ON APPLICATIONS OF GENERALIZED INTEGRAL OPERATOR TO A SUBCLASS OF ANALYTIC FUNCTIONS

Gangadharan Murugusundaramoorthy, Kaliappan Vijaya and
Nanjundan Magesh

Abstract. Making use of generalized integral operator, we define a subclass of analytic functions with negative coefficients. The main object of this paper is to obtain coefficient estimates, closure theorems and extreme points. Also we obtain radii of close-to-convexity, starlikeness and convexity and neighbourhood results for functions in the generalized class $R^{*}(\alpha, \beta, \mu, \eta)$.

2000 Mathematics Subject Classification: 30C45.

1.Introduction and Preliminaries

Denote by \mathcal{A} the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

that are analytic and univalent in the open disc $U=\{z:|z|<1\}$. Also denote by \mathcal{T} the subclass of \mathcal{A} consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0, z \in U . \tag{2}
\end{equation*}
$$

was introduced and studied by Silverman [21].
For functions $\Phi \in \mathcal{A}$ given by

$$
\begin{equation*}
\Phi(z)=z+\sum_{n=2}^{\infty} \phi_{n} z^{n} \tag{3}
\end{equation*}
$$

and $\Psi \in \mathcal{A}$ given by

$$
\begin{equation*}
\Psi(z)=z+\sum_{n=2}^{\infty} \psi_{n} z^{n} \tag{4}
\end{equation*}
$$

we define the Hadamard product (or convolution) of Φ and Ψ by

$$
\begin{equation*}
(\Phi * \Psi)(z)=z+\sum_{n=2}^{\infty} \phi_{n} \psi_{n} z^{n}, \quad z \in U \tag{5}
\end{equation*}
$$

We recall here a general Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ defined in [23] by

$$
\begin{gather*}
\Phi(z, s, a):=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}} \tag{6}\\
\left(a \in C \backslash\left\{Z_{0}^{-}\right\} ; s \in C, \text { when }|z|<1 R(s)>1 \text { and }|z|=1\right)
\end{gather*}
$$

where, as usual, $Z_{0}^{-}:=Z \backslash\{N\},(Z:=\{0, \pm 1, \pm 2, \pm 3, \ldots\}) ; N:=\{1,2,3, \ldots\}$.
Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ can be found in the recent investigations by Choi and Srivastava [5], Ferreira and Lopez [7], Garg et al. [9], Lin and Srivastava [12], Lin et al. [13], and others. Srivastava and Attiya [22] (see also Raducanu and Srivastava [19], and Prajapat and Goyal [17]) introduced and investigated the linear operator:

$$
\mathcal{J}_{\mu, b}: \mathcal{A} \rightarrow \mathcal{A}
$$

defined in terms of the Hadamard product by

$$
\begin{equation*}
\mathcal{J}_{\mu, b} f(z)=\mathcal{G}_{b, \mu} * f(z) \tag{7}
\end{equation*}
$$

$\left(z \in U ; b \in C \backslash\left\{Z_{0}^{-}\right\} ; \mu \in C ; f \in \mathcal{A}\right)$, where, for convenience,

$$
\begin{equation*}
G_{\mu, b}(z):=(1+b)^{\mu}\left[\Phi(z, \mu, b)-b^{-\mu}\right] \quad(z \in U) \tag{8}
\end{equation*}
$$

We recall here the following relationships (given earlier by [19]) which follow easily by using (1), (7) and (8)

$$
\begin{equation*}
\mathcal{J}_{b}^{\mu} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{1+b}{n+b}\right)^{\mu} a_{n} z^{n} \tag{9}
\end{equation*}
$$

