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A NOTE ON GENERALIZED INTEGRAL OPERATOR

Lakshmi Narayana Swamy Dileep and Satyanarayana Latha

Abstract. In this paper, we define the subclass Sg(α) of analytic functions by
using Hadamrad product. Also we investigate certain properties of the generalized
integral operator Ig(f1, . . . , fm) for the functions belonging to the class Sg(α).
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1.Introduction

Let A be the class of analytic functions f of the form

f(z) = z +
∞∑

j=2

ajz
j , (1)

defined in the unit disc U = {z ∈ C : |z| < 1} and satisfying the normalization
condition f(0) = f ′(0)− 1 = 0.
A function f ∈ A is said to be starlike of order α if it satisfies the inequality

<
{

zf ′(z)
f(z)

}
> α, (z ∈ U)

for some 0 ≤ α < 1 and it is denoted by S∗(α) [6].
The class of convex functions of order α, denote by K(α) consists of function f ∈ A
such that

<
{

zf ′′(z)
f ′(z)

+ 1
}

> α, (z ∈ U)

for some 0 ≤ α < 1 and it is denoted by K(α) [6]. Further, f ∈ K(α) if and only
if zf ′ ∈ S∗(α).
For any two functions f and g such that

f(z) = z +
∞∑

j=2

ajz
j and g(z) = z +

∞∑
j=2

bjz
j , (z ∈ U)
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the Hadamard product or convolution of f and g denoted by f ∗ g is given by

(f ∗ g)(z) = z +
∞∑

j=2

ajbjz
j . (2)

For different choice of g(z), the Hadamrad product f ∗ g yields the following well
known operators such as Ruscheweyh derivative operator [7], Sǎlǎgean operator
[8], Carlson-Shaffer operator [2], Dziok-Srivasava operator [5] and Al-Oboudi differ-
ential operator [1].

We designate Sg(α), as the class of functions f ∈ A which satisfy the condition

<
{

z((f ∗ g)(z))′

(f ∗ g)(z)

}
> α, (z ∈ U)

for some 0 ≤ α < 1.

For g(z) = z +
∞∑

j=2

[1 + (j − 1)δ]nzj , we get the class Sn(δ, α) introduced by Serap

Bulut [9].
For n, m ∈ N0, ki > 0 and 1 ≤ i ≤ m the generalized integral operator
Ig(f1, . . . , fm) : An −→ A is defined as

Ig(f1, . . . , fm)(z) =
∫ z

0

(
(f1 ∗ g)(t)

t

)k1

, . . . ,

(
(fm ∗ g)(t)

t

)km

dt, z ∈ U (3)

where fi ∈ A and ∗ denotes the Hadamard product.

2.Prime Results

In this section, we determine certain properties for functions belonging to the class
Sg(α) using the generalized integral operator Ig(f1, . . . , fm).

Theorem 2.1 Let fi ∈ Sg(αi), for 1 ≤ i ≤ m, with 0 ≤ αi < 1. Let ki > 0,

with 1 ≤ i ≤ m. If
m∑

i=1

ki(1− αi) ≤ 1, then Ig(f1, . . . , fm) ∈ K(λ), where

λ = 1 +
m∑

i=1

ki(αi − 1).

Proof. For 1 ≤ i ≤ m, using ( 2) we can write

(fi ∗ g)(z)
z

= 1 +
∞∑

j=2

ajbjz
j−1
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and
(fi ∗ g)(z)

z
6= 0, forall z ∈ U .

On the other hand, we have

Ig(f1, . . . , fm)′(z) =
(

(f1 ∗ g)(z)
z

)k1

. . .

(
(fm ∗ g)(z)

z

)km

dt, z ∈ U

which implies,

ln Ig(f1, . . . , fm)′(z) = k1 ln
(f1 ∗ g)(z)

z
+ · · ·+ km ln

(fm ∗ g)(z)
z

or equivalently

ln Ig(f1, . . . , fm)′(z) = k1[ln(f1 ∗ g)(z)− ln z] + · · ·+ km[ln(fm ∗ g)(z)− ln z].

By differentiating the above equality, we get

Ig(f1, . . . , fm)′′(z)
Ig(f1, . . . , fm)′(z)

=
m∑

i=1

ki

[
((fi ∗ g)(z))′

(fi ∗ g)(z)
− 1

z

]
.

Thus,
zIg(f1, . . . , fm)′′(z)

Ig(f1, . . . , fm)′
+ 1 =

m∑
i=1

ki

[
z((fi ∗ g)(z))′

(fi ∗ g)(z)

]
−

m∑
i=1

ki + 1

which is equivalent to

<
{

zIg(f1, . . . , fm)′′(z)
Ig(f1, . . . , fm)′

+ 1
}

=
m∑

i=1

ki<
{

z((fi ∗ g)(z))′

(fi ∗ g)(z)

}
−

m∑
i=1

ki + 1.

Since fi ∈ Sg(αi), we get

<
{

zIg(f1, . . . , fm)′′(z)
Ig(f1, . . . , fm)′

+ 1
}

>

m∑
i=1

kiαi −
m∑

i=1

ki + 1 = 1 +
m∑

i=1

ki(αi − 1).

Hence, the integral operator Ig(f1, . . . , fm) is convex of order λ, where

λ = 1 +
m∑

i=1

ki(αi − 1).

For g(z) = z +
∞∑

m=2

[1 + (m − 1)δ]nzm, we get the following results proved by

Serap Bulut [9] as Corollaries to the above Theorem.
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Corollary 2.2 [9]:Let fi ∈ Sn(δ, α), for 1 ≤ i ≤ m with 0 ≤ α < 1, δ ≥ 0 and

n ∈ N0. Also let ki > 0, 1 ≤ i ≤ m. If
m∑

i=1

ki ≤
1

1− α
, then

In(f1, . . . , fm) ∈ K(λ), where λ = 1 + (α− 1)
m∑

i=1

ki.

Corollary 2.3 [9]:Let f ∈ Sn(δ, α) with 0 ≤ α < 1, δ ≥ 0 and n ∈ N0. Also

let 0 < k ≤ 1
1− α

. Then, In(f)(z) ∈ K(1 + k(α− 1)), where

In(f)(z) =
∫ z

0

(
Dnf(t)

t

)k

dt.

Corollary 2.4 [9]:Let f ∈ Sn(δ, α). Then, the integral operator In(f)(z) ∈ K(α),

where

In(f)(z) =
∫ z

0

(
Dnf(t)

t

)k

dt.
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