PROPERTIES OF STRONGLY θ - β - \mathcal{I} -CONTINUOUS FUNCTIONS

NEELAMEGARAJAN GOWRISANKAR, AYNUR KESKIN AND NEELAMEGARAJAN RAJESH

ABSTRACT: In this paper, we investigate several properties of strongly θ - β - \mathcal{I} continuous functions due to Yuksel et. al. [5].

Keywords: Ideal topological spaces, β - \mathcal{I} -open sets, strongly θ - β - \mathcal{I} -continuous functions.

2000 Mathematics Subject Classification: 54C08.

1. INTRODUCTION

The subject of ideals in topological spaces has been intruduced and studied by Kuratowski [3] and Vaidyanathasamy [4]. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator (.)*: $\mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [4] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^*(\tau, \mathcal{I}) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for each neighbourhood } U \text{ of } x\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $\mathrm{Cl}^*(.)$ for a topology τ^* called the *-topology, finer than τ is defined by $\mathrm{Cl}^*(A) = A \cup A^*(\tau, \mathcal{I})$, When there is no chance of confusion, $A^*(\mathcal{I})$ is denoted by A^* . If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. By a space, we always mean a topological space (X, τ) with no separation properties are assumed. If $A \subset X$, $\mathrm{Cl}(A)$ and $\mathrm{Int}(A)$ will denote the closure and interior of A in (X, τ) , repectively. In this paper we obtain several properties of strongly θ - β - \mathcal{I} -continuous functions due to Yuksel et. al.[5].

2. Preliminaries

A subset S of an ideal topological space (X, τ, \mathcal{I}) is β - \mathcal{I} -open [2] (resp. α - \mathcal{I} -open [2]) if $S \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(S)))$ (resp. $S \subset \operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(S)))$). The complement of a β - \mathcal{I} -open set is called β - \mathcal{I} -closed [2]. The intersection of all β - \mathcal{I} -closed sets containing S is called the β - \mathcal{I} -closure of S and is denoted by $_{\beta\mathcal{I}}\operatorname{Cl}(S)$. The β - \mathcal{I} -Interior of S is defined by the union of all β - \mathcal{I} -open sets contained in S and is denoted by $_{\beta\mathcal{I}}\operatorname{Int}(S)$.

A subset S of an ideal space (X, τ, \mathcal{I}) is said to be β - \mathcal{I} -regular [6] if it is both β - \mathcal{I} -open and β - \mathcal{I} -closed. The family of all β - \mathcal{I} -regular (resp. β - \mathcal{I} -open, β - \mathcal{I} -closed) sets of (X, τ, \mathcal{I}) is denoted by $\beta \mathcal{I}R(X)$ (resp. $\beta \mathcal{I}O(X), \beta \mathcal{I}C(X)$). The family of all β - \mathcal{I} -regular (resp. β - \mathcal{I} -open, β - \mathcal{I} -closed) sets of (X, τ, \mathcal{I}) containing a point $x \in X$ is denoted by $\beta \mathcal{I}R(X, x)$ (resp. $\beta \mathcal{I}O(X, x), \beta \mathcal{I}C(X, x)$). A point $x \in X$ is called the β - \mathcal{I} - θ -cluster point [6] of S if $_{\beta \mathcal{I}} \operatorname{Cl}(U) \cap S \neq \emptyset$ for every β - \mathcal{I} -open set U of (X, τ, \mathcal{I}) containing x. The set of all β - \mathcal{I} - θ -cluster points of S is called the β - \mathcal{I} -closure [6] of S and is denoted by $_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(S)$. A subset A is said to be β - \mathcal{I} - θ -closed [6] if $A = _{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(A)$. A point $x \in X$ is called the β - \mathcal{I} - θ -interior point of S if there exists a β - \mathcal{I} -regular set U of X containing x such that $x \in U \subset S$. The set of all β - \mathcal{I} - θ -interior points of S and is denoted by $_{\beta \mathcal{I}} \operatorname{Int}_{\theta}(S)$. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be β - \mathcal{I} - θ -open if $A = _{\beta \mathcal{I}} \operatorname{Int}_{\theta}(A)$. Equivalently, the complement of β - \mathcal{I} - θ -closed set is β - \mathcal{I} - θ -open.

