A SUBCLASS OF SALLAGEAN - TYPE HARMONIC UNIVALENT FUNCTIONS

Mohamed K. Aouf

Abstract. In this paper, we define and investigate a subclass of Salagean-type harmonic univalent functions. We obtain coefficient conditions, extreme points, distortion bounds, convex combination and radius of convexity for the above class of harmonic univalent functions.

Keywords: Harmonic univalent functions, Salagean operator.
2000 Mathematics Subject Classification: 30C45.

1.Introduction

A continuous complex-valued function $f=u+i v$ is defined in a simply-connected complex domain D is said to be harmonic in D if both u and v are real harmonic in D. In any simply-connected domain we can write

$$
\begin{equation*}
f=h+\bar{g}, \tag{1.1}
\end{equation*}
$$

where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in D (see [2]).

Denote by S_{H} the class of functions f of the form (1.1) that are harmonic univalent and sense-preserving in the unit disc $U=\{z:|z|<1\}$ for which $f(0)=f_{z}(0)-1=0$. Then for $f=h+\bar{g} \in S_{H}$ we may express the analytic functions h and g as

$$
\begin{equation*}
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, g(z)=z+\sum_{k=1}^{\infty} b_{k} z^{k},\left|b_{1}\right|<1 . \tag{1.2}
\end{equation*}
$$

In 1984 Clunie and Shell-Small [2] investigated the class S_{H} as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on S_{H} and its subclasses.

For $f=g+h$ given by (1.2), Jahangiri et al. [4] defined the modified Salagean operator of f as

$$
\begin{equation*}
D^{m} f(z)=D^{m} h(z)+(-1)^{m} \overline{D^{m} g(z)} \tag{1.3}
\end{equation*}
$$

where

$$
D^{m} h(z)=z+\sum_{k=2}^{\infty} k^{m} a_{k} z^{k} \quad \text { and } \quad D^{m} g(z)=\sum_{k=1}^{\infty} k^{m} b_{k} z^{k}
$$

The differential operator D^{m} was introduced by Salagean [5].
For $0 \leq \alpha<1,0 \leq \lambda \leq 1, m \in N=\{1,2, \ldots\}, n \in N_{0}=N \cup\{0\}, m>n$ and $z \in U$, we let $S_{H}(m, n ; \alpha ; \lambda)$ denote the family of harmonic functions f of the form (1.2) such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{m} f(z)}{\lambda D^{m} f(z)+(1-\lambda) D^{n} f(z)}\right\}>\alpha \tag{1.4}
\end{equation*}
$$

where $D^{m} f$ is defined by (1.3).
We let the subclass $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ consist of harmonic functions $f_{m}=h+\bar{g}_{m}$ in $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ so that h and g_{m} are of the form

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, g_{m}(z)=(-1)^{m-1} \sum_{k=1}^{\infty} b_{k} z^{k} ; a_{k}, b_{k} \geq 0 \tag{1.5}
\end{equation*}
$$

We note that, by the special choices of m, n, α and λ, we obtain the following classes studied by various authors:
(i) $\bar{S}_{H}(1,0,0 ; 0)=T_{H}^{* 0}$, the class of sense-preserving, harmonic univalent functions f which are starlike in $U, \bar{S}_{H}(2,1 ; 0 ; 0)=K_{H}^{0}$, the class of sense-preserving, harmonic univalent functions f which are convex in U, studied by Silverman [6];
(ii) $\bar{S}_{H}(1,0 ; \alpha, 0)=\Im_{H}(\alpha)$, the class of sense-preserving, harmonic univalent functions f which are starlike of order α in $U, \bar{S}_{H}(2,1 ; \alpha ; 0)=K_{H}(\alpha)$, the class of sense-preserving, harmonic univalent functions f which are convex of order α in U, studied by Jahangiri [3];
(iii) $\bar{S}_{H}(n+1, n ; \alpha ; 0)=\bar{H}(n, \alpha)$, the class of Salagean-type harmonic univalent functions studied by Jahangiri et al. [4].
(iv) $\bar{S}_{H}(m, n ; \alpha, 0)=\bar{S}_{H}(m, n ; \alpha)$, is a new class of Salagean-type harmonic univalent functions, studied by Yaclin [8].

