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QUADRATIC FORMS, ELLIPTIC CURVES AND INTEGER
SEQUENCES
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Cangül

Abstract. In this work, we consider some properties of quadratic form F (x, y) =
2x2 +3xy+y2. We show that this form is universal. Later we determine the number
of rational points on elliptic curves related to F . In the last section, we define an
integer sequence A = An(P,Q) with parameters P and Q associated with F and
derive some algebraic identities on it.
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1. Preliminaries

In this section we give some preliminaries on binary quadratic forms. Recall that
a real binary quadratic form (or just a form) F is a polynomial in two variables x
and y of the type

F = F (x, y) = ax2 + bxy + cy2 (1)

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discriminant
of F is defined by the formula b2 − 4ac and is denoted by ∆ = ∆(F ). F is an
integral form if and only if a, b, c ∈ Z and is indefinite if and only if ∆(F ) > 0.
An indefinite definite form F = (a, b, c) of discriminant ∆ is said to be reduced if∣∣∣√∆− 2|a|

∣∣∣ < b <
√

∆. Most properties of quadratic forms can be giving by the aid

of extended modular group Γ (see [9]). Gauss (1777-1855) defined the group action
of Γ on the set of forms as follows:

F (x, y) = a(r2 + brs + cs2)x2 + (2art + bru + bts + 2csu)xy

+(at2 + btu + cu2)y2 (2)

for g =

(
r s
t u

)
= [r; s; t;u] ∈ Γ, that is, gF is gotten from F by making the

substitution x → rx + tu, y → sx + uy. Moreover, ∆(F ) = ∆(gF ) for all g ∈ Γ, that
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is, the action of Γ on forms leaves the discriminant invariant. If F is indefinite or
integral, then so is gF for all g ∈ Γ. Let F and G be two forms. If there exists a
g ∈ Γ such that gF = G, then F and G are called equivalent. If det g = 1, then
F and G are called properly equivalent and if det g = −1, then F and G are called
improperly equivalent. A quadratic form F is called ambiguous if it is improperly
equivalent to itself. An element g ∈ Γ is called an automorphism of F if gF = F .
If det g = 1, then g is called a proper automorphism of F and if det g = −1, then
g is called an improper automorphism of F . Let Aut(F )+ denote the set of proper
automorphisms of F and let Aut(F )− denote the set of improper automorphisms of
F (for further details on binary quadratic forms see [1, 2, 5, 8]).

Representation of integers (or primes) by binary quadratic forms has an impor-
tant role on the theory of numbers and many authors. We considered this problem
in [10, 11, 12, 13, 14, 15]. In fact, this problem intimately connected to reciprocity
laws. The major problem of the theory of quadratic forms was: Given a quadratic
form F , find all integers n that can be represented by F , that is, for which

F (x, y) = ax2 + bxy + cy2 = n. (3)

This problem was studied for specific quadratic forms by Fermat, and intensively
investigated by Euler. Fermat considered the representation of integers as sums of
two squares. It was, however, Gauss in the Disquisitions [6] who made the funda-
mental breakthrough and developed a comprehensive and beautiful theory of binary
quadratic forms. Most important was his definition of the composition of two forms
and his proof that the (equivalence classes of) forms with a given discriminant ∆
form a commutative group under this composition. A form F is called universal if
it represents all integers (see [3, 4]).

2. Quadratic Forms and Elliptic Curves

In this section, we will consider some properties of quadratic form F = (2, 3, 1)
and then consider the number of rational points on elliptic curves EF associated
with F .

Theorem 2.1.The form F = (2, 3, 1) is universal.
Proof. Let n be any integer. Then the quadratic equation

F (x, y) = 2x2 + 3xy + y2 = n

has a solution for (x, y) = (1− n, n− 2). Indeed,

F (1− n, n− 2) = 2(1− n)2 + 3(1− n)(n− 2) + (n− 2)2 = n.

So F is universal.
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Now we can give the following theorem concerning the automorphisms of F .
Theorem 2.2. For the universal for F = (2, 3, 1), we have

Aut(F )+ = {±[1; 0; 0; 1]} and Aut(F )− = {±[1;−3; 0;−1]}.

Proof. Let F = (2, 3, 1). Then by (2), the system of equations

2r2 + 3rs + s2 = 2
4rt + 3ru + 3ts + 2su = 3

2t2 + 3tu + u2 = 1

has a solution for r = 1, s = 0, t = 0, u = 1 and r = −1, s = 0, t = 0, u = −1, that
is, gF = F for g = ±[1; 0; 0; 1]. Note that det(g) = 1. So Aut(F )+ = {±[1; 0; 0; 1]}.
Also this system of equations has a solution for r = 1, s = −3, t = 0, u = −1 and
r = −1, s = 3, t = 0, u = 1, that is, gF = F for g = ±[1;−3; 0;−1]. Note that
det(g) = −1. Hence Aut(F )− = {±[1;−3; 0;−1]}.

From above theorem we can give the following corollary.
Corollary 2.3. The universal form F = (2, 3, 1) is ambiguous.
Proof. Recall that a form is ambiguous if it is improperly equivalent to itself,

that is, there exists at least one element g ∈ Γ such that gF = F . We show in
above theorem that the sets of improper automorphism of F is non-empty. So it is
ambiguous.

