DOMINATION NUMBERS OF COMPLETE $P_{12} \times P_{N}$ GRID GRAPH

Mahmoud Saoud

AbSTRACT. this paper concerns the domination numbers $\gamma\left(P_{12} \times P_{n}\right)$ for $n \geq 1$. these numbers were proviously established for $1 \leq n \leq 33$ [2]. the domination set decision problem is NP-complete [3], [5]

Key words: dominating set, domination numbers, cartesian product of two paths.
2000 Mathematics Subject Classification: 05C69.

1. Introduction

Two vertices u and v of a graph $G=P_{12} \times P_{n}$, are said to be adjacent if $u v \in E$. The neighborhood of $v \in G$, is the set of vertices of G which are adjacent to v, the neighborhood of v is denoted by $N(v)$. The closed neighborhood of v is $\bar{N}(v)$, $\bar{N}(v)=N(v) \sqcup\{v\}[1]$.

The degree of a vertex v is the cardinality of $N(v)$; i.e.
$d(v)=|N(v)|$.
A dominating set in a graph is a set of vertices having the property that every vertex not in the set is adjacent to a vertex in the set.

The domination numbers $\gamma\left(P_{12} \times P_{n}\right)$ is the cardinality of a smallest dominating set in $P_{12} \times P_{n}$.

2. Definitions

Let D be a dominating set of a graph $P_{12} \times P_{n}=(V, E)$.

1. We define the function C_{D}, which we call the weight function, as follows : $C_{D}: V \rightarrow \mathbb{N}$, where \mathbb{N} is the set of natural numbers, $C_{D}(v)=|\widetilde{N}(v)|$, where $\tilde{N}(v)=\{w \in D: v w \in E$ or $w=v\}$
i.e. the weight of v is the number of vertices in D which dominates v.
2. We say that $v, v \in D$, has a moving domination if and only if one of the following two cases occurs :
(a) For every vertex $w, w \in N(v), C_{D}(w) \geq 2$. And, hence, the domination of v can be transformed to any vertex in $N(v)-D$.
(b) there exists one vertex $u, u \in N(v)$, such that $C_{D}(u)=1$.

In this case, the domination of v can be transformed only to u.
3. We say that a vertex $v, v \in D$, is a redundant vertex of D if $C_{D}(w) \geq 2$ for every vertex $w \in \bar{N}(v)$.
4. If $v \in D$, which has a moving domination, we say that v is inefficient if transforming the domination from v to any vertex in $N(v)$ would not produce any redundant vertex.

3.Complete $P_{12} \times P_{n}$ GRID GRAPH:

for two vertices v_{0} and v_{n} of a graph $P_{12} \times P_{n}$, a $v_{0}-v_{n}$ walk is a alternating sequence of vertices and edges $v_{0}, e_{1}, v_{1}, \ldots \ldots, e_{n}, v_{n}$ such that consecutive vertices and edges are incident.

A path is a walk in which no vertex is repeated.
A path with n vertices is denoted by P_{n}, it has $n-1$ edges, the lenght is $n-1$; the cartesian product $P_{k} \times P_{n}$ of two path is the complete grid graph with vertex set $V=\{(i, j): 1 \leq i \leq k, 1 \leq j \leq n\}$, where $\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)$ is a edge of $P_{k} \times P_{n}$ if $\left|u_{1}-v_{1}\right|+\left|u_{2}-v_{2}\right|=1[4]$.

4.An algorithm for finding a dominating set of a graph $P_{12} \times P_{n}$ USing A TRANSFORMATION OF DOMINATION OF VERTICES

1. Let $P_{12} \times P_{n}=(V, E),|V|=m, m>1$.
2. Let $D=V$ be a dominating set of $P_{12} \times P_{n}$.
3. Pick a vertex v_{1} of D, and delete from D all vertices $w, w \in N\left(v_{1}\right)$.

Then, for $1<n<\frac{m}{2}$, pick a vertex $v_{n}, v_{n} \in D-\underset{i=1}{\stackrel{n-1}{\nu}} \bar{N}\left(v_{i}\right)$ and delete from D all vertices $w, w \in N\left(v_{n}\right)-\sqcup_{i=1}^{n-1} \bar{N}\left(v_{i}\right)$.
4. If D contains a redundant vertex, then delete it. Repeated this proces until D has no redundant vertex.
5. Transform domination from vertices of D which have moving domination to vertices in $V-D$ to obtain redundant vertices and go to step 4.