Motivated essentially by the Srivastava-Attiya operator, Al-Shaqsi and Darus [?] introduced and investigated the integral operator

$$
\begin{equation*}
\mathcal{J}_{\mu, b}^{\eta, k} f(z)=z+\sum_{n=2}^{\infty} C_{n}^{\eta}(b, \mu) a_{n} z^{n} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}^{\eta}(b, \mu)=\left|\left(\frac{1+b}{n+b}\right)^{\mu} \frac{\eta!(n+k-2)!}{(k-2)!(n+\eta-1)!}\right| \tag{11}
\end{equation*}
$$

and (throughout this paper unless otherwise mentioned) the parameters μ, b are constrained as $b \in C \backslash\left\{Z_{0}^{-}\right\} ; \mu \in C, k \geq 2$ and $\eta>-1$. Further note that $J_{\mu, b}^{1,2}$ is the Srivastava-Attiya operator, and $J_{0, b}^{\eta, k}$ is the well-known Choi-Saigo- Srivastava operator (see [6]). Assuming $\eta=1$ and $k=2$, we state the following integral operators by specializing μ and b.

1. For $\mu=0$

$$
\begin{equation*}
\mathcal{J}_{b}^{0}(f)(z):=f(z) \tag{12}
\end{equation*}
$$

2. For $\mu=1$

$$
\begin{equation*}
\mathcal{J}_{b}^{1}(f)(z):=\int_{0}^{z} \frac{f(t)}{t} d t:=\mathcal{L}_{b} f(z) \tag{13}
\end{equation*}
$$

3. For $\mu=1$ and $b=\nu(\nu>-1)$

$$
\begin{equation*}
\mathcal{J}_{\nu}^{1}(f)(z):=\mathcal{F}_{\nu}(f)(z)=\frac{1+\nu}{z^{\nu}} \int_{0}^{z} t^{\nu-1} f(t) d t:=z+\sum_{n=2}^{\infty}\left(\frac{1+\nu}{n+\nu}\right) a_{n} z^{n} \tag{14}
\end{equation*}
$$

4. For $\mu=\sigma(\sigma>0)$ and $b=1$

$$
\begin{equation*}
\mathcal{J}_{1}^{\sigma}(f)(z):=z+\sum_{n=2}^{\infty}\left(\frac{2}{n+1}\right)^{\sigma} a_{n} z^{n}=\mathcal{I}^{\sigma}(f)(z) \tag{15}
\end{equation*}
$$

where $\mathcal{L}_{b}(f)$ and \mathcal{F}_{ν} are the integral operators introduced by Alexandor [1] and Bernardi [4], respectively, and $\mathcal{I}^{\sigma}(f)$ is the Jung-Kim-Srivastava integral operator [11] closely related to some multiplier transformation studied by Fleet [8]. Making use of the operator $\mathcal{J}_{\mu, b}^{\lambda, k}$, we introduce a new subclass of analytic functions with negative coefficients and discuss some usual properties of the geometric function theory of this generalized function class.

For $\alpha(\alpha \geq 0), \beta(0 \leq \beta<1)$, and $\eta(\eta>-1)$, we let $R(\alpha, \beta, \mu, \eta)$ denote the subclass of \mathcal{A} consisting of functions $f(z)$ of the form (1) and satisfying the analytic criterion

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\alpha)\left(\mathcal{J}_{\mu, b}^{\eta, k} f(z)\right)^{\prime}+\alpha\left(z\left(\mathcal{J}_{\mu, b}^{\eta, k} f(z)\right)^{\prime}\right)^{\prime}\right\}>\beta, \quad z \in U \tag{16}
\end{equation*}
$$

We also let $R^{*}(\alpha, \beta, \mu, \eta)=R(\alpha, \beta, \mu, \eta) \cap \mathcal{T}$.
We note that, by suitably specializing the parameters α, β, μ, η, the class $R^{*}(\alpha, \beta, \mu, \eta)$ reduces to the classes studied in [2,3,20].