Now we generalize our definitions to finite fields Fp for a prime p ≥ 5. A binary
quadratic form F p over Fp is a form in two variables x and y of the type

F p = F p(x, y) = ax2 + bxy + cy2, (4)

where a, b, c ∈ Fp. We denote F p briefly by F p = (a, b, c). The discriminant of F p

is defined by the formula b2 − 4ac and is denoted by ∆p = ∆p(F p). Let

Γp = {gp = [r; s; t;u] : r, s, t, u ∈ Fp and ru− st ≡ ±1(mod p)} .

Then we can see Γp as the extended modular group for Fp. Let F p and Gp be two
forms over Fp. If there exists a gp ∈ Γp such that gpF p = Gp, then F p and Gp

are called equivalent. If det gp = 1, then F p and Gp are called properly equivalent
and if det gp = p − 1, then F p and Gp are called improperly equivalent. A form
F p is called ambiguous if it is improperly equivalent to itself. An element gp ∈ Γp
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is called an automorphism of F p if gpF p = F p. If det gp ≡ 1(mod p), then gp

is called a proper automorphism and if det gp ≡ −1(mod p), then gp is called an
improper automorphism. Let Aut(F p)+p denote the set of proper automorphisms
and let Aut(F p)−p denote the set of improper automorphisms. Let

F p(x, y) ≡ 2x2 + 3xy + y2 (mod p) (5)

be the quadratic form over Fp. Then we can give the following theorem.
Theorem 2.4. For the quadratic form F p, we have

#Aut(F p)+p = #Aut(F p)−p = p− 1

for every primes p ≥ 5.
Proof. Let F p = (2, 3, 1). Then we have the following system of equations

2r2 + 3rs + s2 ≡ 2(mod p)
4rt + 3ru + 3ts + 2su ≡ 3(mod p) (6)

2t2 + 3tu + u2 ≡ 1(mod p).

Then there are p−1
2 points r such that (6) has a solution like this [r1; s1; t1;u1] and

[p− r1; s2; t2;u2] with ru− st ≡ 1(mod p). So there are 2p−1
2 = p− 1 solutions and

hence #Aut(F p)+p = p−1. Also (6) has a solution [r2; s3; t3;u3] and [p−r2; s3; t3;u3]
with ru− st ≡ −1(mod p). So #Aut(F p)−p = p− 1.

Now we will consider the number of representations of integers n ∈ F∗p by uni-
versal quadratic form F = (2, 3, 1). It is known that [7], to each quadratic form F ,
there corresponds the theta series

℘(τ ;F ) = 1 +
∞∑

n=1

r(n;F )zn, (7)

where r(n;F ) is the number of representations of a positive integer n by the quadratic
form F . We redefine (7) to any finite field Fp. Let F p = (a, b, c) be a quadratic form
over Fp. Then (7) becomes

℘p(τ ;F p) = 1 +
∑

n∈F∗p

rp(n;F p)zn, (8)

where rp(n;F ) is the number of representations of n ∈ F∗p by F p. Note that the
theta series in (8) is determined by rp(n;F p). So we have the find out rp(n;F p). To
get this, we can give the following theorem.
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Theorem 2.5. For the quadratic form F p in (5), we get

rp(n;F p) = #Aut(F p)+p

for every primes p ≥ 5.
Proof. This is just to solve the quadratic equation

F p(x, y) = 2x2 + 3xy + y2 ≡ n(mod p)

for n ∈ F∗p. In fact, it is easily seen that this quadratic congruence has p− 1 integer
solutions. Note that #Aut(F p)+p = p− 1. So rp(n;F p) = #Aut(F p)+p .

An elliptic curve E over a finite field Fp is defined by an equation in the Weier-
strass form

E : y2 = x3 + ax2 + bx, (9)

where a, b ∈ Fp and b2(a2 − 4b) 6= 0 with discriminant ∆(E) = 16b2(a2 − 4b). If
∆(E) = 0, then E is not an elliptic curve, it is a curve of genus 0 (in fact it is a
singular curve). We can view an elliptic curve E as a curve in projective plane P 2,
with a homogeneous equation y2z = x3 + ax2z2 + bxz3, and one point at infinity,
namely (0, 1, 0). This point ∞ is the point where all vertical lines meet. We denote
this point by O. The set of rational points (x, y) on E

E(Fp) = {(x, y) ∈ Fp × Fp : y2 = x3 + ax2 + bx} ∪ {O}

is a subgroup of E. The order of E(Fp), denoted by #E(Fp), is defined as the
number of the points on E and is given by

#E(Fp) = p + 1 +
∑

x∈Fp

(
x3 + ax2 + bx

Fp

)
,

where ( .
Fp

) denotes the Legendre symbol (for the arithmetic of elliptic curves and
rational points on them see [16, 17]).

Now we want to construct a connection between quadratic forms and elliptic
curves. For this reason we first give the following definition.

Definition 2.6. Let F = (a, b, c) be a quadratic form of discriminant ∆. If b =
1 + ac, then F is called elliptic form.