We further, observe that, by the special choices of m, n, α and λ our class $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ gives rise to the following new subclasses of S_{H} :
(i) $\bar{S}_{H}(1,0 ; \alpha ; \lambda)=\Im_{H}(\alpha, \lambda)$

$$
=\left\{f \in S_{H}: \operatorname{Re}\left\{\frac{\frac{z f^{\prime}(z)}{f(z)}}{\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)}\right\}>\alpha, 0 \leq \alpha<1,0 \leq \lambda \leq 1, \quad z \in U\right\}
$$

(ii) $S_{H}(2,0 ; \alpha ; \lambda)=K_{H}(\alpha, \lambda)$

$$
=\left\{f \in S_{H}: \operatorname{Re}\left\{\frac{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}{\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\lambda)}\right\}>\alpha, 0 \leq \alpha<1,0 \leq \lambda \leq 1, \quad z \in U\right\}
$$

(iii) $S_{H}(n+1, n ; \alpha ; \lambda)=S_{H}(n ; \alpha ; \lambda)$

$$
=\left\{f \in S_{H}: \operatorname{Re}\left\{\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)}}{\lambda \frac{D^{n+1}(z)}{D^{n}(z)}+(1-\lambda)}\right\}>\alpha, 0 \leq \alpha<1,0 \leq \lambda \leq 1, \quad n \in N_{0}, z \in U\right\}
$$

We let the subclasses $\bar{\Im}_{H}(\alpha, \lambda), \bar{K}_{H}(\alpha, \lambda)$ and $\bar{S}_{H}(n ; \alpha ; \lambda)$ consist of harmonic functions $f_{m}=h+\bar{g}_{m}$ so that h and g_{m} are of the form (1.5).

For the harmonic functions f of the form (1.2) with $b_{1}=0$, Avic and Zlotkiewicz [1] showed that if $\sum_{k=2}^{\infty} k^{2}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq 1$ then $f \in K_{H}^{0}$, and Silverman [6] proved that the above coefficient condition is also necessary if $f=h+\bar{g}$ has negative coefficients. Later Silverman and Silvia [7] improved the results of $[1,6]$ to the case b_{1} not necessarily zero.

For the harmonic functions f_{m} of the form (1.5) Yalcin [8] showed that $f_{m} \in$ $\bar{S}_{H}(m, n ; \alpha)$ if and only if $\sum_{k=1}^{\infty}\left(\frac{k^{m}-\alpha k^{n}}{1-\alpha} a_{k}+\frac{k^{m}-(-1)^{m-n} \alpha k^{n}}{1-\alpha} b_{k}\right) \leq 2$. In this paper we extend the above results to the classes $S_{H}(m, n ; \alpha ; \lambda)$ and $\bar{S}_{H}(m, n ; \alpha ; \lambda)$. We also obtain coefficient conditions, extreme points, distortion bounds, convolution conditions and convex combinations for $\bar{S}_{H}(m, n ; \alpha ; \lambda)$.

2.COEFFICIENT CHARACTERIZATION

Unless otherwise mentioned, we assume throughout this paper that $m \in N, n \in$ $N_{0}, m>n, 0 \leq \alpha<1$ and $0 \leq \lambda \leq \frac{1-\alpha}{1+\alpha}$. We begin with a sufficient condition for functions in $S_{H}(m, n ; \alpha ; \lambda)$.
Theorem 1. Let $f=h+\bar{g}$ be so that h and g given by (1.2). Furthermore, let
$\sum_{k=1}^{\infty}\left\{\frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha}\left|a_{k}\right|+\frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha}\left|b_{k}\right|\right\} \leq 2$,
where $a_{1}=1, m \in N, n \in N_{0}, m>n, 0 \leq \alpha<1$ and $0 \leq \lambda \leq \frac{1-\alpha}{1+\alpha}$. Then f is sense-preserving, harmonic univalent in U and $f \in S_{H}(m, n ; \alpha ; \lambda)$.

