ON SOME DOUBLE $\overline{\lambda}(\Delta, F)$ –STATISTICAL CONVERGENCE OF FUZZY NUMBERS

Ayhan esi

ABSTRACT. In this paper, we introduce the new concepts of double Δ -statistical convergence, strongly double $\overline{\lambda}(\Delta, F) - summable$ sequences and double $\overline{\lambda}(\Delta, F) - statistical$ convergence of sequences of fuzzy numbers. We give some inclusion relations related to these concepts.

2000 Mathematics Subject Classification: 40A05, 40C05.

1.INTRODUCTION

Throughout the paper, a double sequence is denoted by $X = (X_{k,l})$ of fuzzy numbers and denote $w^2(F)$ denote all sequences of fuzzy numbers. Nanda [4] studied single sequence of fuzzy numbers and showed that the set of all convergent sequences of fuzzy numbers form a complete metric space. In [2], Savaş studied the concept double convergent sequences of fuzzy numbers. Savaş [1] studied the classes of difference sequences of fuzzy numbers $c(\Delta, F)$ and $l_{\infty}(\Delta, F)$. Later in [3] Savaş studied the concepts of strongly double $[V, \overline{\lambda}]$ –summable and double $S_{\overline{\lambda}}$ –convergent sequences for double sequences of fuzzy numbers.

In this paper, we continue to study the concepts of strongly double $\overline{\lambda}(\Delta, F)$ –summable and $S^2_{\overline{\lambda}}(\Delta)$ –convergence for double sequences of fuzzy numbers.

2. PRELIMINARIES

Before continuing with the discussion, we pause to establish some notations. Let D denote the set of all closed bounded intervals $A = [\underline{A}, \overline{A}]$ on the real line \mathbb{R} , where \underline{A} and \overline{A} denote the end points of A. For $A, B \in D$, we define

$$A \leq B$$
 iff $\underline{A} \leq \underline{B}$ and $A \leq B$,
 $\rho(A, B) = \max\left(|\underline{A} - \underline{B}|, |\overline{A} - \overline{B}|\right).$

It is not hard to see that ρ defines a metric on D and $\rho(A, B)$ is called the distance between the intervals A and B. Also, it is easy to see that \leq defined above is a partial relation in D.

A fuzzy number is a fuzzy subset of real line \mathbb{R} which is bounded, convex and normal. Let $L(\mathbb{R})$ denote the set of all fuzzy numbers which are upper semicontinuous and have compact support. In other words if $X \in L(\mathbb{R})$ then for any $\alpha \in [0, 1]$, X^{α} is compact set in \mathbb{R} , where

$$X^{\alpha} = \frac{t: X(t) \ge \alpha \text{ if } \alpha \in (0, 1]}{t: X(t) > 0 \quad \text{if} \quad \alpha = 0}.$$

Define a map $d: L(\mathbb{R}) x L(\mathbb{R}) \to \mathbb{R}$ by the rule $d(X, Y) = \sup_{\alpha \in [0,1]} \rho(X^{\alpha}, Y^{\alpha})$. It is straighforward to see that d is a metric in $L(\mathbb{R})$. For $X, Y \in L(\mathbb{R})$, define

 $X \leq Y$ iff $X^{\alpha} \leq Y^{\alpha}$ for any $\alpha \in [0, 1]$.

A metric d on $L(\mathbb{R})$ is said to be translation invariant metric if

$$d(X+Z,Y+Z) = d(X,Y)$$
 for $X,Y,Z \in L(\mathbb{R})$.

Now we give some new definitions.

Definition 2.1. A double sequence $X = (X_{k,l})$ of fuzzy numbers is said to be double Δ - convergent in the Pringsheim's sense or P_{Δ} - convergent to a fuzzy number X_o if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$d(\Delta X_{k,l}, X_o) < \varepsilon \text{ for } k, l > N$$

where $\Delta X_{k,l} = X_{k,l+1} - X_{k,l} - X_{k+1,l} + X_{k+1,l+1}$ and we denote $P - \lim \Delta X = X_o$. The number X_o is called the Pringsheim limit of ΔX . More exactly, we say that a double sequence $(\Delta X_{k,l})$ converges to a finite fuzzy number X_o if ΔX tend to X_o as both k and l tends to infinity independently of one another. Let $c^2(\Delta, F)$ denote the set of all double convergent sequences of fuzzy numbers.

Definition 2.2. A double sequence $X = (X_{k,l})$ of fuzzy numbers is said to be double Δ – bounded if there exists a positive number K such that if the set

$$\{\Delta X_{k,l}: k, l \in \mathbb{N}\}\$$

We denote the set of all double Δ -bounded sequences of fuzzy numbers by $l^2_{\infty}(\Delta, F)$.

Definition 2.3. A double sequence $X = (X_{k,l})$ of fuzzy numbers is said to be double Δ – statistically convergent to X_o provided that for each $\varepsilon > 0$,

$$P - \lim_{m,n} \frac{1}{mn} \left| \{ (k,l) : k \le m, l \le n; d\left(\Delta X_{k,l}, X_o\right) \ge \varepsilon \} \right| = 0.$$

In this case we write $S^2 - \lim \Delta X = X_o$ or $\Delta X_{k,l} \to X_o (S^2 (\Delta, F))$ and we denote the set of all double Δ – statistically convergent sequences of fuzzy numbers by $S^2 (\Delta, F)$.