From above definition, we can say that an elliptic form F is a form of the type
F = (a, 1 + ac, c) of discriminant ∆(F ) = (1− ac)2. Now we can give the following
theorem concerning the connection between elliptic forms and elliptic curves.
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Theorem 2.7. Let F be an elliptic form of discriminant ∆(F ). Then there
exists an elliptic curve EF of discriminant ∆(EF ) = 16a2c2∆(F ).

Proof. Let F = (a, b, c) be any quadratic form of discriminant ∆(F ) = b2 − 4ac.
Then we define the corresponding elliptic curve EF as

EF : y2 = ax3 + bx2 + cx. (10)

If we make the substitution y′ = ay and x′ = ax + 1 in (10), then we get

EF : y′2 = x′3 + (b− 3)x′2 + (3− 2b + ac)x′ + (−1 + b− ac). (11)

Note that F is elliptic form, that is, b = 1 + ac. So (11) becomes

EF : y′2 = x′3 + (ac− 2)x′2 + (1− ac)x′. (12)

The discriminant of EF is hence

∆(EF ) = 16(1− ac)2[(ac− 2)2 − 4(1− ac)] = 16a2c2(1− ac)2. (13)

Since ∆(F ) = (1 − ac)2, (13) becomes ∆(EF ) = 16a2c2∆(F ). This completes the
proof.

Now we can return our problem. Note that the form F = (2, 3, 1) is an elliptic
form. So the corresponding elliptic curve is hence

EF : y′2 = x′3 − x′ (14)

of discriminant ∆(EF ) = 64 by (13). It is proved in [17] that the order of EF is
p + 1 if p ≡ 3(mod 4); p + 1 + 2a if p ≡ 1(mod 4) and 1 is not a 4 th power mod p or
p+1−2a if p ≡ 1(mod 4) and 1 is a fourth power mod p, where a and b are integers
with b is even and a + b ≡ 1(mod 4). So we can give the following theorem.

Theorem 2.8. For the elliptic curve in (14) we have

#EF (Fp) =

{
p + 1 if p ≡ 3(mod 4)
p + 1± 2a if p ≡ 1(mod 4),

where a and b are integers with b is even and a + b ≡ 1(mod 4).

3. Integer Sequence

In this section, we consider the integer sequence associated with the universal
form obtained in Section 2. Note that the form F = (2, 3, 1) is universal. Now set

Q = F (k, 1) = 2k2 + 3k + 1 and P = F ′(k, 1) = 4k + 3 (15)
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for an integer k 6= −1 (If k = −1, then we have the constant sequence An = −1 for
all n ≥ 1). Then we define the sequence A = An(P,Q) as A0 = 0, A1 = 1 and

An = PAn−1 −QAn−2 = (4k + 3)An−1 − (2k2 + 3k + 1)An−2 (16)

for all n ≥ 2. The characteristic equation of (16) is x2−(4k+3)x+(2k2+3k+1) = 0.
The discriminant is D = (4k + 3)2 − 4(2k2 + 3k + 1) = 8k2 + 12k + 5 and the roots
of it are

α =
(4k + 3) +

√
D

2
and β =

(4k + 3)−
√

D

2
. (17)

Hence by Binet’s formula we get

An =
αn − βn

α− β
(18)

for n ≥ 1. Then we can give the following theorems.
Theorem 3.1. Let An denote the n− th number. Then

n∑
i=1

Ai =
An+1 − (2k2 + 3k + 1)An − 1

−2k2 + k + 1
. (19)

Proof. Note that An = (4k + 3)An−1 − (2k2 + 3k + 1)An−2. So An+2 = (4k +
3)An+1 − (2k2 + 3k + 1)An = An+1 + (4k + 2)An+1 − (2k2 + 3k + 1)An and hence

An+2 −An+1 = (4k + 2)An+1 − (2k2 + 3k + 1)An. (20)

Applying (20), we deduce that

n = 0 ⇒ A2 −A1 = (4k + 2)A1 − (2k2 + 3k + 1)A0

n = 1 ⇒ A3 −A2 = (4k + 2)A2 − (2k2 + 3k + 1)A1

n = 2 ⇒ A4 −A3 = (4k + 2)A3 − (2k2 + 3k + 1)A2

· · · (21)
n = n− 1 ⇒ An+1 −An = (4k + 2)An − (2k2 + 3k + 1)An−1

n = n ⇒ An+2 −An+1 = (4k + 2)An+1 − (2k2 + 3k + 1)An.

If we sum of both sides of (21), then we obtain

An+2 −A1 = [(4k + 2)− (2k2 + 3k + 1)](A1 + A2 + · · ·+ An)
+(4k + 2)An+1 − (2k2 + 3k + 1)A0. (22)

Note that A0 = 0 and A1 = 1. So (22) becomes

An+2 − 1 = (−2k2 + k + 1)(A1 + A2 + · · ·+ An) + (4k + 2)An+1
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and hence
A1 + A2 + · · ·+ An =

An+2 − (4k + 2)An+1 − 1
−2k2 + k + 1

. (23)

If we take An+2 = (4k + 3)An+1 − (2k2 + 3k + 1)An in (23), then we conclude that

A1 + A2 + · · ·+ An =
An+1 − (2k2 + 3k + 1)An − 1

−2k2 + k + 1
.