Proof. If $z_{1} \neq z_{2}$, then

$$
\begin{aligned}
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| & \geq 1-\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \\
& =1-\left|\frac{\sum_{k=1}^{\infty} b_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}{\left(z_{1}-z_{2}\right)+\sum_{k=2}^{\infty} a_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}\right|
\end{aligned}
$$

$$
\begin{aligned}
& >1-\frac{\sum_{k=1}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} k\left|a_{k}\right|} \\
& \geq 1-\frac{\sum_{k=1}^{\infty} \frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha}\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} \frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha}\left|a_{k}\right|} \geq 0
\end{aligned}
$$

which proves univalence. Note that f is sense-preserving in U. This is because

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq 1-\sum_{k=2}^{\infty} k\left|a_{k}\right||z|^{k-1}>1-\sum_{k=2}^{\infty} k\left|a_{k}\right| \\
& \geq 1-\sum_{k=2}^{\infty} \frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha}\left|a_{k}\right| \\
& \geq \sum_{k=1}^{\infty} \frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha}\left|b_{k}\right| \\
& >\sum_{k=1}^{\infty} \frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha}\left|b_{k}\right||z|^{k-1} \\
& \geq \sum_{k=1}^{\infty} k\left|b_{k}\right||z|^{k-1} \geq\left|g^{\prime}(z)\right|
\end{aligned}
$$

Now we show that $f \in S_{H}(m, n ; \alpha ; \lambda)$. We only need to show that if (2.1) holds then the condition (1.4) is satisfied.

Using the fact that Rew> Re if and only if $|1-\alpha+w|>|1+\alpha-w|$, it suffices to show that

$$
\left|D^{m} f(z)+(1-\alpha)\left[\lambda D^{m} f(z)+(1-\lambda) D^{n} f(z)\right]\right|-
$$

$$
\begin{equation*}
\left|D^{m} f(z)-(1+\alpha)\left[\lambda D^{m} f(z)+(1-\lambda) D^{n} f(z)\right]\right|>0 . \tag{2.2}
\end{equation*}
$$

Substituting for $D^{m} f(z)$ and $D^{n} f(z)$ in (2.2) yields, by (2.1) and $0 \leq \lambda \leq \frac{1-\alpha}{1+\alpha}$, we obtain

$$
\begin{aligned}
& \left|(1+\lambda(1-\alpha)) D^{m} f(z)+(1-\lambda)(1-\alpha) D^{n} f(z)\right|- \\
& \left|(1-\lambda(1+\alpha)) D^{m} f(z)-(1-\lambda)(1+\alpha) D^{n} f(z)\right| \\
& =\mid(2-\alpha) z+\sum_{k=2}^{\infty}\left[(1-\alpha)(1-\lambda) k^{n}+(1+\lambda(1-\alpha)) k^{m}\right] a_{k} z^{k} \\
& +(-1)^{n} \sum_{k=1}^{\infty}\left[(1-\alpha)(1-\lambda) k^{n}+(-1)^{m-n}(1+\lambda(1-\alpha)) k^{m}\right] \overline{b_{k} z^{k}} \\
& -\mid \alpha z-\sum_{k=2}^{\infty}\left[(1-\lambda(1+\alpha)) k^{m}-(1+\alpha)(1-\lambda) k^{n}\right] a_{k} z^{k} \\
& -(-1)^{n} \sum_{k=1}^{\infty}\left[(-1)^{m-n}(1-\lambda(1+\alpha)) k^{m}-(1+\alpha)(1-\lambda) k^{n}\right] \overline{b_{k} z^{k}} \mid \\
& \geq 2(1-\alpha)|z|-2 \sum_{k=2}^{\infty}\left[(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}\right]\left|a_{k}\right||z|^{k} \\
& -\sum_{k=1}^{\infty}\left|(-1)^{m-n}(1+(1-\alpha) \lambda) k^{m}+(1-\alpha)(1-\lambda) k^{n}\right|\left|b_{k}\right||z|^{k} \\
& -\sum_{k=1}^{\infty}\left|(-1)^{m-n}(1-\lambda(1+\alpha)) k^{m}-(1+\alpha)(1-\lambda) k^{n}\right|\left|b_{k}\right||z|^{k} \\
& =\left\{\begin{array}{lrr}
2(1-\alpha)|z|-2 \sum_{k=2}^{\infty}\left[(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}\right]\left|a_{k}\right||z|^{k}- & \\
2 \sum_{k=1}^{\infty}\left[(1-\lambda \alpha) k^{m}+\alpha(1-\lambda) k^{n}\right]\left|b_{k}\right||z|^{k}, & m-n & \text { is odd } \\
2(1-\alpha)|z|-2 \sum_{k=2}^{\infty}\left[(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}\right]\left|a_{k}\right||z|^{k} & \\
-2 \sum_{k=1}^{\infty}\left[(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}\right]\left|b_{k}\right||z|^{k}, & m-n & \text { is even }
\end{array}\right. \\
& =2(1-\alpha)|z|\left\{\begin{array}{l}
1-\sum_{k=2}^{\infty} \frac{(1-\lambda) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha}\left|a_{k}\right||z|^{k-1} \\
-\sum_{k=1}^{\infty} \frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha}\left|b_{k}\right||z|^{k-1}
\end{array}\right\}
\end{aligned}
$$