3. Strongly θ - β - \mathcal{I} -continuous functions

Definition 0.1. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be strongly θ - β - \mathcal{I} continuous [5] (resp. β - \mathcal{I} -continuous [2]) at a point $x \in X$ if for each open set Vof Y containing f(x), there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}}Cl(U)) \subset V$ (resp. $f(U) \subset V$). If f has this property at each point of X, then it is said to be strongly θ - β - \mathcal{I} -continuous (resp. β - \mathcal{I} -continuous [2]) function.

Theorem 0.2. If a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly θ - β - \mathcal{I} -continuous, then it is β - \mathcal{I} -continuous.

Proof. Let f be a strongly θ - β - \mathcal{I} -continuous function on X. Then for each $x \in X$ and V be an open set of Y containing f(x), there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}}\mathrm{Cl}(U)) \subset V$. Since $U \subset_{\beta \mathcal{I}} \mathrm{Cl}(U)$, we have $f(U) \subset_{\beta \mathcal{I}} \mathrm{Cl}(U)$. Hence $f(U) \subset V$. Thus, there exists a β - \mathcal{I} -open set U of X containing x and $f(U) \subset V$. Therefore, fis β - \mathcal{I} -continuous. \Box

Remark 0.3. The function in Example 3.2 of [5] is β - \mathcal{I} -continuous but not strongly θ - β - \mathcal{I} -continuous.

Theorem 0.4. Let Y be a regular space. Then $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly θ - β - \mathcal{I} -continuous if and only if f is β - \mathcal{I} -continuous.

Proof. Let $x \in X$ and V be an open subset of Y containing f(x). Since Y is regular, there exists an open set W such that $f(x) \in W \subset \operatorname{Cl}(W) \subset V$. If f is β - \mathcal{I} -continuous, there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(U) \subset W$. We shall show that $f(\beta \mathcal{I}Cl(U)) \subset$ $\operatorname{Cl}(W)$. Suppose that $y \notin \operatorname{Cl}(W)$. There exists an open set G containing y such that $G \cap W = \emptyset$. Since f is β - \mathcal{I} -continuous, $f^{-1}(G) \in \beta \mathcal{I}O(X)$ and $f^{-1}(G) \cap U =$ \emptyset and hence $f^{-1}(G) \cap_{\beta \mathcal{I}} \operatorname{Cl}(U) = \emptyset$. Therefore, we obtain $G \cap f(_{\beta \mathcal{I}} \operatorname{Cl}(U)) = \emptyset$ and $y \notin f(_{\beta \mathcal{I}} \operatorname{Cl}(U))$. Consequently, we have $f(_{\beta \mathcal{I}} \operatorname{Cl}(U)) \subset \operatorname{Cl}(W) \subset V$. The converse is obvious.

Theorem 0.5. For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following properties are equivalent:

- (i) f is strongly θ - β - \mathcal{I} -continuous;
- (ii) for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \beta \mathcal{IR}(X, x)$ such that $f(U) \subset V$;
- (iii) $f^{-1}(V)$ is β - \mathcal{I} - θ -open in X for each open set V of Y;
- (iv) $f^{-1}(F)$ is β - \mathcal{I} - θ -closed in X for each closed set F of Y;
- (v) $f(_{\beta \mathcal{I}} Cl_{\theta}(A)) \subset Cl(f(A))$ for each subset A of X;
- (vi) $_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(A)) \subset f^{-1}(\operatorname{Cl}(B))$ for each subset B of Y.

Proof. (i)⇒(ii): It follows from Theorem 4.1 of [6]. (ii)⇒(iii): Let V be any open subset of Y and $x \in f^{-1}(V)$. There exists $U \in \beta \mathcal{I}R(X,x)$ such that $f(U) \subset V$. Therefore, we have $x \in U \subset f^{-1}(V)$. Therefore, $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Since any union of β-*I*-open sets is β-*I*-open ([5]), $f^{-1}(V)$ is β-*I*-open in X. (iii)⇒(iv): This is obvious. (iv)⇒(v): Let A be any subset of X. Since $\operatorname{Cl}(f(A))$ is closed in Y, by (iv), $f^{-1}(\operatorname{Cl}(f(A)))$ is β-*I*-θ-closed and we have $_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(A) \subset_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(f(A))) \subset_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(\operatorname{Cl}(f(A)))) = f^{-1}(\operatorname{Cl}(f(A)))$. Therefore, we obtain $f(_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(B))) \subset \operatorname{Cl}(f(f^{-1}(B))) \subset \operatorname{Cl}(f(f^{-1}(B))) \subset \operatorname{Cl}(B)$ and hence $_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$. (vi)⇒(i): Let $x \in X$ and V be any open set of Y containing f(x). Since $Y \setminus V$ is closed in Y, we have $_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(Y \setminus V)) \subset f^{-1}(\operatorname{Cl}(Y \setminus V)) = f^{-1}(Y \setminus V)$. Therefore, $f^{-1}(Y \setminus V)$ is β-*I*-θ-closed in X and $f^{-1}(V)$ is a β-*I*-θ-open set of X containing x. There exists $U \in \beta \mathcal{I}O(X, x)$ such that $_{\beta \mathcal{I}} \operatorname{Cl}(U) \subset f^{-1}(V)$ and hence $f(_{\beta \mathcal{I}} \operatorname{Cl}(U)) \subset V$. This shows that f is strongly θ -β-*I*-continuous.