Now we want to derive a recurrence relation on An numbers. To get this we can
give the following theorem.

Theorem 3.2. Let An denote the n−th number. Then

A2n = (12k2 + 18k + 7)A2n−2 − (4k4 + 12k3 + 13k2 + 6k + 1)A2n−4

and

A2n+1 = (12k2 + 18k + 7)A2n−1 − (4k4 + 12k3 + 13k2 + 6k + 1)A2n−3

for all n ≥ 2.
Proof. Recall that An = (4k + 3)An−1 − (2k2 + 3k + 1)An−2. So A2n = (4k +

3)A2n−1 − (2k2 + 3k + 1)A2n−2 and hence

A2n = (4k + 3)A2n−1 − (2k2 + 3k + 1)A2n−2

= (4k + 3)
[
(4k + 3)A2n−2 − (2k2 + 3k + 1)A2n−3

]
− (2k2 + 3k + 1)A2n−2

=
[
(4k + 3)2 − (2k2 + 3k + 1)

]
A2n−2 − (4k + 3)(2k2 + 3k + 1)A2n−3

=
[
(4k + 3)2 − (2k2 + 3k + 1)

]
A2n−2

−(4k + 3)(2k2 + 3k + 1)
[
(4k + 3)A2n−4 − (2k2 + 3k + 1)A2n−5

]
=

[
(4k + 3)2 − (2k2 + 3k + 1)

]
A2n−2 − (4k + 3)2(2k2 + 3k + 1)A2n−4

+(4k + 3)(2k2 + 3k + 1)2A2n−5

=
[
(4k + 3)2 − (2k2 + 3k + 1)

]
A2n−2 − (2k2 + 3k + 1)A2n−2

+(2k2 + 3k + 1)A2n−2 − (4k + 3)2(2k2 + 3k + 1)A2n−4

+(4k + 3)(2k2 + 3k + 1)2A2n−5

=
[
(4k + 3)2 − 2(2k2 + 3k + 1)

]
A2n−2 + (2k2 + 3k + 1)A2n−2

−(4k + 3)2(2k2 + 3k + 1)A2n−4 + (4k + 3)(2k2 + 3k + 1)2A2n−5

=
[
(4k + 3)2 − 2(2k2 + 3k + 1)

]
A2n−2
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+(2k2 + 3k + 1)
[
(4k + 3)A2n−3 − (2k2 + 3k + 1)A2n−4

]
−(4k + 3)2(2k2 + 3k + 1)A2n−4 + (4k + 3)(2k2 + 3k + 1)2A2n−5

=
[
(4k + 3)2 − 2(2k2 + 3k + 1)

]
A2n−2 + (4k + 3)(2k2 + 3k + 1)A2n−3

−(2k2 + 3k + 1)2A2n−4 − (4k + 3)2(2k2 + 3k + 1)A2n−4

+(4k + 3)(2k2 + 3k + 1)2A2n−5

=
[
(4k + 3)2 − 2(2k2 + 3k + 1)

]
A2n−2

+(4k + 3)(2k2 + 3k + 1)
[
(4k + 3)A2n−4 − (2k2 + 3k + 1)2A2n−5

]
−(2k2 + 3k + 1)2A2n−4 − (4k + 3)2(2k2 + 3k + 1)A2n−4

+(4k + 3)(2k2 + 3k + 1)2A2n−5

=
[
(4k + 3)2 − 2(2k2 + 3k + 1)

]
A2n−2 + (4k + 3)2(2k2 + 3k + 1)A2n−4

−(4k + 3)(2k2 + 3k + 1)2A2n−5 − (2k2 + 3k + 1)2A2n−4

−(4k + 3)2(2k2 + 3k + 1)A2n−4 + (4k + 3)(2k2 + 3k + 1)2A2n−5

=
[
(4k + 3)2 − 2(2k2 + 3k + 1)

]
A2n−2 − (2k2 + 3k + 1)2A2n−4

= (12k2 + 18k + 7)A2n−2 − (4k4 + 12k3 + 13k2 + 6k + 1)A2n−4.

The other assertion can be proved similarly.

We can also give the n−th number An by using the powers of (4k + 3) and
(8k2 + 12k + 5). To get this we can give the following theorem.

Theorem 3.3.Let An denote the n−th number. Then

An =
1

2n−1



∑n−2
2

i=1

(
n

2i + 1

)
(4k + 3)n−(2i+1)(8k2 + 12k + 5)i if n is even

∑n−1
2

i=1

(
n

2i + 1

)
(4k + 3)n−(2i+1)(8k2 + 12k + 5)i if n is odd

for all n ≥ 1.
Proof. Let n be even. Then by Binet’s formula, we get

An =
αn − βn

α− β

=

(
4k+3+

√
D

2

)n
−
(

4k+3−
√

D
2

)n

√
D

=
1

2n
√

D

[
(4k + 3 +

√
D)n − (4k + 3−

√
D)n

]
17
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=
1

2n−1
√

D


(

n
1

)
(4k + 3)n−1

√
D +

(
n
3

)
(4k + 3)n−3

√
D

3
+ · · ·

+

(
n

n− 1

)
(4k + 3)

√
D

n−1



=
1

2n−1


(

n
1

)
(4k + 3)n−1 +

(
n
3

)
(4k + 3)n−3D + · · ·

+

(
n

n− 1

)
(4k + 3)D

n−2
2


=

1
2n−1


n−2

2∑
i=1

(
n

2i + 1

)
(4k + 3)n−(2i+1)(8k2 + 12k + 5)i

 .