$$
>2(1-\alpha)\left\{\begin{array}{l}
1-\left(\sum_{k=2}^{\infty} \frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha}\left|a_{k}\right|\right. \\
\left.\left.+\sum_{k=1}^{\infty} \frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha}\left|b_{k}\right|\right)\right\}
\end{array}\right.
$$

This last expression is non-negative by (2.1).
The harmonic univalent functions

$$
\begin{align*}
& f(z)=z+\sum_{k=2}^{\infty} \frac{1-\alpha}{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}} x_{k} z^{k}+ \\
& \sum_{k=1}^{\infty} \frac{1-\alpha}{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}} \overline{y_{k} z^{k}} \tag{2.3}
\end{align*}
$$

where $m \in N, n \in N_{0}, m>n, 0 \leq \alpha<1,0 \leq \lambda \leq \frac{1-\alpha}{1+\alpha}$ and $\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=1$, show that the coefficient bound given by (2.1) is sharp. The functions of the form (2.3) are in $S_{H}(m, n ; \alpha ; \lambda)$ because

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left(\frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha}\right.\left.\left|a_{k}\right|+\frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha}\left|b_{k}\right|\right) \\
&=1+\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=2
\end{aligned}
$$

This completes the proof of Theorem 1.
In the following theorem, it is shown that the condition (2.1) is also necessary for functions $f_{m}=h+\bar{g}_{m}$, where h and g_{m} are of the form (1.5).
Theorem 2. Let $f_{m}=h+\bar{g}_{m}$ be given by (1.5). Then $f_{m} \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$ if and only if

$$
\begin{gather*}
\sum_{k=1}^{\infty}\left\{\left[(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}\right] a_{k}+\left[(1-\lambda \alpha) k^{m}-\right.\right. \\
\left.\left.(-1)^{m-n} \alpha(1-\lambda) k^{n}\right] b_{k}\right\} \leq 2(1-\alpha) \tag{2.4}
\end{gather*}
$$

where $a_{1}=1, m \in N, n \in N_{0}, m>n$ and $0 \leq \alpha<1,0 \leq \lambda \leq \frac{1-\alpha}{1+\alpha}$.
Proof. Since $\bar{S}_{H}(m, n ; \alpha ; \lambda) \subset S_{H}(m, n ; \alpha ; \lambda)$, we only need to prove the "only if" part of the theorem. To this end, for functions f_{m} of the form (1.5), we notice
that the condition $\operatorname{Re}\left\{\frac{D^{m} f_{m}(z)}{\lambda D^{m} f_{m}(z)+(1-\lambda) D^{n} f_{m}(z)}\right\}>\alpha$ is equivalent to

$$
R e\left\{\begin{array}{c}
(1-\alpha) z-\sum_{k=2}^{\infty}\left[(1-\alpha \lambda) k^{m}-\alpha(1-\lambda) k^{n}\right] a_{k} z^{k}+ \tag{2.5}\\
\frac{(-1)^{2 m-1} \sum_{k=1}^{\infty}\left[(1-\alpha \lambda) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}\right] b_{k} \bar{z}^{k}}{z-\sum_{k=2}^{\infty}\left(\lambda k^{m}+(1-\lambda) k^{n}\right) a_{k} z^{k}+\sum_{k=1}^{\infty}\left((-1)^{m-1} \lambda k^{m}+(-1)^{m+n-1}(1-\lambda) k^{n}\right) b_{k} \bar{z}^{k}}
\end{array}\right\} \geq 0
$$