Motivated by the earlier works of Murugusundaramoorthy $[14,15,16]$ and Prajapat et.al.,[17] we obtain the necessary and sufficient conditions for the functions $f(z) \in R^{*}(\alpha, \beta, \mu, \eta)$, and to study the extreme points, closure properties, radii of close-to-convexity, starlikness and convexity, δ - neighbourhoods for $f(z) \in R^{*}(\alpha, \beta, \mu, \eta)$.

2.Main Results

Theorem 1. Let the function $f(z)$ be defined by (7). Then $f(z) \in R^{*}(\alpha, \beta, \mu, \eta)$, if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu) a_{n} \leq 1-\beta \tag{17}
\end{equation*}
$$

$\alpha(\alpha \geq 0), \beta(0 \leq \beta<1)$, and $\eta(\eta>-1)$.
Proof. Assume that inequality (17) holds and let $|z|<1$. Then we have

$$
\begin{aligned}
& \left|(1-\alpha)\left(\mathcal{J}_{\mu, b}^{\eta, k} f(z)\right)^{\prime}+\alpha\left(z\left(\mathcal{J}_{\mu, b}^{\eta, k} f(z)\right)^{\prime}\right)^{\prime}-1\right| \\
= & \mid(1-\alpha)\left(1-\sum_{n=2}^{\infty} n C_{n}^{\eta}(b, \mu) a_{n} z^{n-1}\right) \\
& +\alpha\left(1-\sum_{n=2}^{\infty} n^{2} C_{n}^{\eta}(b, \mu) a_{n} z^{n-1}\right)-1 \mid \\
\leq & \left|\sum_{n=2}^{\infty} n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu) a_{n} z^{n-1}\right| \\
\leq & 1-\beta
\end{aligned}
$$

This shows that the values of $(1-\alpha)\left(\mathcal{J}_{\mu, b}^{\eta, k} f(z)\right)^{\prime}+\alpha\left(z\left(\mathcal{J}_{\mu, b}^{\eta, k} f(z)\right)^{\prime}\right)^{\prime}$ lies in a circle centered at $w=1$ whose radius is $1-\beta$. Hence $f(z)$ satisfies the condition (16).

Conversely, assume that the function $f(z)$ defined by (7), is in the class $R^{*}(\alpha, \beta, \mu, \eta)$. Then

$$
\begin{aligned}
& \operatorname{Re}\left\{(1-\alpha)\left(\mathcal{J}_{\mu, b}^{\eta, k} f(z)\right)^{\prime}+\alpha\left(z\left(\mathcal{J}_{\mu, b}^{\eta, k} f(z)\right)^{\prime}\right)^{\prime}\right\} \\
= & \operatorname{Re}\left\{(1-\alpha)\left(1-\sum_{n=2}^{\infty} n C_{n}^{\eta}(b, \mu) a_{n} z^{n-1}\right)\right. \\
& \left.+\alpha\left(1-\sum_{n=2}^{\infty} n^{2} C_{n}^{\eta}(b, \mu) a_{n} z^{n-1}\right)\right\} \\
> & \beta, z \in U
\end{aligned}
$$

Letting $z \rightarrow 1$ along the real axis, we obtain the desired inequality.
Corollary 1. Let the function $f(z)$ defined by (7) be in the class $R^{*}(\alpha, \beta, \mu, \eta)$. Then we have

$$
\begin{equation*}
a_{n} \leq \frac{(1-\beta)}{n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)} \tag{18}
\end{equation*}
$$

The equation (18) is attained for the function

$$
\begin{equation*}
f(z)=z-\frac{(1-\beta)}{n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)} z^{n} \quad(n \geq 2) . \tag{19}
\end{equation*}
$$

Let the functions $f_{j}(z)$ be defined, for $j=1,2, \ldots m$, by

$$
\begin{equation*}
f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n} \quad a_{n, j} \geq 0, \quad z \in U . \tag{20}
\end{equation*}
$$

