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APPLICATIONS OF SUBORDINATION ON SUBCLASSES OF
MEROMORPHICALLY UNIVALENT FUNCTIONS WITH

INTEGRAL OPERATOR
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Abstract. In this paper we are concerned with applications of differential sub-
ordination for class of meromorphic univalent functions defined by integral operator,
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In the present paper, our aim is to study the Coefficient Bounds, Integral Represen-
tation, Linear Combinations, Weighted and Arithmetic Mean.
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1. Introduction

Let Σ be a class of all Meromorphic functions f(z) of the form by [4]

f(z) =
1
z

+
∞∑

k=1

akz
k, ak ≥ 0 (1.1)

and

g(z) =
1
z

+
∞∑

k=1

bkz
k, bk ≥ 0 (1.2)

Which are univalent in the punctured unit disk U = {z : z ∈ C , 0 < |z| < 1} =
U\ {0} with a simple pole at the origin. If f(z) and g(z) are analytic in U , we say
that f(z) is subordinate to g(z), written f ≺ g if there exists a Schwarz function
w(z) in U with w(0) = 0 and |w(z)| < 1(z ∈ U), such that f(z) = g(w(z)), (z ∈ U).
In particular, if the function g(z) is univalent in U , we have the following[5],

f(z) ≺ g(z), (z ∈ U) ⇔ f(0) = g(0) and f(U) ⊂ g(U)
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Definition 1. Analogous to the operators defined by Jung, Kim, and Srivas-
tava[3] on the normalized Analytic functions, by [1] define the following integral
operator

Pα
β :
∑

→
∑

Pα
β = Pα

β f(z) =
βα

Γ(α)
.

1
zβ+1

z∫
0

tβ
(
log

z

t

)α−1
f(t)dt (1.3)

(α > 0, β > 0; z ∈ U)

Where Γ(α) is the familiar Gamma Function.
Using the integral representation of the Gamma and Beta function, it can be shown
that
For f(z) ∈ Σ, given by (1.1) we have

Pα
β f(z) =

1
z

+
∞∑

k=1

(
β

k + β + 1

)α

akz
k, (α > 0, β > 0) (1.4)

z(Pα
β f(z))

′
= βPα−1

β f(z)− (β + 1)Pα
β f(z), (α > 1, β > 0) (1.5)

Definition 2. Let A and B (−1 ≤ B < A ≤ 1) be defined parameters. We
say that a function f(z) ∈ Σ is in the class Σ(A,B); if it satisfies the following
subordination condition by [5]

−z2
(
pα

βf(z)
)′ ≺ 1 + Az

1 + Bz
(z ∈ U) (1.6)

By the definition of differential subordinate, (1.6) is equivalent to the following
condition

∣∣∣∣∣∣∣
1 + z2

(
pα

βf(z)
)′

A + Bz2
(
pα

βf(z)
)′
∣∣∣∣∣∣∣ < 1 (z ∈ U) (1.7)

In particular, we can write ∑
(1− 2β,−1) =

∑
(β)

288



I. B. Bapna, N. Mathur - Applications of Subordination on Subclasses of...

Where Σ(β) denotes the class of function in Σ satisfying following form

Re
(
−z2

(
pα

βf(z)
)′)

> β (0 ≤ β < 1; z ∈ U)

Here are some applications of differential subordination {[2],[6]}.

2. Coefficient Bounds

Theorem 2.1 Let the function f(z) of the form (1.1) be in Σ Then the function
f(z) belongs to the class Σ(A,B) if and only if

(1−B)
∞∑

k=1

k

(
β

k + β + 1

)α

ak < (A−B) (2.1)

Where −1 ≤ B < A ≤ 1. The result is sharp for the function f(z) given by

f(z) =
1
z

+
(A−B)

(1−B)k
(

β
k+β+1

)α zk

Proof: Assume that the condition (2.1) is true. We must show that f ∈ Σ(A,B) or
equivalently prove that ∣∣∣∣∣∣∣

1 + z2
(
pα

βf(z)
)′

A + Bz2
(
pα

βf(z)
)′
∣∣∣∣∣∣∣ < 1 (2.2)

∣∣∣∣∣∣∣
1 + z2

(
pα

βf(z)
)′

A + Bz2
(
pα

βf(z)
)′
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 +

(
−1 +

∞∑
k=1

k
(

β
k+β+1

)α
akz

k+1

)
A + B

(
−1 +

∞∑
k=1

k
(

β
k+β+1

)α
akzk+1

)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∞∑

k=1

k
(

β
k+β+1

)α
akz

k+1

A−B + B
∞∑

k=1

k
(

β
k+β+1

)α
akzk+1

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∞∑

k=1

k
(

β
k+β+1

)α
ak

A−B + B
∞∑

k=1

k
(

β
k+β+1

)α
ak

∣∣∣∣∣∣∣∣ < 1,
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The last inequality is true by (2.1).

Conversely, suppose that f ∈ Σ(A,B). We must show that the condition (2.1)
holds true. We have ∣∣∣∣∣∣∣

1 + z2
(
pα

βf(z)
)′

A + Bz2
(
pα

βf(z)
)′
∣∣∣∣∣∣∣ < 1

Hence we get ∣∣∣∣∣∣∣∣
∞∑

k=1

k
(

β
k+β+1

)α
ak

A−B + B
∞∑

k=1

k
(

β
k+β+1

)α
ak

∣∣∣∣∣∣∣∣ < 1,

Since Re(z) < |z|, so we have

Re


∞∑

k=1

k
(

β
k+β+1

)α
ak

A−B + B
∞∑

k=1

k
(

β
k+β+1

)α
ak

 < 1

We Choose the value of z on the real axis and letting z → 1−, then we obtain
∞∑

k=1

k
(

β
k+β+1

)α
ak

A−B + B
∞∑

k=1

k
(

β
k+β+1

)α
ak

 < 1

Then

(1−B)
∞∑

k=1

k

(
β

k + β + 1

)α

ak < (A−B)

