this case we say about this two selections that are indistinguishable

Because Y1, ..., Ym depends conditionally of X1, ..., Xn we define:

Dn = sup
A,B

|P (Y ∈ A,X ∈ B)− P (Y ∈ A)P (X ∈ B)|,
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for every A ∈ Rd, B ∈ Rnd borel sets where Y = Y1 and X = (X1, ..., Xn). We say
that the selections are asymptotic independent if lim

n→∞
Dn = 0.

In case in which X1, ..., Xn are used to construct a system and Y1, ..., Ym are
used for testing it, the dependence of the series produce optimist results. Without
the asymptotic independence we cannot hope that increasing n this bias becomes
smaller.

First we recall a result due to Scheffe.

Theorem 1. If f and g are densities on Rd then we have∫
|f − g| = 2 sup

B
|
∫

B
f −

∫
B

g|.

Theorem 2. If fn is an estimation of the density which is it self a density then
Dn ≤ E(

∫
|f − fn|).

We say that the sequence of estimations fn is consistent if and only if lim
n→∞

E(
∫
|f−

fn|) = 0 for all densities f . Observe that if the sequence is consistent then using
the above theorem the samples are asymptotic independent. Consistency does not
imply asymptotic independence.

As we see the Monte Carlo estimation is based on a selection from the a posteriori
distribution (unknown) π(θ|y). It is known that computing a posteriori density is
quite difficult even in particular cases (see [8], [9] and [18]) . From this reason if the
parameter θ is 1 dimensional, we approximate the a posteriori density π(θ|y) with
a kernel distribution estimation:

πN (θ|y) =
1

Nhd

N∑
i=1

K(
θ − θ(i)

h
),

where {θ(i)}N
i=1 is a selection from the a posteriori density π(θ|y). The sequences of

estimations πN (θ|y) is consistent if and only if lim
N→∞, h→0

Nhd = ∞ in probability.

Consistence is the base requirement in theory of bootstrap estimations.
Bootstrap estimation of Dφ will be:

D̂bstrp
φ =

1
m

m∑
s=1

φ(
δ(θ(s))

1
m

m∑
s=1

δ(θ(s)) π(θs)
πδ(θs)

),

where {θs}m
s=1 is a selection of size m from the kernel estimation of the a posteriori

distribution πN (θ|y). This estimation of Dφ depends of the number of bootstrap
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M. Andraşiu, A. Oprina, E. Simion, Gh. Simion - Monte-Carlo detection of...

samples and the kernel estimator πN (θ|y) of the a posteriori distribution π(θ|y).
Proceed similarly as in Monte Carlo estimation we obtain simple formulas for dif-
ferent cases for φ.

Remark 5. We have the following inequality:

|
∫

φ( δ(θ,y,x)∫
δ(θ,y,x)

π(θ)
πδ(θ)

π(θ|y)dθ
)π(θ|y)dθ−

∫
φ( δ(θ,y,x)∫

δ(θ,y,x)
π(θ)
πδ(θ)

π(θ|y)dθ
)πN (θ|y)dθ|

≤ 2 sup{φ(
δ(θ,y,x)∫

δ(θ,y,x) π(θ)
πδ(θ)π(θ|y)dθ

)}
∫
|π(θ|y)− πN (θ|y)|dθ,

which is proved with Scheffe’s result and Theorem 2.

Remark 6. Mean square error of the bootstrap sample is smaller then mean
square error of the Monte Carlo estimator.

5. Applications to the RCA models

In [17] are presented some applications of the Monte Carlo estimations for the
following models probit, logistic, overdisipated generalized linear and nonlinear re-
gression. We present a new application more exactly autoregressive model of first
order with random coefficients. The model RCA(1) has the form

Yt = θtYt−1 + et,

θt = µ + εt,

where et ∼ N(0, 1
τ ) and εt ∼ N(0, 1

τξ ) are independent. Parameter µ is a real
number. We have the following theorem.

Theorem 3. For the above model consider the following a priori distributions
on the parameter space: τ ∼ Gamma(α, β), µ ∼ U(0, 1), and for ξ the improper
distribution Jeffreys ([18]). Then we find the following a posteriori distributions:

τ |θ, ξ, µ, Y ∼ Gamma(n + α,
1
2
(

n∑
t=1

(Yt − θtYt−1)2 + ξ
n∑

t=1

(θt − µ)2 + 2β)),

ξ|τ, θ, µ, Y ∼ Gamma(
n

2
,
1
2
τ(

n∑
t=1

(θt − µ)2)),
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µ|θ, τ, ξ, Y ∼ N(
1
n

n∑
t=1

θt,
(τξ)−1

n
),

θt|µ, τ, ξ, Y ∼ N(
YtYt−1 + ξµ

Y 2
t−1 + ξ

, (τ(Y 2
t−1 + ξ))−1),

and the prediction density:

Yn+1|θ, θn+1, τ, ξ, µ, Y ∼ N(θn+1Yn, τ−1).

To construct a Monte Carlo estimator we must draw a sample from the prediction
distribution which is made by Gibbs sample. Monte Carlo estimator results by
applying the corresponding formulas.

A cryptographic application of RCA model is in the cryptanalysis of a stream
cipher system: the plain text can be viewed like the noise parameters et which a
priori distribution is known. Of course this distribution is not necessary a normal
one. The computations are done in a similar way. In robust techniques the normality
assumption does not influence the obtained results. The cipher algorithm is assumed
to be a memory algorithm.

Another cryptographic application is the reconstruction problem of the equivalent
linear complexity sequence and the plain text (here the cipher algorithm consists in
bitwise of a pseudorandom sequence with the plain text). The parameters θt can be
seen like algorithm settings.
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R.S.R., Bucuresti, 1985.
[15] A. Pankratz, Forecasting with Dynamic Regression Models, Wiley&Sons,

1991.
[16] J. A. Pardo and M. L. Menendez, Some statistical applications of generalized

Jensen difference measures for fuzzy information systems, Fuzzy Sets and Systems,
52, (1992), 169-180.

[17] F. Peng, Bayesian analysis of outlier problems using divergence measures,
The Canadian Journal of Statistics., 23, 2, (1995).

[18] V. Preda, Teoria Deciziilor Statistice, Ed. Academiei, 1991.
[19] J. Santer and E. Duffy, The Statistical Analysis of Discrete Data, Springer-

Verlag, 1989.
[20] B. Schneier, Applied Cryptography with Source Code in C++, Addison-

Wesley, 1996.
[21] B. Schneier, Cryptanalitic Attacks on Pseudorandom Number Generators,

Proc. Fast Software Encryption, 1998.
[22] O.A. Shalaby, Bayesian Inference in Truncated and in Censored Exponential

Distribution and Reliability Estimation, Commun. Statist.- Theory and Methods,
22, 1, 1993.

[23] E. Simion, Remarks on the Bayesian truncated estimation of Shannon en-
tropy using priori truncated Dirichlet distribution, 51, 2, (1999).

[24] E. Simion, Truncated Bayesian estimation of Renyi entropy and crypto-
graphic applications, Math. Reports, 52, 2, (2000).

241
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