If no redundant vertex can be obtained by a transformation of domination of vertices of D, then stop, and the obtained dominating set D satisfies :

For every $v \in D, \exists w \in \bar{N}(v): C_{D}(w)=1$.

Example No. 1

1. Let (k, n) be the vertex in the $k-t h$ row and in the $n-t h$ column of the graph $P_{12} \times P_{13},|V|=156$.
2. Let $D=V$, dominating set of $P_{12} \times P_{13}$.
3. Pick a vertex $v_{1}=(1,1) \in D$, and delete from D all vertices $w, w \in N\left(v_{1}\right)$,
 vertices $w, w \in N\left(v_{n}\right)-{ }_{i=1}^{n-1} \bar{N}\left(v_{i}\right)$. We obtain the dominating set D (black circles) in figure 1.

Figure 1.
4. Since for every vertex $v \in D, \exists w \in \bar{N}(v)$ such that $C_{D}(w)=1, D$ has no redundant vertices.
5. Transform the domination from the vertex $(9,13)$ to the vertex $(9,12)$ and delete, from D, the resullting redundant vertex $(10,12)$.

Therefore, the set D indicated in figure 2 (black circles) is a dominating set of $P_{12} \times P_{13}$.

Note that D minimum dominating set (see [2]). $\gamma\left(P_{12} \times P_{13}\right)=38$

Figure 2.
$n=13, \gamma\left(P_{12} \times P_{13}\right)=38=3(n-7)+20=3 n-1$
and gradually have : $\gamma\left(P_{12} \times P_{n}\right)=3 n-1$ for $9 \leq n \leq 13$

So, we gradually get domination numbers of $P_{12} \times P_{n}$.

$n=17, \gamma\left(P_{12} \times P_{17}\right)=49=3(n-14)+40=3 n-2$
and gradually have : $\gamma\left(P_{12} \times P_{n}\right)=3 n-2$ for $14 \leq n \leq 17$

$n=21, \gamma\left(P_{12} \times P_{21}\right)=60=3(n-9)+24=3 n-3$
and gradually have : $\gamma\left(P_{12} \times P_{n}\right)=3 n-3$ for $18 \leq n \leq 21$

$n=26, \gamma\left(P_{12} \times P_{26}\right)=74=3(n-12)+32=3 n-4$
and gradually have : $\gamma\left(P_{12} \times P_{n}\right)=3 n-4$ for $22 \leq n \leq 26$

So, we gradually have :
$\gamma\left(P_{12} \times P_{n}\right)=\left\{\begin{array}{lll}3 n & \text { for } & n=4,6,7,8 \\ 3 n+1 & \text { for } & n=1,2,3,5 \\ 3 n-(3 t+1) & \text { for } & n=9+13 t, 10+13 t, \ldots, 13+13 t ; t \geq 0 \\ 3 n-(2+t+3 k) & \text { for } & n=14+4 t+13 k, \ldots, 17+4 t+13 k, \\ & & \left\{\begin{array}{c}t=0,1 \\ k \geq 0\end{array}\right.\end{array}\right.$
where k and t are a integers.

References

[1] J.A. Bondy, U.S.R. Murty, Graph theory, Springer (2008)
[2] Tony Yu Chang, W. Edwin Clark, Eleanor O. Hare, Domination Numbers of complete grid graph, I. Ars combinatoria 38(1995) pp 97-111.
[3] B.N. Clark, C.J. Colbourn and D.S. Johnson, Unit disk graphs, Discrete Math., 86, 1990, 165-177.
[4] Tony Yu Chang, W. Edwin Clark, The domination numbers of $5 \times n$ and $6 \times n$ grid graph, Journal of graph theory, vol. 17, No. 1, 81-107 (1993).
[5] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Fundamentals of Domination in Graph, Marcel Dekker, inc., (1998).

Mahmoud Saoud,
Départment de mathématiques,
Ecole Normale Supérieure,
BP 92 Kouba; 16050 Alger, Algéria,
email: saoud_m@yahoo.fr