The result is sharp for the function

f(z) =
1
z

+
∞∑

k=1

(A−B) (k + β + 1)α

(1−B) kβα
zk

Corollary 2.2 Let f ∈ Σ(A,B), then we have

ak ≤
(A−B) (k + β + 1)α

(1−B) k(β)α k ≥ 1
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3. Integral Representation

In the next theorem we obtain an integral representation for pα
βf(z)

Theorem 3.1 Let f ∈ Σ(A,B), then

pα
βf(z) =

z∫
0

(Aφ(t)− 1)
t2 (1−Bφ(t))

dt , where |φ(z)| < 1, z ∈ U (3.1)

Proof: Let f(z) ∈ Σ(A,B) letting

−z2
(
pα

βf(z)
)′

= y(z) We have

y(z) ≺ 1 + Az

1 + Bz
(3.2)

Or we can write ∣∣∣∣ y(z)− 1
By(z)−A

∣∣∣∣ < 1,

so that consequently, we have

y(z)− 1
By(z)−A

= φ(z), |φ(z)| < 1 (z ∈ U)

We can write
−z2

(
pα

βf(z)
)′ = 1−Aφ(z)

1−Bφ(z)
,

Which gives

−
(
pα

βf(z)
)′ = 1

z2

1−Aφ(z)
1−Bφ(z)

,

pα
βf(z) =

z∫
0

1
t2

Aφ(t)− 1
1−Bφ(t)

dt (3.3)

And this gives the required result.

4. Linear Combination

In the theorem below, we prove a linear combination for the class Σ(A,B).

Theorem 4.1 Let fi(z) = z−1 +
∞∑

k=1

ak,iz
k, (ak,i ≥ 0, i = 1, 2, ...., l)
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Belong to Σ(A,B) then

F (z) =
l∑

i=1
cifi(z) ∈ Σ(A,B) Where

l∑
i=1

ci = 1

Proof: By theorem 2.1, We can write for every i ∈ {1, 2 . . . , l}

∞∑
k=1

k (1−B)
(A−B)

(
β

k + β + 1

)α

ak,i < 1, (4.1)

Therefore

F (z) =

(
l∑

i=1

ci

(
z−1 +

∞∑
k=1

ak,iz
k

))
= z−1 +

l∑
i=1

∞∑
k=1

ciak,iz
k

= z−1 +
∞∑

k=1

(
l∑

i=1

ciak,i

)
zk (4.2)

however
∞∑

k=1

k (1−B)
(A−B)

(
β

k + β + 1

)α
(

l∑
i=1

ak,ici

)

=
l∑

i=1

[ ∞∑
k=1

k (1−B)
(A−B)

(
β

k + β + 1

)α

ak,i

]
ci

≤ 1 (4.3)

then F (z) ∈ Σ(A,B)
hence the proof is complete.

5. Weighted Mean

Definition 3. f(z) and g(z) belong to Σ ,then the weighted mean hj(z) of f(z)
and g(z) is given by

hj(z) =
1
2

[(1− j)f(z) + (1 + j)g(z)]

In the following theorem we will show the weighted mean for the class Σ(A,B).

Theorem 5.1 If f(z) and g(z) are in the class Σ(A,B), then the weighted mean of
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f(z) and g(z) is also in Σ(A,B)

Proof: We have for hj(z) by definition

h(z) =
1
2

[
(1− j)

(
z−1 +

∞∑
k=1

akz
k

)
+ (1 + j)

(
z−1 +

∞∑
k=1

bkz
k

)]

= z−1 +
1
2

∞∑
k=1

[(1− j)ak + (1 + j)bk]zk (5.1)

Since f(z) and g(z) are in the class Σ(A,B) so by theorem 2.1 we must prove that

∞∑
k=1

k(1−B)
(

β

k + β + 1

)α [1
2
(1− j)ak +

1
2
(1 + j)bk

]

=
1
2
(1− j)(1−B)

∞∑
k=1

k

(
β

k + β + 1

)α

ak +
1
2
(1 + j)(1−B)

∞∑
k=1

k

(
β

k + β + 1

)α

bk

≤ 1
2
(1− j)(A−B) +

1
2
(1 + J)(A−B)

≤ (A−B) (5.2)

hence proved

6. Arithmetic Mean

Definition 4. Let f1(z),f2(z) . . . fl(z) belong to Σ(A,B), then the arithmetic
mean h(z) of fi(z) is given by

h(z) =
1
l

l∑
k=1

fi(z)

In the theorem below we will prove the arithmetic mean for this class Σ(A,B).

Theorem 6.1 If f1(z),f2(z) . . . fl(z) are in the class Σ(A,B), then the arithmetic
mean h(z) of fi(z) is given by

h(z) =
1
l

l∑
i=1

fi(z) (6.1)
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is also in the class Σ(A,B).
Proof: We have for h(z) by def. 4

h(z) =
1
l

l∑
k=1

(
z−1 +

∞∑
k=1

ak,iz
k

)
= z−1 +

∞∑
k=1

(
1
l

l∑
k=1

ak,i

)
zk (6.2)

Since fi(z) ∈ Σ(A,B) for every i = 1, 2, . . . , l so by using theorem 2.1, we prove that

(1−B)
∞∑

k=1

k

(
β

k + β + 1

)α
(

1
l

l∑
i=1

ak,i

)

=
1
l

l∑
i=1

( ∞∑
k=1

k(1−B)

)(
β

k + β + 1

)α

ak,i

≤ 1
l

l∑
i=1

(A−B) (6.3)

The proof is complete.
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