We shall prove the following results for the closure of functions in the class $R^{*}(\alpha, \beta, \mu, \eta)$.
Theorem 2. (Closure Theorem) Let the functions $f_{j}(z)(j=1,2, \ldots m)$ defined by (20) be in the classes $R^{*}\left(\alpha, \beta_{j}, \lambda, \eta\right)(j=1,2, \ldots m)$ respectively. Then the function $h(z)$ defined by

$$
h(z)=z-\frac{1}{m} \sum_{n=2}^{\infty}\left(\sum_{j=1}^{m} a_{n, j}\right) z^{n}
$$

is in the class $R^{*}(\alpha, \beta, \mu, \eta)$, where $\beta=\min _{1 \leq j \leq m}\left\{\beta_{j}\right\}$ where $0 \leq \beta_{j} \leq 1$.
Proof. Since $f_{j}(z) \in R^{*}\left(\alpha, \beta_{j}, \mu, \eta\right)(j=1,2, \ldots m)$ by applying Theorem 1 , to (20) we observe that

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)\left(\frac{1}{m} \sum_{j=1}^{m} a_{n, j}\right) \\
= & \frac{1}{m} \sum_{j=1}^{m}\left(\sum_{n=2}^{\infty} n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu) a_{n, j}\right) \\
\leq & \frac{1}{m} \sum_{j=1}^{m}\left(1-\beta_{j}\right) \\
\leq & 1-\beta
\end{aligned}
$$

which in view of Theorem $1, h(z) \in R^{*}(\alpha, \beta, \mu, \eta)$ and hence the proof is complete.
Theorem 3. Let $f(z)$ defined by (7) and $g(z)$ defined by $g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}$ be in the class $R^{*}(\alpha, \beta, \mu, \eta)$. Then the function $h(z)$ defined by

$$
h(z)=(1-\lambda) f(z)+\lambda g(z)=z-\sum_{n=2}^{\infty} q_{n} z^{n}
$$

where $q_{n}=(1-\lambda) a_{n}+\lambda b_{n} ; 0 \leq \lambda<1$ is also in the class $R^{*}(\alpha, \beta, \mu, \eta)$.
Theorem 4. (Extreme Points) Let

$$
\begin{align*}
& f_{1}(z)=z \text { and } \\
& f_{n}(z)=z-\frac{(1-\beta)}{n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)} z^{n} \quad(n \geq 2) \tag{21}
\end{align*}
$$

for $\alpha \geq 0,0 \leq \beta<1$ and $\eta>-1$. Then $f(z)$ is in the class $R^{*}(\alpha, \beta, \mu, \eta)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) \tag{22}
\end{equation*}
$$

where $\lambda_{n} \geq 0(n \geq 1)$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$.
Proof. Suppose that

$$
f(z)=\lambda_{1} f_{1}(z)+\sum_{n=2}^{\infty} \lambda_{n} f_{n}(z)=z-\sum_{n=2}^{\infty} \frac{(1-\beta)}{n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)} \lambda_{n} z^{n} .
$$

Then it follows that

$$
\sum_{n=2}^{\infty} \frac{n[1+(n-1) \alpha]}{(1-\beta)} C_{n}^{\eta}(b, \mu) \lambda_{n} \frac{(1-\beta)}{n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)} \leq 1
$$

by Theorem $1, f(z) \in R^{*}(\alpha, \beta, \mu, \eta)$.
Conversely, suppose that $f(z) \in R^{*}(\alpha, \beta, \mu, \eta)$. Then $a_{n} \leq \frac{(1-\beta)}{n[1+(n-1) \alpha] C_{n}^{n}(b, \mu)} \quad(n \geq$ 2) we set $\lambda_{n}=\frac{n[1+(n-1) \alpha]}{(1-\beta)} C_{n}^{\eta}(b, \mu) a_{n} \quad(n \geq 2)$ and $\lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n}$. We obtain $f(z)=\lambda_{1} f_{1}(z)+\sum_{n=2}^{\infty} \lambda_{n} f_{n}(z)$. This completes the proof of Theorem 4.