The other case can be proved similarly.

We can reformulate the n−th number An by using the powers of (4k + 3) and
(2k2 + 3k + 1). To get this we can give the following theorem without giving its
proof since it can be proved as in same way that Theorem 3.3 was proved.

Theorem 3.4. Let An denote the n−th number. Then

An =



∑n−2
2

i=0

(
n− 1− i

i

)
(−1)i(4k + 3)n−(2i+1)(2k2 + 3k + 1)i if n is even

∑n−1
2

i=0

(
n− 1− i

i

)
(−1)i(4k + 3)n−(2i+1)(2k2 + 3k + 1)i if n is odd

Example 3.5. Let k = 5. Then An = 23An−1 − 66An−2 and hence

0, 1, 23, 463, 9131, 179455, 35224819, 69226807, 1359578507, 26701336399, · · · .

Let n = 5. Then

A5 =
2∑

i=0

(
4− i

i

)
(−1)i235−(2i+1)66i = 234 − 3 · 232 · 66 + 662 = 179455

and let n = 8, then

A8 =
3∑

i=0

(
7− i

i

)
(−1)i238−(2i+1)66i

= 237 − 6 · 235 · 66 + 10 · 233 · 662 − 4 · 23 · 663

= 1359578507.
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Now we can give the following theorems related to powers of α and β.
Theorem 3.6. Let An denote the n−th number. Then

An+1 − (2k2 + 3k + 1)An−1 = αn + βn (24)

for every n ≥ 1.
Proof. Since An+1 = (4k + 3)An − (2k2 + 3k + 1)An−1, we get

An+1 − (2k2 + 3k + 1)An−1

=
[
(4k + 3)An − (2k2 + 3k + 1)An−1

]
− (2k2 + 3k + 1)An−1

= (4k + 3)An − 2(2k2 + 3k + 1)An−1

= (4k + 3)
(

αn − βn

α− β

)
− 2(2k2 + 3k + 1)

(
αn−1 − βn−1

α− β

)

=
4k + 3√

D
(αn − βn)− 2(2k2 + 3k + 1)√

D

(
αn

α
− βn

β

)
=

4k + 3√
D

(αn − βn)− 2√
D

(αnβ − αβn)

= αn
[
4k + 3− 2β√

D

]
+ βn

[−4− 3 + 2α√
D

]
= αn + βn.

Theorem 3.7. Let An denote the n−th number. Then

2An+1 − (4k + 3)An = αn + βn (25)

for every n ≥ 1.
Proof. We proved in above theorem that αn + βn = An+1− (2k2 + 3k + 1)An−1.

So

An−1 =
An+1 − (αn + βn)

2k2 + 3k + 1

and hence

An + An+1 = An + [(4k + 3)An − (2k2 + 3k + 1)An−1]
= (4k + 4)An − (2k2 + 3k + 1)An−1

= (4k + 4)An − (2k2 + 3k + 1)
An+1 − (αn + βn)

2k2 + 3k + 1
= (4k + 4)An −An+1 + (αn + βn).

Consequently, 2An+1 − (4k + 3)An = αn + βn.
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Theorem 3.8. Let An denote the n−th number. Then

(4k + 3)An − (4k2 + 6k + 2)An−1 = αn + βn (26)

and

αn + βn =



1
2n−1

∑n
2
i=0

(
n
2i

)
(4k + 3)n−2i(8k2 + 12k + 5)i if n is even

1
2n−1

∑n−1
2

i=0

(
n
2i

)
(4k + 3)n−2i(8k2 + 12k + 5)i if n is odd

for n ≥ 1.
Proof. The first assertion can be proved as in the same way that Theorems 3.6

and 3.7 were proved. The second assertion is just an application to Binomial series.

Now we set the following identities

M =
−4k2 − 2k + 1 +

√
D

2
√

D
, N = −2k2 + k + 1, L =

4k + 5 +
√

D

2
√

D

H =
40k3 + 90k2 + 73k + 21 + (14k2 + 21k + 9)

√
D

2
√

D

K =
4k2 + 2k − 1 +

√
D

(4k2 + 6k + 2)
√

D
.