Definition 0.6. A sequence (x_n) is said to be β - \mathcal{I} - θ -convergent to a point x if for every β - \mathcal{I} - θ -open set V containing x, there exists an index x_0 such that for $n \ge n_0$, $x_n \in V$.

Theorem 0.7. For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following properties are equivalent:

(i) f is strongly θ - β - \mathcal{I} -continuous on X;

(ii) for each $x \in X$ and each sequence (x_n) in X. If $(x_n) \beta \mathcal{I} - \theta$ -converges to x, then the sequence $(f(x_n))$ convergs to f(x).

Proof. (i) \Rightarrow (ii): Let $x \in X$ and (x_n) be a sequence in X such that $(x_n) \beta - \mathcal{I} - \theta$ converges to x. Let V be an open set containing f(x). Since f is strongly $\theta - \beta - \mathcal{I}$ continuous, there exists a $\beta - \mathcal{I}$ -open set U of X containing x such that $f(\beta_{\mathcal{I}} \operatorname{Cl}(U)) \subset V$. Since $(x_n) \beta - \mathcal{I} - \theta$ -converges to x, there exists n_0 such that $n_0 \in \beta_{\mathcal{I}} \operatorname{Cl}(U)$ for all $n \geq n_0$. Hence $f(x_n) \in f(\beta_{\mathcal{I}} \operatorname{Cl}(U))$ for all $n \geq n_0$. Since $f(\beta_{\mathcal{I}} \operatorname{Cl}(U)) \subset V$, hence $f(x_n) \subset V$ for all $n \geq n_0$. Thus, the sequence $(f(x_n))$ convergs to f(x). (ii) \Rightarrow (i): Suppose that f is not strongly $\theta - \beta - \mathcal{I}$ -continuous on X. Then there exists $x \in X$ and an open set V containing f(x) such that $f(\beta_{\mathcal{I}} \operatorname{Cl}(U))$ is not a subset of V for all $\beta - \mathcal{I}$ -open sets U containing x. Thus, there exists $x_U \in \beta_{\mathcal{I}} \operatorname{Cl}(U)$ such that $f(x_U) \notin V$. Consider, the sequence $\{x_U : U \in \beta \mathcal{I} O(X, x)\}$. Then, $(x_U) \beta - \mathcal{I} - \theta$ -converges to xbut $(f(x_U))$ does not converges to $f(x_0)$, which is contradict to (ii), and hence f is strongly $\theta - \beta - \mathcal{I}$ -continuous on X.

Definition 0.8. By a strongly θ - β - \mathcal{I} -continuous retraction, we mean a strongly θ - β - \mathcal{I} -continuous function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, where $Y \subset X$ and $f_{|_Y}$ is the identity function on Y.

Theorem 0.9. Let (X, τ) be a Hausdorff space and \mathcal{I} is an ideal on X. If A is a strongly θ - β - \mathcal{I} -continuous retraction of X, then $_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(A) = A$.