The above required condition (2.5) must hold for all values of z in U. Upon choosing the values of z on the positive real axis where $0 \leq z=r<1$, we must have

$$
\begin{gather*}
(1-\alpha)-\sum_{k=2}^{\infty}\left[(1-\alpha \lambda) k^{m}-\alpha(1-\lambda) k^{n}\right] a_{k} r^{k-1}- \\
\frac{\sum_{k=1}^{\infty}\left[(1-\alpha \lambda) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}\right] b_{k} r^{k-1}}{1-\sum_{k=2}^{\infty}\left(\lambda k^{m}+(1-\lambda) k^{n}\right) a_{k} r^{k-1}-\sum_{k=1}^{\infty}\left(\lambda k^{m}+(-1)^{m-n}(1-\lambda) k^{n}\right) b_{k} r^{k-1}} \geq 0 \tag{2.6}
\end{gather*}
$$

If the condition (2.4) does not hold, then the numerator in (2.6) is negative for r sufficiently close to 1 . Hence there exists $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in (2.6) is negative. This contradicts the required condition for $f_{m} \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$ and so the proof is complete.

3.EXTREME POINTS AND DISTORTION THEOREM

Our next theorem is on the extreme points of convex hulls of $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ denoted by clco $\bar{S}_{H}(m, n ; \alpha ; \lambda)$.
Theorem 3. Let f_{m} be given by (1.5). Then $f_{m} \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$ if and only if $f_{m}(z)=\sum_{k=1}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{m_{k}}(z)\right)$, where $h_{1}(z)=z$,

$$
h_{k}(z)=z-\frac{1-\alpha}{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}} z^{k}(k=2,3, \ldots)
$$

and

$$
\begin{gathered}
g_{m_{k}}(z)=z+(-1)^{m-1} \frac{1-\alpha}{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}} \bar{z}^{k} \\
\quad(k=1,2, \ldots), x_{k} \geq 0, y_{k} \geq 0, x_{1}=1-\sum_{k=2}^{\infty}\left(x_{k}+y_{k}\right) \geq 0
\end{gathered}
$$

In particular, the extreme points of $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ are $\left\{h_{k}\right\}$ and $\left\{g_{m_{k}}\right\}$.
Proof. Suppose

$$
\begin{aligned}
f_{m}(z)= & \sum_{k=1}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{m_{k}}(z)\right) \\
= & \sum_{k=1}^{\infty}\left(x_{k}+y_{k}\right) z-\sum_{k=2}^{\infty} \frac{1-\alpha}{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}} x_{k} z^{k} \\
& +(-1)^{m-1} \sum_{k=1}^{\infty} \frac{1-\alpha}{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}} y_{k} \bar{z}^{k} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha} \cdot\left(\frac{1-\alpha}{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}} x_{k}\right)+ \\
& \sum_{k=1}^{\infty} \frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha} \cdot\left(\frac{1-\alpha}{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}} y_{k}\right) \\
= & \sum_{k=2}^{\infty} x_{k}+\sum_{k=1}^{\infty} y_{k}=1-x_{1} \leq 1
\end{aligned}
$$

and so $f_{m} \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$.
Conversely, if $f_{m} \in \operatorname{clco} \bar{S}_{H}(m, n ; \alpha ; \lambda)$; then

$$
a_{k} \leq \frac{1-\alpha}{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}
$$

and

$$
b_{k} \leq \frac{1-\alpha}{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}
$$

Set

$$
x_{k}=\frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha},(k=2,3, \ldots .),
$$

and

$$
y_{k}=\frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha} b_{k},(k=1,2, \ldots .) .
$$

Then note that by Theorem $2,0 \leq x_{k} \leq 1,(k=2,3, \ldots)$, and $0 \leq y_{k} \leq 1,(k=$ $1,2, \ldots)$. We define $x_{1}=1-\sum_{k=2}^{\infty} x_{k}-\sum_{k=1}^{\infty} y_{k}$ and note that by Theorem $2, x_{1} \geq 0$.
Consequently, we obtain $f_{m}(z)=\sum_{k=1}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{k}(z)\right)$ as required.