Then we can give the following theorem.
Theorem 3.9. Let An denote the n−th number. Then

1. The sum of first non-zero An number is 1
N [Mαn −Mβn − 1].

2. An + An+1 = Lαn − Lβn for n ≥ 0.

3. An+1 + An−1 = Hαn−2 −Hβn−2 for n ≥ 2.

4. An −An−1 = Kαn −Kβn for n ≥ 1.

Proof. 1. We proved in Theorem 3.6 that αn +βn = An+1− (2k2 +3k +1)An−1.
So

αn+1 + βn+1 = An+2 − (2k2 + 3k + 1)An

= [(4k + 3)An+1 − (2k2 + 3k + 1)An]− (2k2 + 3k + 1)An

= (4k + 3)An+1 − 2(2k2 + 3k + 1)An

= (4k + 2)An+1 + An+1 − 2(2k2 + 3k + 1)An

= [An+1 − (2k2 + 3k + 1)An] + (4k + 2)An+1 − (2k2 + 3k + 1)An
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and hence

An+1 − (2k2 + 3k + 1)An

= αn+1 + βn+1 − (4k + 2)An+1 + (2k2 + 3k + 1)An

= αn+1 + βn+1 − (4k + 2)

(
αn+1 − βn+1

α− β

)
+ (2k2 + 3k + 1)

(
αn − βn

α− β

)

= αn

(
α− (4k + 2)α√

D
+

2k2 + 3k + 1√
D

)
+ βn

(
β +

(4k + 2)β√
D

− 2k2 + 3k + 1√
D

)

= αn

(
−4k2 − 2k + 1 +

√
D

2
√

D

)
− βn

(
−4k2 − 2k + 1−

√
D

2
√

D

)
= Mαn −Mβn.

Hence applying Theorem 3.1, the result is clear.
2. Note that An+1 = (4k + 3)An − (2k2 + 3k + 1)An−1. So

An+1 + An = (4k + 4)An − (2k2 + 3k + 1)An−1

= (4k + 4)
(

αn − βn

√
D

)
− (2k2 + 3k + 1)

(
αn−1 − βn−1

√
D

)

= (4k + 4)
(

αn − βn

√
D

)
−
(

βαn − αβn

√
D

)
= αn

(
4k + 4− β√

D

)
− βn

(
4k + 4− α√

D

)
= αn

(
4k + 5 +

√
D

2
√

D

)
− βn

(
4k + 5−

√
D

2
√

D

)
= Lαn − Lβn.

3. We proved in Theorem 3.7 that αn + βn = 2An+1 − (4k + 3)An. So we get

αn + βn = 2An+1 − (4k + 3)An

= 2An+1 − (4k + 3)[(4k + 3)An−1 − (2k2 + 3k + 1)An−2]
= 2An+1 − (4k + 3)2An−1 + (4k + 3)(2k2 + 3k + 1)An−2

= 2(An+1 + An−1)− (16k2 + 24k + 11)An−1 + (8k3 + 18k2 + 13k + 3)An−2

and hence

An+1 + An−1

=
αn + βn + (16k2 + 24k + 11)An−1 − (8k3 + 18k2 + 13k + 3)An−2

2
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=
αn + βn + (16k2+24k+11)√

D
(αn−1 − βn−1)− 8k3+18k2+13k+3√

D
(αn−2 − βn−2)

2

=
αn

2

[
1 +

16k2 + 24k + 11√
D

· 1
α
− 8k3 + 18k2 + 13k + 3√

D
· 1
α2

]

+
βn

2

[
1− 16k2 + 24k + 11√

D
· 1
β

+
8k3 + 18k2 + 13k + 3√

D
· 1
β2

]

= αn−2

[
40k3 + 90k2 + 73k + 21 + (14k2 + 21k + 9)

√
D

2
√

D

]

−βn−2

[
40k3 + 90k2 + 73k + 21− (14k2 + 21k + 9)

√
D

2
√

D

]
= Hαn−2 −Hβn−2.

4. We proved in Theorem 3.6 that αn +βn = An+1− (2k2 +3k +1)An−1. Hence

An+1 = αn + βn + (2k2 + 3k + 1)An−1. (27)

Further An+1 − (2k2 + 3k + 1)An = Mαn −Mβn. Hence

An+1 = Mαn −Mβn + (2k2 + 3k + 1)An. (28)

Applying (27) and (28), we obtain αn + βn + (2k2 + 3k + 1)An−1 = Mαn −Mβn +
(2k2 + 3k + 1)An and hence

An −An−1 =
αn + βn −Mαn + Mβn

2k2 + 3k + 1

=
αn(1−M) + βn(1 + M)

2k2 + 3k + 1

=
αn
(
1− −4k2−2k+1+

√
D

2
√

D

)
+ βn

(
1 + −4k2−2k+1−

√
D

2
√

D

)
2k2 + 3k + 1

= αn

(
4k2 + 2k − 1 +

√
D

(4k2 + 6k + 2)
√

D

)
− βn

(
4k2 + 2k + 1−

√
D

(4k2 + 6k + 2)
√

D

)
= Kαn −Kβn.