Proof. Suppose that $_{\beta\mathcal{I}} \operatorname{Cl}_{\theta}(A) \neq A$. Then there exists $x \in _{\beta\mathcal{I}} \operatorname{Cl}_{\theta}(A) - A$. Since A is a strongly θ - β - \mathcal{I} -continuous retract of X, we have $f(x) \neq x$ for some $x \in X$. Since X is a Hausdorff space, there exists disjoint open sets U and V such that $x \in U$ and $f(x) \in V$. Thus, $U \subset X - V$ and hence $_{\beta\mathcal{I}} \operatorname{Cl}(U) \cap V = \emptyset$. Since $U \subset_{\beta\mathcal{I}} \operatorname{Cl}(U)$, hence $x \in_{\beta\mathcal{I}} \operatorname{Cl}(U)$ for open set U containing x. Let W be an open set containing x. Since $W \subset_{\beta\mathcal{I}} \operatorname{Cl}(W)$, hence $x \in_{\beta\mathcal{I}} \operatorname{Cl}(W)$. Since $(U \cap W) \subset_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W)$, hence $x \in_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W)$ for open set $U \cap W$ containing x. Since $x \in_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W)$, hence $x \in_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W)$ for open set $U \cap W$ containing x. Since $x \in_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W)$, hence $x \in_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W)$ for open set $U \cap W$ containing x. Since $x \in_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W)$ hence $x \in_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W) \subset_{\beta\mathcal{I}} \operatorname{Cl}(U) \cap A \neq \emptyset$ for each $U \in \beta\mathcal{I}O(X, x)$, hence $_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W) \cap A \neq \emptyset$. Since $_{\beta\mathcal{I}} \operatorname{Cl}(U \cap W) \cap_{\beta\mathcal{I}} \operatorname{Cl}(W) \cap_{\beta\mathcal{I}} \operatorname{Cl}(W)$, hence $f(a) \in f(\mathcal{I}(\mathcal{I})) \cap_{\beta\mathcal{I}} \operatorname{Cl}(W)$ and $a \in A$. Since $a \in A$ hence f(a) = a, $a \in_{\beta\mathcal{I}} \operatorname{Cl}(W)$ hence $f(a) \in f(\mathcal{I}(\mathcal{I}))$ and $a \in_{\beta\mathcal{I}} \operatorname{Cl}(U)$ hence $a \notin V$. Thus, $f(a) \notin V$, we have $f(\mathcal{I}(\mathcal{I}))$ is not a subset of V for $W \in \beta\mathcal{I}O(X, x)$. Thus this contradicition f is strongly θ - β - \mathcal{I} -continuous on X. Therefore, $_{\beta\mathcal{I}} \operatorname{Cl}(\theta) = A$.

Definition 0.10. An ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I} - β -regular if for each closed set F and each point $x \in X \setminus F$, there exist disjoint β - \mathcal{I} -open sets U and V such that $x \in U$ and $F \subset V$.

Lemma 0.11. For an ideal topological space (X, τ, \mathcal{I}) , the following properties are equivalent:

- (i) X is \mathcal{I} - β -regular;
- (ii) for each point $x \in X$ and for each open set U of X containing x, there exists $V \in \beta \mathcal{I}O(X)$ such that $x \in V \subset_{\beta \mathcal{I}} Cl(V) \subset U$;
- (iii) for each subset A of X and each closed set F such that $A \cap F = \emptyset$, there exist disjoint $U, V \in \beta IO(X)$ such that $A \cap U \neq \emptyset$ and $F \subset V$;
- (iv) for each closed set F of X, $F = \bigcap \{ \beta I Cl(V) : F \subset V \text{ and } V \in \beta IO(X) \}$.

Proof. Clear.

Theorem 0.12. A continuous function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly θ - β - \mathcal{I} continuous if and only if (X, τ, \mathcal{I}) is \mathcal{I} - β -regular.

Proof. Necessity. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be the identity function. Then f is continuous and strongly θ - β - \mathcal{I} -continuous by our hypothesis. For any open set U of X and any point $x \in U$, we have $f(x) = x \in U$ and there exists $G \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}} \operatorname{Cl}(G)) \subset U$. Therefore, we have $x \in G \subset_{\beta \mathcal{I}} \operatorname{Cl}(G) \subset U$. It follows from Lemma 0.11 that (X, τ, \mathcal{I}) is \mathcal{I} - β -regular. Sufficiency. Suppose that $f : (X, \tau, \mathcal{I}) \to$ (Y, σ) is continuous and X is \mathcal{I} - β -regular. For any $x \in X$ and an open set Vcontaining $f(x), f^{-1}(V)$ is an open set containing x. Since X is \mathcal{I} - β -regular, there exists $U \in \beta \mathcal{I}O(X)$ such that $X \in U \subset_{\beta \mathcal{I}} \operatorname{Cl}(U) \subset f^{-1}(V)$. Therefore, we have $f(_{\beta \mathcal{I}}\operatorname{Cl}(U)) \subset V$. This shows that f is strongly θ - β - \mathcal{I} -continuous. \Box