The following theorem gives the distortion bounds for functions in $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ which yields a covering result for this class.
Theorem 4. Let $f_{m}(z) \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$. Then for $|z|=r<1$, we have

$$
\begin{aligned}
& \left|f_{m}(z)\right| \leq\left(1+b_{1}\right) r+\frac{1}{2^{n}}\left(\frac{1-\alpha}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)}\right. \\
& \left.-\frac{(1-\lambda \alpha)-(-1)^{m-n} \alpha(1-\lambda)}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)} b_{1}\right) r^{2}(|z|=r<1)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|f_{m}(z)\right| \geq\left(1-b_{1}\right) r-\frac{1}{2^{n}}\left(\frac{1-\alpha}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)}\right. \\
& \left.-\frac{(1-\lambda \alpha)-(-1)^{m-n} \alpha(1-\lambda)}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)} b_{1}\right) r^{2}(|z|=r<1)
\end{aligned}
$$

Proof. We only prove the right-hand inequality. The proof for the left-hand inequality is similar and will be omitted. Let $f_{m}(z) \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$. Taking the absolute value of f_{m} we have

$$
\begin{aligned}
\left|f_{m}(z)\right| \leq & \left(1+b_{1}\right) r+\sum_{k=2}^{\infty}\left(a_{k}+b_{k}\right) r^{k} \leq\left(1+\mathrm{b}_{1}\right) r+\sum_{k=2}^{\infty}\left(a_{k}+b_{k}\right) r^{2} \\
= & \left(1+b_{1}\right) r+\frac{1-\alpha}{2^{n}\left[(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)\right]} \\
& \cdot \sum_{k=2}^{\infty} \frac{2^{n}\left[(1-\lambda) 2^{m-n}-\alpha(1-\lambda)\right]}{1-\alpha}\left(a_{k}+b_{k}\right) r^{2} \\
\leq & \left(1+b_{1}\right) r+\frac{(1-\alpha) r^{2}}{2^{n}\left[(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)\right]} \\
& \cdot \sum_{k=2}^{\infty}\left[\frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha} a_{k}+\right. \\
& \left.\frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha} b_{k}\right] \\
\leq & \left(1+b_{1}\right) r+\frac{1}{2^{n}}\left[\frac{1-\alpha}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)}-\right. \\
& \left.\frac{(1-\lambda \alpha)-(-1)^{m-n} \alpha(1-\lambda)}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)} b_{1}\right] r^{2} .
\end{aligned}
$$

The bounds given in Theorem 4 for functions $f_{m}=h+\bar{g}_{m}$ of form (1.5) also hold for functions of the form (1.2) if the coefficient condition (2.1) is satisfied. The upper
bound given for $f \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$ is sharp and the equality occurs for the functions

$$
\begin{aligned}
f(z)= & z+b_{1} \bar{z}-\frac{1}{2^{n}}\left(\frac{1-\alpha}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)}-\right. \\
& \left.\frac{(1-\lambda \alpha)-(-1)^{m-n} \alpha(1-\lambda)}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)} b_{1}\right) \bar{z}^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
f(z)= & z-b_{1} \bar{z}-\frac{1}{2^{n}}\left(\frac{1-\alpha}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)}-\right. \\
& \left.\frac{(1-\lambda \alpha)-(-1)^{m-n} \alpha(1-\lambda)}{(1-\lambda \alpha) 2^{m-n}-\alpha(1-\lambda)} b_{1}\right) z^{2}
\end{aligned}
$$

for $b_{1} \leq \frac{1-\alpha}{(1-\lambda \alpha)-(-1)^{m-n} \alpha(1-\lambda)}$ show that the bounds given in Theorem 4 are sharp.
The following covering result follows from the left hand inequality in Theorem 4.

Corollary 1. Let the function f_{m} defined by (1.5) belong to the class $\bar{S}_{H}(m, n ; \alpha ; \lambda)$. Then

$$
\begin{gathered}
\left\{w:|w|<\frac{(1-\lambda \alpha) 2^{m}-1-\left[(1-\lambda) 2^{n}-1\right] \alpha}{(1-\lambda \alpha) 2^{m}-\alpha(1-\lambda) 2^{n}}-\right. \\
\left.\frac{(1-\lambda \alpha)\left(2^{m}-1\right)-\alpha(1-\lambda)\left(2^{n}-(-1)^{m-n}\right)}{(1-\lambda \alpha) 2^{m}-\alpha(1-\lambda) 2^{n}} b_{1}\right\} \subset f_{m}(U) .
\end{gathered}
$$

3.Convolution and convex combination

For our next theorem, we need to define the convolution of two harmonic functions.