Now we can formulate the sum of even and odd numbers A2n and A2n−1, respec-
tively by using the powers of α and β.
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Theorem 3.10. Let An denote the n−th number. Then

n∑
i=1

A2i =


H
∑n

2
i=1 α4i−3 −H

∑n
2
i=1 β4i−3 if n is even

α2n
√

D
+ H

∑n−1
2

i=1 α4i−3 − β2n
√

D
−H

∑n−1
2

i=1 β4i−3 if n is odd

and

n∑
i=1

A2i−1 =


H
∑n

2
i=1 α4i−4 −H

∑n
2
i=1 β4i−4 if n is even

α2n−1
√

D
+ H

∑n−1
2

i=1 α4i−4 − β2n−1
√

D
−H

∑n−1
2

i=1 β4i−4 if n is odd

Proof. We proved in (3) of Theorem 3.9 that An+1 + An−1 = Hαn−2 −Hβn−2

for n ≥ 2. Now let n be even. Then
n∑

i=1

A2i = (A2 + A4) + (A6 + A8) + · · ·+ (A2n−2 + A2n)

= (Hα−Hβ) + (Hα5 −Hβ5) + · · ·+ (Hα2n−3 −Hβ2n−3)
= H(α + α5 + · · ·+ α2n−3)−H(β + β5 + · · ·+ β2n−3)

= H

n
2∑

i=1

α4i−3 −H

n
2∑

i=1

β4i−3

and let n be odd, then
n∑

i=1

A2i = (A2 + A4) + (A6 + A8) + · · ·+ (A2n−4 + A2n−2) + A2n

= (Hα−Hβ) + (Hα5 −Hβ5) + · · ·+ (Hα2n−5 −Hβ2n−5) +
α2n − β2n

α− β

=
α2n

√
D

+ H(α + α5 + · · ·+ α2n−5)− β2n

√
D
−H(β + β5 + · · ·+ β2n−5)

=
α2n

√
D

+ H

n−1
2∑

i=1

α4i−3 − β2n

√
D
−H

n−1
2∑

i=1

β4i−3.

The other assertion can be proved similarly.

Applying the formal power series we get the following theorem.
Theorem 3.11. Let An denote the n−th number. Then

∞∑
n=0

Anxn =
x

1− (4k + 3)x + (2k2 + 3k + 1)x2
.
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For the An numbers, we set

M(An) =

(
4k + 3 −2k2 − 3k − 1

1 0

)
and N(An) =

(
4k + 3 1

1 0

)
(29)

Then we can give the following theorem.
Theorem 3.12. Let An denote the n−th number. Then

1. (
An

An−1

)
= M(An)n−1

(
1
0

)
(30)

for all n ≥ 2.

2. (
An+1 An

An An−1

)
= M(An)n−1N(An) (31)

for all n ≥ 1.

Proof. 1. We prove the theorem by induction on n. Let n = 2. Then(
A2

A1

)
=

(
4k + 3 −2k2 − 3k − 1

1 0

)(
1
0

)
=

(
4k + 3

1

)
.

So (30) is true for n = 2. Let us assume that this relation is satisfied for n− 1, that
is, (

An−1

An−2

)
= M(An)n−2

(
1
0

)
.

Then it is easily seen that(
An

An−1

)
= M(An)n−1

(
1
0

)
= M(An) ·M(An)n−2

(
1
0

)
= M(An)

(
An−1

An−2

)

=

(
(4k + 3)An−1 − (2k2 + 3k + 1)An−2

An−1

)
.

Hence (30) is true for n since An = (4k + 3)An−1 − (2k2 + 3k + 1)An−2.
2. We prove it by induction on n. Let n = 1. Then(

A2 A1

A1 A0

)
= N =

(
A2 A1

A1 A0

)
.
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So (31) is true for n = 1. Let us assume that this relation is satisfied for n− 1, that
is, (

An An−1

An−1 An−2

)
= M(An)n−2N(An).

Then it is easily seen that(
An+1 An

An An−1

)
= M(An)M(An)n−2N(An) = M(An)

(
An An−1

An−1 An−2

)

=

(
(4k + 3)An − (2k2 + 3k + 1)An−1 (4k + 3)An−1 − (2k2 + 3k + 1)An−2

An An−1

)
.

This completes the proof.

From above theorem we can give the following result.
Theorem 3.13. Let An denote the n−th number. Then

1. An+1An−1 −A2
n = −(2k2 + 3k + 1)n−1.

2. A2
n+1 − (4k + 3)An+1An + (2k2 + 3k + 1)A2

n = (2k2 + 3k + 1)n.

Proof. 1. Note that det(N(An)) = −1 and det(M(An)) = 2k2+3k+1. So taking
the determinant of both sides of (31) yields An+1An−1 −A2

n = −(2k2 + 3k + 1)n−1.
2. Recall that An = (4k+3)An−1− (2k2 +3k+1)An−2. So An+1 = (4k+3)An−

(2k2 + 3k + 1)An−1 and hence

A2
n+1 − (4k + 3)An+1An + (2k2 + 3k + 1)A2

n

= [(4k + 3)An − (2k2 + 3k + 1)An−1]2

−(4k + 3)[(4k + 3)An − (2k2 + 3k + 1)An−1]An + (2k2 + 3k + 1)A2
n

= (4k + 3)2A2
n − 2(4k + 3)(2k2 + 3k + 1)AnAn−1 + (2k2 + 3k + 1)2A2

n−1

−(4k + 3)2A2
n + (4k + 3)(2k2 + 3k + 1)An−1An + (2k2 + 3k + 1)A2

n

= −(4k + 3)(2k2 + 3k + 1)AnAn−1 + (2k2 + 3k + 1)2A2
n−1 + (2k2 + 3k + 1)A2

n

= −(2k2 + 3k + 1)An−1[(4k + 3)An − (2k2 + 3k + 1)An−1] + (2k2 + 3k + 1)A2
n

= −(2k2 + 3k + 1)An−1An+1 + (2k2 + 3k + 1)A2
n

= −(2k2 + 3k + 1)[An+1An−1 −A2
n]

