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SOME RESULTS FOR ANTI-INVARIANT SUBMANIFOLD IN
GENERALIZED SASAKIAN SPACE FORM
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Abstract. In this paper we prove some inequalities, relating R, the scalar
curvature and H, the mean curvature vector field of an anti-invariant submanifold
in a generalized Sasakian space form M(f1, f2, f3). Also, we obtain a necessary
condition for such anti-invariant submanifolds, to admit a minimal manifold.
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1. Introduction

In [2], B.Y.Chen established in the following lemma the sharp inequality for
submanifolds in Riemannian manifolds with constant sectional curvature.

Lemma 1.1.Let Mn(n > 2) be a submanifold of a Riemannian manifold Rm(c)
of constant sectional curvature c. Then

inf K ≥ 1
2

{
R− n2(n− 2)

n− 1
‖H‖2 − (n + 1)(n− 2)c

}
,

in which for any p ∈ M

(inf K)(p) := inf{K(π)|plane sections π ⊂ TpM}

and R is scalar curvature of M . Equality hold if and only if, with respect to suitable
orthonormal frame {e1, . . . , en, . . . , em}, the shape operators Aer(r = n + 1, . . . , em)
of M in Rm(c) take the following forms:

Aen+1 =


a 0 0 . . . 0
0 b 0 . . . 0
0 0 µ . . . 0
...

...
...

. . .
...

0 0 0 0 µ

 , a + b = µ;
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Aer =


hr

11 hr
12 0 . . . 0

hr
21 −hr

11 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 0 0

 , r = n + 2, . . . ,m.

In present paper, we are going to establish the similar inequalities for anti-
invariant submanifold M with dim M > 2 in generalized Sasakian space form
M(f1, f2, f3), we will do this in two cases:
1) Structural vector field of M(f1, f2, f3) be tangent to M ,
2) Structural vector field of M(f1, f2, f3) be normal to M .
Also, we establish the sharp relationships between the function f of an anti-invariant
warped product submanifold M1 ×f M2 in generalized Sasakian space form and
squared mean curvature and scalar curvature of M .

2.Preliminaries

In this section, we recall some definitions and basic formulas which we will use
later.

A (2n+1)-dimensional Riemannian manifold (M, g) is said to be almost contact
metric manifold if there exist on M a (1,1)-tensor field φ, a vector field ξ(is called
the structure vector field) and a 1-form η such that η(ξ) = 1, φ2(X) = −X + η(X)ξ
and g(φX, φY ) = g(X, Y ) − η(X)η(Y ) for any vector fields X,Y on M . Also, it
can be simply proved that in an almost contact metric manifold we have φξ = 0,
η ◦ φ = 0 and η(X) = g(X, ξ) for any X ∈ τ(M)(see for instance [1]).We denote an
almost contact metric manifold by (M, φ, ξ, η, g).

If in almost contact metric manifold (M, φ, ξ, η, g),

2Φ(X, Y ) = dη(X, Y ),

where Φ(X, Y ) = g(Y, φX), then (M, φ, ξ, η, g) is called the contact metric manifold.
Also, if in an almost contact metric manifold (M, φ, ξ, η, g),(

∇Xφ
)
(Y ) = η(Y )X − g(X, Y )ξ,

then (M, φ, ξ, η, g) is called the Sasakian manifold. It is easy to see that every
Sasakian manifold is contact metric manifold.

36



F. Malek, V. Nejadakbary - Some results for anti-invariant submanifold in...

The submanifold M of almost contact metric manifold (M2n+1
, φ, ξ, η, g) is called

the anti-invariant submanifold if for any p ∈ M ,

φp(TpM) ⊂ T⊥p M.

Also, a submanifold M in contact metric manifold (M2n+1
, φ, ξ, η, g) is called the

Legendrian submanifold if dim M = n and for any p ∈ M , TpM ⊂ Kerηp. It is easy
to see that Legendrian submanifolds are anti-invariant.

Let (M, φ, ξ, η, g) be an almost contact manifold. If πp ⊂ TpM is generated by
{X, φX} where 0 6= X ∈ TpM is normal to ξp, is called the φ-section of M at p
and K(πp) is the φ-sectional curvature of πp. If in a Sasakian manifold, there exists
c ∈ < such that for any p ∈ M and for any φ-section πp of M , K(πp) = c then M is
called the Sasakian space form. In [5] it is proved that in a Sasakian space form the
curvature tensor is

R(X, Y, )Z =
c + 3

4
{g(Y, Z)X − g(X, Z)Y }

+
c− 1

4
{g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}

+
c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ

−g(Y, Z)η(X)ξ}.

Almost contact manifolds are said to be Generalized Sasakian space form if

R(X, Y, )Z = f1{g(Y, Z)X − g(X, Z)Y }
+f2{g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}
+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ
−g(Y, Z)η(X)ξ}, (1)

where f1, f2, f3 are differentiable functions on M . We denote this kind of manifolds
by M(f1, f2, f3).It is clear that every Sasakian space form is a generalized Sasakian
space form, but the converse is not necessarily true.