For harmonic functions of the form:

$$
\begin{equation*}
f_{m}(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}+(-1)^{m-1} \sum_{k=1}^{\infty} b_{k} \bar{z}^{k} \quad\left(a_{k} \geq 0 ; b_{k} \geq 0\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{m}(z)=z-\sum_{k=2}^{\infty} A_{k} z^{k}+(-1)^{m-1} \sum_{k=1}^{\infty} B_{k} \bar{z}^{k} \quad\left(A_{k} \geq 0 ; B_{k} \geq 0\right) \tag{4.2}
\end{equation*}
$$

we define the convolution of two harmonic functions f_{m} and F_{m} as

$$
\left(f_{m} * F_{m}\right)(z)=f_{m}(z) * F_{m}(z)
$$

$$
\begin{equation*}
=z-\sum_{k=2}^{\infty} a_{k} A_{k} z^{k}+(-1)^{m-1} \sum_{k=1}^{\infty} b_{k} B_{k} \bar{z}^{k} \tag{4.3}
\end{equation*}
$$

Using this definition, we show that the class $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ is closed under convolution.
Theorem 5. For $0 \leq \beta \leq \alpha<1,0 \leq \lambda \leq \frac{1-\alpha}{1+\alpha}$, let $f_{m} \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$ and $F_{m} \in \bar{S}_{H}(m, n ; \beta ; \lambda)$. Then $\bar{S}_{H}(m, n ; \alpha ; \lambda) \subset \bar{S}_{H}(m, n ; \beta, \lambda)$.

Proof. Let the function $f_{m}(z)$ defined by (4.1) be in the class $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ and let the function $F_{m}(z)$ defined by (4.2) be in the class $\bar{S}_{H}(m, n ; \beta ; \lambda)$. Then the convolution $f_{m} * F_{m}$ is given by (4.3). We wish to show that the coefficients of $f_{m} * F_{m}$ satisfy the required condition given in Theorem 2 . For $F_{m} \in \bar{S}_{H}(m, n ; \beta ; \lambda)$ we note that $0 \leq A_{k} \leq 1$ and $0 \leq B_{k} \leq 1$. Now, for the convolution function $f_{m} * F_{m}$ we obtain

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{(1-\lambda \beta) k^{m}-\beta(1-\lambda) k^{n}}{1-\beta} a_{k} A_{k}+\sum_{k=1}^{\infty} \frac{(1-\lambda \beta) k^{m}-(-1)^{m-n} \beta(1-\lambda) k^{n}}{1-\beta} b_{k} B_{k} \\
\leq & \sum_{k=2}^{\infty} \frac{(1-\lambda \beta) k^{m}-\beta(1-\lambda) k^{n}}{1-\beta} a_{k}+\sum_{k=1}^{\infty} \frac{(1-\lambda \beta) k^{m}-(-1)^{m-n} \beta(1-\lambda) k^{n}}{1-\beta} b_{k} \\
\leq & \sum_{k=2}^{\infty} \frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha} a_{k}+\sum_{k=1}^{\infty} \frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha} b_{k} \\
\leq & 1
\end{aligned}
$$

since $0 \leq \beta \leq \alpha<1$ and $f_{m} \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$. Therefore $f_{m} * F_{m} \in \bar{S}_{H}(m, n ; \alpha ; \lambda) \subset$ $\bar{S}_{H}(m, n ; \beta ; \lambda)$.

Now we show that the class $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ is closed under convex combinations of its members.
Theorem 6. The class $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ is closed under convex combination.
Proof. For $i=1,2,3, \ldots$, let $f_{m_{i}} \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$, where $f_{m_{i}}$ is given by

$$
f_{m_{i}}(z)=z-\sum_{k=2}^{\infty} a_{k_{i}} z^{k}+(-1)^{m-1} \sum_{k=1}^{\infty} b_{k_{i}} \bar{z}^{k},\left(a_{k_{i}} \geq 0 ; b_{k_{i}} \geq 0 ; z \in U\right)
$$

Then by Theorem 2, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\{\frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha} a_{k_{i}}+\frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha} b_{k_{i}}\right\} \leq 2 \tag{4.4}
\end{equation*}
$$

