COINCIDENCE THE SETS OF NORM AND NUMERICAL RADIUS ATTAINING HOLOMORPHIC FUNCTIONS ON FINITE-DIMENSIONAL SPACES

RAMAZAN ZARGHAMI

ABSTRACT. Let X be a complex Banach space having property (β) with constant $\rho = 0$ and $A_{\infty}(B_X; X)$ be the space of bounded functions from B_X to X that are holomorphic on the open unit ball. In this paper we prove that in $A_{\infty}(B_X; X)$, the set of norm attaining elements contains numerical radius attaining elements, and also when X is a finite-dimensional space those are coincide.

2000 Mathematics Subject Classification: 46B25, 46B20, 46B03.

1. INTRODUCTION

A Banach space X with topological dual space X^* has property (β), if there exists a system $\{x_i, x_i^*\}_{i \in I} \subset X \times X^*$ and a real number $0 \le \rho < 1$ satisfying

1) $||x_i|| = ||x_i^*|| = x_i^*(x_i) = 1$ for all $i \in I$;

- 2) $|x_i^*(x_j)| \le \rho$ for all $i, j \in I, i \ne j;$
- 3) $||x|| = \sup\{|x_i^*(x)|; i \in I\}$ for every $x \in X$.

Property (β) which was introduced by J. Lindenstrauss [5] in the study of norm attaining operators, is a sufficient condition for denseness of norm attaining operators from any Banach space into X, in set of all bounded operators. c_0 , l_{∞} and C(K)(for K scattered) are the memorable spaces which have property (β). J. Partington [6] showed that every Banach space can be equivalently renormed to have property (β). A. S. Granero, M. J. Sevilla and J. P. Moreno [3] proved that every Banach space is isometric to a quotient of a Banach space with property (β). They also presented examples of some non-reflexive classical Banach spaces whose usual norm can be approximated by norms with property (β), namely (C(K), $\|.\|_{\infty}$)(where K is separable compact Hausdorff space) and ($L_1[0, 1], \|.\|_1$).

If the supremum is replaced with maximum in the third condition of property (β) , we say that the complex Banach space X has property Q. It is known that the space c_0 has property Q. In this paper for a complex Banach space X we will denote by B_X, S_X and X^{*} its closed unit ball, its sphere and its topological dual, respectively. We will denote by $A_{\infty}(B_X; X)$ the set of all bounded functions from B_X to X whose restriction to the open unit ball are holomorphic functions. The concepts of numerical range and numerical radius for holomorphic functions introduced by L.

229

Harris [4]. For $h \in A_{\infty}(B_X; X)$, the numerical radius is defined by

$$\upsilon(h) = \sup\{|x^*(h(x))|: \, (x,x^*) \in \Pi(X)\}$$

where

$$\Pi(X) = \{ (x, x^*) \in X \times X^* : \|x\| = \|x^*\| = x^*(x) = 1 \}.$$

We say that h attains its numerical radius when there exists (x_0, x_0^*) in $\Pi(X)$ such that $v(h) = |x_0^*(h(x_0))|$. We denote by $NRA(A_{\infty}(B_X; X))$ the subset of numerical attaining elements in $A_{\infty}(B_X; X)$.

It is said $h \in A_{\infty}(B_X; X)$ attains its norm if there exists $x_0 \in S_X$ such that $||h|| = ||h(x_0)||$. Moreover $NA(A_{\infty}(B_X; X))$ denotes the subset of norm attaining functions in $A_{\infty}(B_X; X)$.

M. D. Acosta and S. G. Kim [1], [2] obtained the sufficient condition for denseness of $NA(A_{\infty}(B_X, X))$ in $A_{\infty}(B_X, X)$ when X has property (β). They also proved that for a complex Banach space X which has property (β) with constant $\rho = 0$, if X has property Q then

$$NA(A_{\infty}(B_X, X)) = NRA(A_{\infty}(B_X, X)),$$

consequently

$$NA(A_{\infty}(B_{c_0}, c_0)) = NRA(A_{\infty}(B_{c_0}, c_0)).$$

They posed the question: Does the above theorem remain true in case of omitting hypothesis $\rho = 0$ or property Q?