Definition 0.13 (1). Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}) such that $A \subset X_0 \subset X$. Then $(X_0, \tau_{|X_0}, \mathcal{I}_{|X_0})$ is an ideal topological space with an ideal $\mathcal{I}_{|X_0} = \{\mathcal{I} \in \mathcal{I} | \mathcal{I} \subset X_0\} = \{\mathcal{I} \bigcap X_0 | \mathcal{I} \in \mathcal{I}\}.$

Lemma 0.14. [5] Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}) . Then,

- (i) If $A \in \beta \mathcal{I}O(X)$ and X_0 is α - \mathcal{I} -open in (X, τ, \mathcal{I}) , then $A \cap X_0 \in \beta \mathcal{I}O(X_0)$;
- (ii) If $A \in \beta \mathcal{I}O(X_0)$ and $X_0 \in \beta \mathcal{I}O(X)$, then $A \in \beta \mathcal{I}O(X)$.

Theorem 0.15. If a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly θ - β - \mathcal{I} -continuous and A is an α - \mathcal{I} -open subset of (X, τ, \mathcal{I}) , then $f_{|_A} : (A, \tau_{|_A}, \mathcal{I}_{|_A}) \to (Y, \sigma)$ is strongly θ - β - $\mathcal{I}_{|_A}$ -continuous.

Proof. For any $x \in X_0$ and any open set V of Y containing f(x), there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}}\mathrm{Cl}(U)) \subset V$ since f is strongly θ - β - \mathcal{I} -continuous. Put $U_0 = U \cap A$, then by Lemma 0.14, $U_0 \in \beta \mathcal{I}_{|_A}O(A, x)$ and $_{\beta \mathcal{I}}\operatorname{Cl}_A(U_0) \subset_{\beta \mathcal{I}}$ $\mathrm{Cl}(U_0)$. Therefore, we obtain $(f_{|_A})(_{\beta \mathcal{I}}\mathrm{Cl}_A(U_0)) = f(_{\beta \mathcal{I}}\mathrm{Cl}_A(U_0)) \subset f(_{\beta \mathcal{I}}\mathrm{Cl}(U_0)) \subset f(_{\beta \mathcal{I}}\mathrm{Cl}(U_0)) \subset f(_{\beta \mathcal{I}}\mathrm{Cl}(U_0)) \subset I$.

Definition 0.16. An ideal topological space (X, τ, \mathcal{I}) is said to be $\beta \cdot \mathcal{I} \cdot T_2$ [5] if and only if for each pair of distinct points $x, y \in X$, there exist $U \in \beta \mathcal{I}O(X, x)$ and $V \in \beta \mathcal{I}O(X, y)$ such that $U \cap V = \emptyset$.

Lemma 0.17. An ideal topological space (X, τ, \mathcal{I}) is said to be $\beta - \mathcal{I} - T_2$ [5] if and only if for each pair of distinct points $x, y \in X$, there exist $U \in \beta \mathcal{I}O(X, x)$ and $V \in \beta \mathcal{I}O(X, y)$ such that $_{\beta \mathcal{I}} \operatorname{Cl}(U) \cap _{\beta \mathcal{I}} \operatorname{Cl}(V) = \emptyset$.

Theorem 0.18. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is a strongly θ - β - \mathcal{I} -continuous injection and (Y, σ) is T_0 , then X is β - \mathcal{I} - T_2 .

Proof. Let x and y be any distinct points of X. Since f is injective, $f(x) \neq f(y)$ and there exists an open set V containing f(x) not containing f(y) or an open set W containing f(y) not containing f(x). If the first case holds, then there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(\beta \mathcal{I}Cl(U)) \subset V$. Therefore, we obtain $f(y) \notin f(\beta \mathcal{I}Cl(U))$ and hence $X \setminus_{\beta \mathcal{I}} Cl(U) \in \beta \mathcal{I}O(X, y)$. If the second case holds, then we obtain a similar result. Therefore, X is $\beta \mathcal{I}\mathcal{I}\mathcal{I}_2$.

Lemma 0.19. The product of two β - \mathcal{I} -open sets is β - \mathcal{I} -open.