Definition 2.4. Let $\beta = (\beta_m)$ and $\mu = (\mu_n)$ be two nondecreasing sequences of positive real numbers such that each tend to infinity and $\beta_{m+1} \leq \beta_m + 1, \beta_1 = 1$ and $\mu_{n+1} \leq \mu_n + 1, \mu_1 = 1$. A double sequence $X = (X_{k,l})$ of fuzzy numbers is said to be strongly double $\overline{\lambda}(\Delta, F)$ – summable if there is a fuzzy number X_o such that

$$P - \lim_{m,n} \frac{1}{\lambda_{m,n}} \sum_{(k,l) \in I_{m,n}} d\left(\Delta X_{k,l}, X_o\right) = 0$$

where $\lambda_{m,n} = \beta_m . \mu_n$ and $I_{m,n} = \{(k,l) : m - \beta_m + 1 \le k \le m, n - \mu_n + 1 \le l \le n\}$. We denote the set of strongly double $\overline{\lambda}(\Delta, F)$ - summable sequences by $[V_{\overline{\lambda}}](\Delta, F)$. If $\lambda_{m,n} = mn$ for all $m, n \in \mathbb{N}$, then the class of strongly double $\overline{\lambda}(\Delta, F)$ - summable sequences reduce to $[C, 1, 1](\Delta, F)$, the class of strongly double Cesaro summable sequences of fuzzy numbers defined as follows:

$$P - \lim_{m,n} \frac{1}{mn} \sum_{k,l=1,1}^{m,n} d\left(\Delta X_{k,l}, X_o\right) = 0.$$

Definition 2.5. A double sequence $X = (X_{k,l})$ of fuzzy numbers is said to be double $\overline{\lambda}(\Delta, F)$ – statistically convergent or $S^2_{\overline{\lambda}}(\Delta, F)$ – convergent to a fuzzy number X_o if for every $\varepsilon > 0$,

$$P - \lim_{m,n} \frac{1}{\lambda_{m,n}} \left| \{ (k,l) \in I_{m,n} : d\left(\Delta X_{k,l}, X_o\right) \ge \varepsilon \} \right| = 0.$$

In this case we write $S_{\overline{\lambda}}^2 - \lim \Delta X = X_o$ or $\Delta X_{k,l} \to X_o \left(S_{\overline{\lambda}}^2(\Delta, F) \right)$ and we denote the set of all double $\overline{\lambda}(\Delta, F) - statistically \ convergent$ sequences of fuzzy numbers by $S_{\overline{\lambda}}^2(\Delta, F)$. If $\lambda_{m,n} = mn$ for all $m, n \in \mathbb{N}$, we write $S^2 - \lim \Delta X = X_o$ or $\Delta X_{k,l} \to X_o \left(S^2(\Delta, F) \right)$ and the set $S_{\overline{\lambda}}^2(\Delta, F)$ reduces to $S^2(\Delta, F)$.

We need the following proposition in future.

Proposition 2.1. If d is a translation invariant metric on $L(\mathbb{R})$, then

$$d\left(\Delta X + \Delta Y, \overline{0}\right) \le d\left(\Delta X, \overline{0}\right) + d\left(\Delta Y, \overline{0}\right).$$

Proof. The proof is clear so we omitted it.

3.MAIN RESULTS

Theorem 3.1. A double sequence $X = (X_{k,l})$ of fuzzy numbers is strongly double $\overline{\lambda}(\Delta, F)$ -summable to the fuzzy number X_o , then it is double $\overline{\lambda}(\Delta, F)$ -statistically convergent to X_o .

Proof. Given $\varepsilon > 0$. Then

$$\frac{1}{\lambda_{m,n}} \sum_{(k,l)\in I_{m,n}} d\left(\Delta X_{k,l}, X_o\right) \ge \frac{1}{\lambda_{m,n}} \sum_{\substack{(k,l)\in I_{m,n}\\d\left(\Delta X_{k,l}, X_o\right)\ge\varepsilon}} d\left(\Delta X_{k,l}, X_o\right) \ge \frac{\varepsilon}{\lambda_{m,n}} \left|\left\{(k,l)\in I_{m,n}: d\left(\Delta X_{k,l}, X_o\right)\ge\varepsilon\right\}\right|.$$

The result follows from this inequality.

Theorem 3.2. If a double Δ – bounded double sequence of fuzzy numbers $X = (X_{k,l})$ is double $\overline{\lambda}(\Delta, F)$ – statistically convergent to the fuzzy number X_o , then it is strongly double $\overline{\lambda}(\Delta, F)$ – summable to X_o .