In this paper we prove that when X has property (β) with constant $\rho = 0$, in $A_{\infty}(B_X, X)$, the set of all the numerical radius attaining elements is the subset of the set of all the norm attaining elements. Further if X is a finite-dimensional space then the two sets are coincide, and in this case we give an affirmative answer to the afore-mentioned question.

2. MAIN RESULTS

Lemma 1 Let X be a complex Banach space satisfying property (β) with constant $\rho = 0$. If $h \in A_{\infty}(B_X; X)$ then v(h) = ||h||.

Proof. Let (x_i, x_i^*) ; $i \in I$ be the set in the definition of property (β) and $\epsilon > 0$. For each $x^* \in X^*$ and $h \in A_{\infty}(B_X; X)$ we define $h^*x^* \in A_{\infty}(B_X)$ by

$$h^*x^*(x) = x^*(h(x)), \quad (x \in B_X).$$

Since X has property (β) , so

$$||h|| = \sup_{i \in I} ||h^* x_i^*||$$

By the Characteristic property of the supremum, there exists $i_0 \in I$ such that

$$||h^* x_{i_0}^*|| \ge ||h|| - \epsilon.$$

And also there exists $x_0 \in B_X$ such that

$$||h^* x_{i_0}^*(x_0)|| \ge ||h^* x_{i_0}^*|| - \epsilon.$$

Define

$$\psi(\lambda) = x_{i_0}^*(h[x_0 + (\lambda - x_{i_0}^*(x_0))]) \quad (\lambda \in \mathbb{C}, |\lambda| \le 1).$$

By the Maximum Modulus Principle, there exists $\lambda_1 \in \mathbb{C}$ such that $|\lambda_1| = 1$ and

$$|\psi(\lambda_1)| \ge |\psi(x_{i_0}^*(x_0))| = |x_{i_0}^*(h(x_0))| \ge ||h|| - 2\epsilon.$$

Note that $(x_0 + (\lambda_1 - x_{i_0}^*(x_0))x_{i_0}, \overline{\lambda_1}x_{i_0}^*) \in \pi(X)$ and so

$$\upsilon(h) \ge |x_{i_0}^*(h[x_0 + (\lambda_1 - x_{i_0}^*(x_0))x_{i_0}])| = |\psi(\lambda_1)| \ge ||h|| - 2\epsilon.$$

Thus $v(h) \ge ||h|| - 2\epsilon$. Since $||h|| - 2\epsilon \le v(h) \le ||h||$ for every $\epsilon > 0$, therefore v(h) = ||h||.

Theorem 2 Let X be a complex Banach space satisfying property (β) with constant $\rho = 0$. Then

$$NRA(A_{\infty}(B_X;X)) \subseteq NA(A_{\infty}(B_X;X)).$$

Proof. Let $h \in NRA(A_{\infty}(B_X; X))$. Then there exists $(x_0, x_0^*) \in \pi(X)$ such that

 $v(h) = |x_0^*(h(x_0))|.$

By Lemma 1, v(h) = ||h||. Therefore,

$$\begin{aligned} \|h(x_0)\| &= \sup\{|x^*(h(x_0))|; \|x^*\| = 1\} \\ &\geq \sup\{|x^*(h(x_0))|; \|x^*\| = x^*(x_0) = 1\} \\ &= |x_0^*(h(x_0))| \\ &= v(h) = \|h\| \end{aligned}$$