3.Radius of Starlikeness and Convexity

In this section we obtain the radii of close-to-convexity, starlikeness and convexity for the class $R^{*}(\alpha, \beta, \mu, \eta)$.

Theorem 5. Let the function $f(z)$ defined by (7)belong to the class $R^{*}(\alpha, \beta, \mu, \eta)$. Then $f(z)$ is close-to-convex of order $\sigma(0 \leq \sigma<1)$ in the disc $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=r_{1}(\alpha, \beta, \mu, \eta, \sigma):=\inf _{n \geq 2}\left[\left(\frac{1-\sigma}{1-\beta}\right)[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)\right]^{\frac{1}{n-1}} \tag{23}
\end{equation*}
$$

The result is sharp, with extremal function $f(z)$ given by (19).
Proof. Given $f \in \mathcal{T}$, and f is close-to-convex of order σ, we have

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right|<1-\sigma . \tag{24}
\end{equation*}
$$

For the left hand side of (24) we have

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{n=2}^{\infty} n a_{n}|z|^{n-1}
$$

The last expression is less than $1-\sigma$ if

$$
\sum_{n=2}^{\infty} \frac{n}{1-\sigma} a_{n}|z|^{n-1}<1
$$

Using the fact, that $f \in R^{*}(\alpha, \beta, \mu, \eta)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{n[1+(n-1) \alpha]}{(1-\beta)} C_{n}^{\eta}(b, \mu) a_{n} \leq 1,
$$

We can say (24) is true if

$$
\frac{n}{1-\sigma}|z|^{n-1} \leq \frac{n[1+(n-1) \alpha]}{(1-\beta)} C_{n}^{\eta}(b, \mu)
$$

Or, equivalently,

$$
|z|^{n-1}=\left[\left(\frac{1-\sigma}{1-\beta}\right)[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)\right]
$$

Which completes the proof.
Theorem 6. Let $f \in R^{*}(\alpha, \beta, \mu, \eta)$. Then

1. f is starlike of order $\sigma(0 \leq \sigma<1)$ is the disc $|z|<r_{2}$; that is, $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\sigma$, where

$$
\begin{equation*}
r_{2}=\inf _{n \geq 2}\left[\left(\frac{n(1-\sigma)}{(n-\sigma)(1-\beta)}\right)[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)\right]^{\frac{1}{n-1}} \quad(n \geq 2) . \tag{25}
\end{equation*}
$$

2. f is convex of order $\sigma(0 \leq \sigma<1)$ in the unit disc $|z|<r_{3}$, that is $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\sigma,\left(|z|<r_{3} ; 0 \leq \sigma<1\right)$, where

$$
\begin{equation*}
r_{3}=\inf _{n \geq 2}\left[\left(\frac{(1-\sigma)}{(n-\sigma)(1-\beta)}\right)[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)\right]^{\frac{1}{n-1}} \quad(n \geq 2) . \tag{26}
\end{equation*}
$$

Each of these results are sharp for the extremal function $f(z)$ given by (21).
Proof. Given $f \in \mathcal{T}$, and f is starlike of order σ, we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\sigma . \tag{27}
\end{equation*}
$$

For the left hand side of (27) we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}
$$

The last expression is less than $1-\sigma$ if

$$
\sum_{n=2}^{\infty} \frac{n-\sigma}{1-\sigma} a_{n}|z|^{n-1}<1
$$

Using the fact, that $f \in R^{*}(\alpha, \beta, \mu, \eta)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{n[1+(n-1) \alpha]}{(1-\beta)} C_{n}^{\eta}(b, \mu) a_{n} \leq 1 .
$$

We can say (27) is true if

$$
\frac{n-\sigma}{1-\sigma}|z|^{n-1}<\frac{n[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)}{(1-\beta)}
$$

Or, equivalently,

$$
|z|^{n-1}=\left[\frac{n(1-\sigma)}{(n-\sigma)(1-\beta)}[1+(n-1) \alpha] C_{n}^{\eta}(b, \mu)\right]
$$

which yields the starlikeness of the family.
(2) Using the fact that f is convex if and only if $z f^{\prime}$ is starlike, we can prove (2), on lines similar to the proof of (1).