Proof. Similar to the proof of Lemma 3.4 of [7].

Theorem 0.20. If a function
$$f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$$
 is strongly θ - β - \mathcal{I} -continuous
and Y is Hausdorff, then the subset $\{(x_1, x_2)|f(x_1)=f(x_2)\}$ is $\beta \mathcal{I} \theta$ -closed in the
product space $X \times X$.

Proof. Let $A = \{(x_1, x_2) | f(x_1) = f(x_2)\}$. If $(x_1, x_2) \notin A$, then we have $f(x_1) \neq f(x_2)$. Since Y is Hausdorff, there exist disjoint open sets V_1 and V_2 in Y such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$. Since f is strongly θ - β - \mathcal{I} -continuous, there exist $U_1 \in \beta \mathcal{I}O(X, x_1)$ and $U_2 \in \beta \mathcal{I}O(X, x_2)$ such that $f(\beta \mathcal{I}Cl(U_1)) \subset V_1$ and $f(\beta \mathcal{I}Cl(U_2)) \subset V_2$. Put $U = \beta \mathcal{I} \operatorname{Cl}(U_1) \times \beta \mathcal{I} \operatorname{Cl}(U_2)$. Then by Lemma 0.19 U is β - \mathcal{I} -open in $X \times X$. Since every β - \mathcal{I} -regular, U is β - \mathcal{I} -regular in $X \times X$ containing (x_1, x_2) and $A \cap U = \emptyset$. Therefore, we have $(x_1, x_2) \in \beta \mathcal{I} \operatorname{Cl}(A)$. This shows that, A is β - \mathcal{I} - θ closed in $X \times X$.

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\}$ of $X \to Y$ is called the graph of f and is denoted by G(f).

Definition 0.21. The graph G(f) of a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be β - \mathcal{I} -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \beta \mathcal{I}O(X, x)$ and an open set V in Y containing y such that $(\beta \mathcal{I}Cl(U) \times V) \cap G(f) = \emptyset$.

Lemma 0.22. The graph G(f) of a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be β - \mathcal{I} -closed if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \beta \mathcal{I}O(X, x)$ and an open set V in Y containing y such that $f(_{\beta \mathcal{I}}Cl(U)) \cap V = \emptyset$.

Proof. It is an immediate consequence of Definition 0.21.

Theorem 0.23. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly θ - β - \mathcal{I} -continuous and Y is Hausdorff, then G(f) is β - \mathcal{I} -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $f(x) \neq y$. Since Y is Hausdorff, there exist open sets V and W in Y containing f(x) and y, respectively, such that $V \cap W = \emptyset$. Since f is strongly θ - β - \mathcal{I} -continuous, there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}}Cl(U)) \subset V$. Therefore, $f(_{\beta \mathcal{I}}Cl(U)) \cap W = \emptyset$ and then by Lemma 0.22, G(f) is β - \mathcal{I} -closed in $X \times Y$.

References

[1] J. Dontchev, On Hausdorff spaces via topological ideals and \mathcal{I} -irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, 767(1995), 28-38.

[2] E. Hatir and T. Noiri, On decomposition of continuity via idealization, Acta Math. Hungar., 96(2002), 341-349.

[3] K. Kuratowski, Topology, Academic Press, New York, 1966.

[4] R. Vaidyanatahswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.

[5] S. Yuksel, A. Acikgoz and E. Gursel, On weakly β - \mathcal{I} -irresolute functions, Far. East J. Math. Sci., 25(1)(2007), 129-144.

[6] S. Yuksel, A. Acikgoz and E. Gursel, On β - \mathcal{I} -Regular sets, Far. East J. Math. Sci., 25(2)(2007), 353-366.

[7] S. Yuksel, A. H. Kocaman and A. Acikgoz, On α -*I*-irresolute functions, Far. East J. Math. Sci., 26(3)(2007), 673-684.

Neelamegarajan Gowrisankar

70/232 Kollupettai street, M. Chavady, Thanjavur-613001 TamilNadu, India. email:gowrisankartnj@gmail.com Aynur Keskin Department of Mathematics Faculty of Sciences and Arts Selcuk University 42075 Campus, Konya Turkey. email:*akeskin@selcuk.edu.tr*

Neelamegarajan Rajesh Department of Mathematics Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu, India. email:*nrajesh_topology@yahoo.co.in*