For $\sum_{i=1}^{\infty} t_{i}=1,0 \leq t_{i} \leq 1$, the convex combination of $f_{m_{i}}$ may be written as

$$
\begin{equation*}
\sum_{i=1}^{\infty} t_{i} f_{m_{i}}(z)=z-\sum_{k=2}^{\infty}\left(\sum_{i=1}^{\infty} t_{i} a_{k_{i}}\right) z^{k}+(-1)^{m-1} \sum_{k=1}^{\infty}\left(\sum_{i=1}^{\infty} t_{i} b_{k_{i}}\right) \bar{z}^{k} \tag{4.5}
\end{equation*}
$$

Then by (4.4), we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left\{\frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha} \sum_{i=1}^{\infty} t_{i} a_{k_{i}}+\right. \\
& \left.\frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha} \sum_{i=1}^{\infty} t_{i} b_{k_{i}}\right\} \\
= & \sum_{i=1}^{\infty} t_{i}\left\{\sum _ { k = 1 } ^ { \infty } \left[\frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha} a_{k_{i}}+\right.\right. \\
& \left.\left.\frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha} b_{k_{i}}\right]\right\} \\
\leq & 2 \sum_{i=1}^{\infty} t_{i}=2 .
\end{aligned}
$$

This is the condition required by (2.4) and so $\sum_{i=1}^{\infty} t_{i} f_{m_{i}}(z) \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$.
Theorem 7. If $f_{m} \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$ then f_{m} is convex in the disc

$$
|z| \leq \min _{k}\left\{\frac{(1-\alpha)\left(1-b_{1}\right)}{k\left[1-\alpha-\left(\frac{(1-\lambda \alpha)-(-1)^{m-n} \alpha(1-\lambda)}{1-\alpha}\right) b_{1}\right]}\right\}^{\frac{1}{k-1}}, k=2,3, \ldots .
$$

$\overline{S r}_{\bar{S}}$ Proof. Let $f_{m} \in \bar{S}_{H}(m, n ; \alpha ; \lambda)$, and let $0<r<1$, be fixed. Then $r^{-1} f_{m}(r z) \in$ $\bar{S}_{H}(m, n ; \alpha ; \lambda)$ and we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} k^{2}\left(a_{k}+b_{k}\right) r^{k-1}=\sum_{k=2}^{\infty} k\left(a_{k}+b_{k}\right)\left(k r^{k-1}\right) \\
& \leq \sum_{k=2}^{\infty}\left(\frac{(1-\lambda \alpha) k^{m}-\alpha(1-\lambda) k^{n}}{1-\alpha} a_{k}+\frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha} b_{k}\right) k r^{k-1} \\
& \leq 1-b_{1}
\end{aligned}
$$

provided that

$$
k r^{k-1} \leq \frac{1-b_{1}}{1-\left(\frac{(1-\lambda \alpha) k^{m}-(-1)^{m-n} \alpha(1-\lambda) k^{n}}{1-\alpha}\right) b_{1}}
$$

which is true if

$$
k \leq \min _{k}\left\{\frac{(1-\alpha)\left(1-b_{1}\right)}{k\left[1-\alpha-\left(\frac{(1-\lambda \alpha)-(-1)^{m-n} \alpha(1-\lambda)}{1-\alpha}\right) b_{1}\right]}\right\}^{\frac{1}{k-1}}, k=2,3, \ldots .
$$

This complete the proof of Theorem 7.

References

[1] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Sklodowska Sect. A, 44, (1990), 1-7.
[2] J. Clunie and T. Shell-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9, (1984), 3-25.
[3] J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235, (1999), 470-477.
[4] J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-type harmonic univalent functions, South. J. Pure Appl. Math., 2, (2002), 77-82.
[5] G. S. Salagean, Subclass of univalent functions, Lecture Notes in Math. 1013, Springer-Verlag, Berlin, Heidelberg and New York, (1983), 362-372.
[6] H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220, (1998), 283-289.
[7] H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28, (1999), 275-284.
[8] Sibel Yalcin, A new class of Salagean-type harmonic univalent functions, Applied Math. Letters, 18, (2005), 191-198.

Mohamed K. Aouf
Department of Mathematics
Faculty of Science, Mansoura University
Mansoura 35516, Egypt
email: mkaouf127@yahoo.com.