= −(2k2 + 3k + 1)[−(2k2 + 3k + 1)n−1]
= (2k2 + 3k + 1)n.
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3.1. Simple Continued Fraction Expansion of An Numbers In this sub
section, we want to consider the continued fraction expansion of An numbers. Recall
that a continued fraction is an expression of the form

a0 +
b0

a1 + b1

a2 + · · ·
· · ·
an−3 + bn−3

an−2+
bn−2
an−1

.

(32)

In general, the an’ s and bn’ s of (32) may be real or complex numbers. However,
if each bn is equal to 1 and each an is an integer such that an > 0 for n > 1, then
the continued fraction is called simple continued fraction. So a simple continued
fraction of order n is an expression of the form

a0 +
1

a1 + 1

a2 + · · ·
· · ·

+ 1
an

(33)

which can be abbreviated as [a0; a1, a2, · · · , an]. Now we first give the following result.
Theorem 3.14. Let An denote the n−th number.

1. If k = 1, then An = 6n−1 + 6n−2 + · · ·+ 61 + 1 for every n ≥ 1.

2. If k = 1, then An+1 − 6An = 1 for every n ≥ 1.

3. If k = 0, then An+1 −An−1 = αn + βn for every n ≥ 1.

Proof. 1. Let k = 1. Then An = 7An−1 − 6An−2 and also α = 6 and β = 1. So
by Binet’s formula we deduce that

An =
αn − βn

α− β
=

6n − 1
6− 1

= 6n−1 + 6n−2 + · · ·+ 61 + 1.

2. Applying Binet’s formula we get

An+1 − 6An =
αn+1 − βn+1

α− β
− 6

αn − βn

α− β
= αn

(
α− 6

5

)
+ βn

(−β + 6
5

)
= βn = 1

since α = 6 and β = 1.
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3. Let k = 0. Then An = 3An−1 −An−2. Also α = 3+
√

5
3 and β = 3−

√
5

2 . So

An+1 −An−1 =

(
αn+1 − βn+1

α− β

)
−
(

αn−1 − βn−1

α− β

)

= αn

(
α− 1

α√
5

)
+ βn

(
−β + 1

β√
5

)

= αn

(
α2 − 1
α
√

5

)
+ βn

(
1− β2

β
√

5

)
= αn + βn.

Now we can return our problem.
Theorem 3.15. Let An denote the n−th number.

1. If k = 1, then

An+1

An
= [6; 6n−1 + 6n−2 + · · ·+ 61 + 1]

A2n+1

A2n−1
= [36; 62n−3 + 62n−5 + · · ·+ 6, 6 + 1]

for every n ≥ 1 and

A2n

A2n−2
= [36; 62n−4 + 62n−6 + · · ·+ 62 + 1]

for every n ≥ 3.

2. If k = 0, then

An+1

An
= [2; (1, 1)2n−3, 2]

A2n+1

A2n−1
= [6; (1, 5)n−2, 1, 6 + 1],

where (1, 1)2n−3 means that there are 2n−3 successive terms 1, 1 and (1, 5)n−2

means that there are n− 2 successive terms 1, 5 for every n ≥ 2 and

A2n

A2n−2
= [6; (1, 5)n−3, 1, 6],

where (1, 5)n−3 means that there are n−3 successive terms 1, 5 for every n ≥ 3.
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Proof. 1. Let k = 1. Then An = 6n−1 + 6n−2 + · · · + 61 + 1 by (1) of Theorem
3.14. A straightforward calculation shows that

[6; 6n−1 + 6n−2 + · · ·+ 61 + 1] = 6 +
1

6n−1 + 6n−2 + · · ·+ 6 + 1

=
6n + 6n−1 + · · ·+ 6 + 1

6n−1 + 6n−2 + · · ·+ 6 + 1

=
An+1

An
.

Similarly we find that

[36; 62n−3 + 62n−5 + · · ·+ 6, 6 + 1] = 36 +
1

62n−3 + 62n−5 + · · ·+ 6 + 1
6+1

= 36 +
6 + 1

(6 + 1)(62n−3 + 62n−5 + · · ·+ 6) + 1

=
62n + 62n−1 + · · ·+ 62 + 6 + 1
62n−2 + 62n−3 + · · ·+ 6 + 1

=
A2n+1

A2n−1

and

[36; 62n−4 + 62n−6 + · · ·+ 62 + 1] = 36 +
1

62n−4 + 62n−6 + · · ·+ 62 + 1

=
62n−2 + 62n−4 + · · ·+ 64 + 62

62n−4 + 62n−6 + · · ·+ 62 + 1

=
62n−1 + 62n−2 + · · ·+ 62 + 6 + 1
62n−3 + 62n−4 + · · ·+ 62 + 6 + 1

=
A2n

A2n−2
.

2. It can be proved similarly.
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