4.Inclusion relations involving $N_{\delta}(e)$

Following [10,18], we define the $\delta-$ neighborhood of function $f(z) \in \mathcal{T}$ by

$$
\begin{equation*}
N_{\delta}(f):=\left\{g \in \mathcal{T}: g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta\right\} . \tag{28}
\end{equation*}
$$

Particulary for the identity function $e(z)=z$, we have

$$
\begin{equation*}
N_{\delta}(e):=\left\{g \in \mathcal{T}: g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|b_{n}\right| \leq \delta\right\} . \tag{29}
\end{equation*}
$$

Theorem 7. If

$$
\begin{equation*}
\delta:=\frac{(1-\beta)}{(1+\alpha) C_{2}^{\eta}(b, \mu)} \tag{30}
\end{equation*}
$$

then $R^{*}(\alpha, \beta, \mu, \eta) \subset N_{\delta}(e)$.
Proof. For $f \in R^{*}(\alpha, \beta, \mu, \eta)$, Theorem 1 immediately yields

$$
2 C_{2}^{\eta}(b, \mu)(1+\alpha) \sum_{n=2}^{\infty} a_{n} \leq 1-\beta,
$$

so that

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{(1-\beta)}{2 C_{2}^{\eta}(b, \mu)(1+\alpha)} \tag{31}
\end{equation*}
$$

On the other hand, from (17) and (31) that

$$
\begin{aligned}
\sum_{n=2}^{\infty} n a_{n} & \leq(1-\beta)-2 \alpha C_{2}^{\eta}(b, \mu) \sum_{n=2}^{\infty} a_{n} \\
& \leq(1-\beta)-2 \alpha C_{2}^{\eta}(b, \mu) \frac{(1-\beta)}{2 C_{2}^{\eta}(b, \mu)(1+\alpha)} \\
& \leq \frac{1-\beta}{C_{2}^{\eta}(b, \mu)(1+\alpha)}
\end{aligned}
$$

that is

$$
\begin{equation*}
\sum_{n=2}^{\infty} n a_{n} \leq \frac{1-\beta}{C_{2}^{\eta}(b, \mu)(1+\alpha)}:=\delta \tag{32}
\end{equation*}
$$

which, in view of the definition (29) proves Theorem 7.
Now we determine the neighborhood for the class $R^{*(\rho)}(\alpha, \beta, \mu, \eta)$ which we define as follows. A function $f \in \mathcal{T}$ is said to be in the class $R^{*(\rho)}(\alpha, \beta, \mu, \eta)$ if there exists a function $g \in R^{*(\rho)}(\alpha, \beta, \mu, \eta)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<1-\rho, \quad(z \in U, \quad 0 \leq \rho<1) . \tag{33}
\end{equation*}
$$

Theorem 8.If $g \in R^{*(\rho)}(\alpha, \beta, \mu, \eta)$ and

$$
\begin{equation*}
\rho=1-\frac{\delta C_{2}^{\eta}(b, \mu)(1+\alpha)}{2 C_{2}^{\eta}(b, \mu)(1+\alpha)-(1-\beta)} \tag{34}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{\delta}(g) \subset R^{*(\rho)}(\alpha, \beta, \lambda, \eta) . \tag{35}
\end{equation*}
$$

Proof. Suppose that $f \in N_{\delta}(g)$ we then find from (28) that

$$
\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta
$$

which implies that the coefficient inequality

$$
\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right| \leq \frac{\delta}{2}
$$