That is $h \in NA(A_{\infty}(B_X; X))$. Hence

$$NRA(A_{\infty}(B_X; X)) \subseteq NA(A_{\infty}(B_X; X)).$$

Theorem 3 Let X be a finite-dimensional space. Then

$$NRA(A_{\infty}(B_X;X)) = NA(A_{\infty}(B_X;X)).$$

Proof. Since the finite-dimensional spaces, endowed with maximum norm have property β with constant $\rho = 0$, at the Theorem 2, it is sufficient we prove that

$$NA(A_{\infty}(B_X;X)) \subseteq NRA(A_{\infty}(B_X;X)).$$

Let $g \in NA(A_{\infty}(B_X; X))$ and $n \in \mathbb{N}$. Then there is an $x_0 \in S_X$ such that $||g(x_0)|| = ||g||$. By the Characteristic property of supremum there exists an $i_n \in I$ such that $|x_{i_n}^*(g(x_0))| \ge ||g|| - \frac{1}{n}$. Now similar to proof of Lemma 2.2, there exists $\lambda_n \in \mathbb{C}$ with $|\lambda_n| = 1$ such that

$$|x_{i_n}^*(g([x_0 + (\lambda_n - x_{i_n}^*(x_0))x_{i_n}])| \ge ||g|| - \frac{2}{n}$$

By putting $t_n = x_0 + (\lambda_n - x_{i_n}^*(x_0))x_{i_n}$ and $t_n^* = \overline{\lambda_n}x_{i_n}^*$ we have $(t_n, t_n^*) \in \pi(X)$ and

$$\upsilon(g) \ge |t_n^*(g(t_n)| \ge \upsilon(g) - \frac{2}{n}.$$

That is $|t_n^*(g(t_n)| \to v(g))$. By reflexivity of X, the bounded sequence $\{t_n\}$ has a convergence subsequence $\{t_{nk}\}$. Suppose t_0^* be the w^* -cluster point of the sequence $\{t_{nk}^*\}$ in B_{X^*} and $t_0 = \lim_{k\to\infty} t_{nk}$. Then for all $k \in \mathbb{N}$ we have

$$|1 - t_0^*(t_0)| = |t_{nk}^*(t_{nk}) - t_0^*(t_0)| \leq |t_{nk}^*(t_{nk}) - t_{nk}^*(t_0)| + |t_{nk}^*(t_0) - t_0^*(t_0)| \to 0.$$

Thus $(t_0, t_0^*) \in \pi(X)$. Also we get

$$\left| \upsilon(g) - |t_0^*(g(t_0))| \right| \le \left| \upsilon(g) - |t_{nk}^*(g(t_{nk}))| \right| + \left| |t_{nk}^*(g(t_{nk})) - |t_0^*(g(t_0))| \right| \to 0.$$

That is g attains its numerical radius at $(t_0, t_0^*) \in \pi(X)$.

Remark 4 The finite-dimensional spaces are only reflexive spaces which have property (β) with constant $\rho = 0$, because in the infinite-dimensional case, if we choice a countable (and infinite) number of the set of vectors appearing in the definition of property (β), then this set is a Schauder basis of a copy of c_0 in the space, so the space cannot be reflexive.

References

[1] M. D. Acosta and S. G. kim, *Denseness of holomorphic functions attaining their numerical radii*, Israel Journal of Mathematics, 161, (2007), 373-386.

[2] M. D. Acosta, Boundaries for spaces of holomorphic functions on C(K), Publications of the Research Institute for mathematic Sciences, 42, (2006), 27-44.

232

[3] A. S. Granero, M. Jimenez Sevilla and J. P. Moreno, *Geometry of Banach spaces with property* β , Israel Journal of Mathematics, 111, (1999), 263-273.

[4] L. Harris, *The numerical range of holomorphic functios in Banach spaces*, American Journal of Mathematics, 93, (1971) 7-19.

[5] J. Lindenstrauss, On oprators which attain their norm, Israel Journal of Mathematics, 1, (1963), 139-148.

[6] J. Partigton, Norm attaining operators, Israel Journal of Mathematics, 43, (1982), 273-276.

Ramazan Zarghami Department of Civil, Marand Faculty of Engineering University of Tabriz Marand Faculty of Engineering Mrand - Iran email:*zarghamir@gmail.com*

233