Proof. Suppose that $X = (X_{k,l})$ is double Δ – bounded and double $\overline{\lambda}(\Delta, F)$ – statistically convergent to X_o . Since $X = (X_{k,l})$ is double Δ – bounded, we may write $d(\Delta X_{k,l}, X_o) \leq K$ for all $k, l \in \mathbb{N}$. Also for given $\varepsilon > 0$, we obtain

$$\frac{1}{\lambda_{m,n}} \sum_{(k,l)\in I_{m,n}} d\left(\Delta X_{k,l}, X_o\right) = \frac{1}{\lambda_{m,n}} \sum_{\substack{(k,l)\in I_{m,n}\\d\left(\Delta X_{k,l}, X_o\right)\geq\varepsilon}} d\left(\Delta X_{k,l}, X_o\right)$$
$$+ \frac{1}{\lambda_{m,n}} \sum_{\substack{(k,l)\in I_{m,n}\\d\left(\Delta X_{k,l}, X_o\right)<\varepsilon}} d\left(\Delta X_{k,l}, X_o\right)$$
$$\leq \frac{K}{\lambda_{m,n}} \left|\{(k,l)\in I_{m,n}: d\left(\Delta X_{k,l}, X_o\right)\geq\varepsilon\}\right| + \varepsilon$$

which implies that $X = (X_{k,l})$ is strongly double $\overline{\lambda}(\Delta, F) - summable$ to X_o .

Theorem 3.3. If a double sequence $X = (X_{k,l})$ of fuzzy numbers is double $\overline{\lambda}(\Delta, F)$ – statistically convergent to the fuzzy number X_o , then it is double Δ – statistically convergent to X_o if

$$P - \liminf_{m,n} \frac{1}{\lambda_{m,n}} > 0.$$

Proof. For given $\varepsilon > 0$, we have

$$\{(k,l): k \le m, l \le n; d(\Delta X_{k,l}, X_o) \ge \varepsilon\} \supset \{(k,l) \in I_{m,n}: d(\Delta X_{k,l}, X_o) \ge \varepsilon\}$$

Therefore

$$\frac{1}{mn} \left| \{ (k,l) : k \leq m, l \leq n; d \left(\Delta X_{k,l}, X_o \right) \geq \varepsilon \} \right| \geq \frac{1}{mn} \left| \{ (k,l) \in I_{m,n} : d \left(\Delta X_{k,l}, X_o \right) \geq \varepsilon \} \right|$$
$$= \frac{\lambda_{m,n}}{mn} \frac{1}{\lambda_{m,n}} \left| \{ (k,l) \in I_{m,n} : d \left(\Delta X_{k,l}, X_o \right) \geq \varepsilon \} \right|.$$

Taking the limit as $m, n \to \infty$ in the Pringsheim's sense and using hypothesis, we get $X = (X_{k,l})$ is double Δ – statistically convergent to X_o .

Theorem 3.4. $w_{\overline{\lambda},\infty}^2(\Delta,F) = l_{\infty}^2(\Delta,F)$, where

$$w_{\overline{\lambda},\infty}^{2}\left(\Delta,F\right) = \left\{ X = (X_{k,l}) \in w^{2}\left(F\right): \sup_{m,n} \frac{1}{\lambda_{m,n}} \sum_{(k,l) \in I_{m,n}} d\left(\Delta X_{k,l}, X_{o}\right) < \infty \right\}.$$

Proof. Let $X = (X_{k,l}) \in w^2_{\overline{\lambda},\infty}(\Delta, F)$. Then there exists a constant K > 0 such that

$$\frac{1}{\lambda_{1,1}}d\left(\Delta X_{k,l}, X_o\right) \le \sup_{m,n} \frac{1}{\lambda_{m,n}} \sum_{(k,l)\in I_{m,n}} d\left(\Delta X_{k,l}, X_o\right) \le K$$

and so we have $X = (X_{k,l}) \in l^2_{\infty}(\Delta, F)$. Conversely, let $X = (X_{k,l}) \in l^2_{\infty}(\Delta, F)$. Then there exists a constant H > 0 such that $d(\Delta X_{k,l}, X_o) \leq H$ for all $k, l \in \mathbb{N}$ and so

$$\frac{1}{\lambda_{m,n}} \sum_{(k,l)\in I_{m,n}} d\left(\Delta X_{k,l}, X_o\right) \le \frac{H}{\lambda_{m,n}} \sum_{(k,l)\in I_{m,n}} 1 = H.$$

Thus $X = (X_{k,l}) \in w_{\overline{\lambda},\infty}^2(\Delta, F)$. This completes the proof.

References

[1] E.Savaş, A note on sequences of fuzzy numbers, Information Sciences, 124,(2000), 297-300.

[2] E.Savaş, A note on double sequences of fuzzy numbers, Turkish Journal of Mathematics, 20(2),(1996), 175-178.

[3] E.Savaş, On $\overline{\lambda}$ -statistically convergent double sequences of fuzzy numbers, Journal of Inequalities and Applications, Volume 2008, Article ID 147827, 6 pages, doi: 10.1155/2008/147827. A. Esi - On Some Double $\overline{\lambda}(\Delta, F)$ – Statistical Convergence of Fuzzy Numbers

[4] S.Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33(1),(1989), 123-126.

Ayhan Esi Department of Mathematics University of Adiyaman Altinşehir,02040, Adiyaman, Turkey email:*aesi23@hotmail.com*