Next, since $g \in R^{*}(\alpha, \beta, \mu, \eta)$, we have

$$
\sum_{n=2}^{\infty} b_{n}=\frac{(1-\beta)}{2 C_{2}^{\eta}(b, \mu)(1+\alpha)}
$$

so that

$$
\begin{aligned}
\left|\frac{f(z)}{g(z)}-1\right| & <\frac{\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right|}{1-\sum_{n=2}^{\infty} b_{n}} \\
& \leq \frac{\delta}{2} \times \frac{2 C_{2}^{\eta}(b, \mu)(1+\alpha)}{2 C_{2}^{\eta}(b, \mu)(1+\alpha)-(1-\beta)} \\
& \leq \frac{\delta C_{2}^{\eta}(b, \mu)(1+\alpha)}{2 C_{2}^{\eta}(b, \mu)(1+\alpha)-(1-\beta)} \\
& =1-\rho .
\end{aligned}
$$

provided that ρ is given precisely by (35). Thus by definition, $f \in R^{*(\rho)}(\alpha, \beta, \lambda, \eta)$ for ρ given by (35), which completes the proof.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math., $\mathbf{1 7}(1915), 1222$.
[2] H.S.Al-Amiri, On a subclass of close-to-convex functions with negative coefficients, Mathematica 31(54), No. 1 (1989), 1-7.
[3] O.Altintas, A subclass of analytic functions with negative coefficients, Hocellepe. Bull. Natur. Sci. Engg., 19 (1990), 15-24.
[4] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135,(1969), 429-446.
[5] J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput., 170 (2005), 399-409.
[6] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432445.
[7] C. Ferreira and J. L. Lopez, Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl., 298(2004), 210-224.
[8] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38(1972), 746765
[9] M. Garg, K. Jain and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct., 17(2006), 803-815.
[10] A.W.Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., (8) (1957), 598-601.
[11] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176(1993), 138147.
[12] S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput., 154(2004), 725-733.
[13] S.-D. Lin, H. M. Srivastava and P.-Y. Wang, Some espansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct., 17(2006), 817-827.
[14] G.Murugusundaramoorthy, Unified class of analytic functions with negative coefficients involving the Hurwitz-Lerch Zeta function, Bulletin of Mathematical Analysis and Applications, Volume 1 Issue 3(2009), 71-84.
[15] G.Murugusundaramoorthy, Subordination results and integral means inequalities for k - uniformly starlike functions defined by convolution involving the Hurwitz-Lerch Zeta function, Studia Univ. "Babes-Bolyai", Mathematica,Volume LV, Number 4, (2010)155-165
[16] G.Murugusundaramoorthy, A subclass of analytic functions associated with the Hurwitz-Lerch Zeta function, Hacepetee J Maths, Volume 39 (2) (2010), 265 272
[17] J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal., 3(2009), 129-137.
[18] S.Rucheweyh, Neighborhoods of univalent functions, Proc.Amer.Math.Soc., 81 (1981),521-527.
[19] D. Raducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transform. Spec. Funct., 18(2007), 933-943.
[20] S.M.Sarangi and B.A. Uralegaddi, The radius of convexity and starlike for certain classes of analytic functions with negative coefficients I, Rend. Acad.Nat. Lincei., 65 (1978), 38-42.
[21] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, (1975), 109-116.
[22] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transform. Spec. Funct., 18(2007), 207-216.
[23] H. M. Srivastava and J. Choi, Series associated with the Zeta and related functions, Dordrecht, Boston, London: Kluwer Academic Publishers, 2001.

Gangadharan Murugusundaramoorthy School of Advanced Sciences
VIT University
Vellore - 632014,Tamil Nadu, India.
email : gmsmoorthy@yahoo.com
Kaliappan Vijaya
School of Advanced Sciences
VIT University
Vellore - 632014,Tamil Nadu, India.
email : kvijaya@vit.ac.in
Nanjundan Magesh
Department of Mathematics
Government Arts College (Men)
Krishnagiri-635001,Tamil Nadu, India.
email : nmagi_2000@yahoo.co.in