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f a positive dif-
ferentiable function on M1. The warped product of M1 and M2 is the Riemannian
manifold

M1 ×f M2 = (M1 ×M2, g),

Where g = g1 + f2g2, f is called the warped function. (see, for instance [3] and [4]).
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Let Mn be a submanifold of M
2m+1 in which h is the second fundamental form

of M and R and R are the curvature tensors of M and M respectively. The Gauss
equation is given by

R(X, Y, Z,W ) = R(X, Y, Z,W )

+g
(
h(X, W ), h(Y, Z)

)
− g

(
h(X, Z), h(Y, W )

)
, (2)

for any vector fields X, Y , Z, W on M .
The normal vector field H is called the mean curvature vector field of M if

for a local orthonormal frame {e1, · · · , en, · · · , e2m+1} for M such that e1, · · · , en

restricted to M , are tangent to M , we have

H =
1
n

n∑
i=1

h(ei, ei),

thus

n2‖H‖2 =
n∑

i,j=1

g
(
h(ei, ei), h(ej , ej)

)
. (3)

As is known, M is said to be minimal if H vanishes identically.
Also, we set

hr
ij = g

(
h(ei, ej), er

)
, i, j ∈ {1, · · · , n}, r ∈ {n + 1, · · · , 2m + 1},

the coefficients of the second fundamental form h with respect to {e1, · · · , en,
· · · , e2m+1}, and

‖h‖2 =
n∑

i,j=1

g
(
h(ei, ej), h(ei, ej)

)
. (4)

Now by (3) and (4) the gauss equation (2) can be rewritten as follows:∑
1≤i,j≤n

Rm(ej , ei, ei, ej) = R− n2‖H‖2 + ‖h‖2. (5)

in which R is the scalar curvature of M . Let Mn be a Riemannian manfold and
{e1, · · · , en} be a local orthonormal frame of M . For a differentiable function f on
M , the Laplacian ∆f of f is defined by

∆f =
n∑

j=1

(
(∇ejej)f − ej(ejf)

)
. (6)
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We recall the following result of B.Y.Chen for later use.
Lemma 2.1.([2]) Let n ≥ 2 and a1, · · · , an and b are real numbers such that

( n∑
i=1

ai

)2
= (n− 1)

( n∑
i=1

a2
i + b

)
.

Then 2a1a2 ≥ b,with equality holding if and only if

a1 + a2 = a3 = · · · = an.

3.Submanifolds normal to structure vector field in generalized
Sasakian space form

In this section, we are going to establish the inequalities for anti-invariant sub-
manifold M with dim M > 2 in generalized Sasakian space form M(f1, f2, f3) when
Structural vector field of M(f1, f2, f3) is normal to M .

Theorem 3.1.Let M1 ×f M2 be an anti-invariant submanifold in generalized
Sasakian space form M

2m+1(f1, f2, f3) such that structure vector field of M
2m+1(f1, f2, f3)

be normal to M1 ×f M2 and dim Mi = ni(i = 1, 2) and n1 + n2 = n > 2 then
a)

2n2
∆f

f
≤

(n(n− 1)
2

− n1n2

)((n2(n− 2)
n− 1

)
‖H‖2 + (n + 1)(n− 2)f1

)
+

(
1− n(n− 1)

2
+ n1n2

)
R (7)

b)
2∆f

n1f
≥ R− (n− 2)

( n2

n− 1
‖H‖2 + (n + 1)f1

)
, (8)

in which H, R, ∆ are mean curvature vector, scalar curvature and Laplacian oper-
ator of M ,respectively.

Proof. a) In the warped product manifold M1 ×f M2 , it is easily seen that

∇XZ = ∇ZX =
1
f

(Xf)Z,
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for any vector fields X and Z tangent to M1 and M2, respectively (see [6]). If X
and Z are unit vector fields, then the sectional curvature K(X ∧ Z) of the plane
section spanned by X and Z is given by

K(X ∧ Z) = g(∇Z∇XX −∇X∇ZX, Z) =
1
f

(
(∇XX)f −X2f

)
. (9)

We choose a local orthonomal fram {e1, . . . , e2m+1} for M such that e1, . . . , en1 are
tangent to M1 and en1+1, . . . , en are tangent to M2 and en+1 is parallel to H.

By using (6) and (9), we get

∆f

f
=

n1∑
i=1

K(ei, ej), (10)

for any j ∈ {n1 + 1, . . . , n}. With simple computation on last equality we get

2n2
∆f

f
= R−

∑
1≤i6=j≤n1

K(ej , ei)−
∑

n1+1≤i6=j≤n

K(ej , ei). (11)

From (3), with respect to this frame we have

n2‖H‖2 =
n∑

i,j=1

g
(
h(ei, ei), h(ej , ej)

)
=

( n∑
i=1

hn+1
ii

)2
, (12)

from (1) and (5), we have

n2‖H‖2 = R + ‖h‖2 − n(n− 1)f1. (13)

We set

δ := R− n2(n− 2)
n− 1

‖H‖2 − (n + 1)(n− 2)f1. (14)

Therefore (13), reduces to n2‖H‖2 = (n− 1)
(
δ + ‖h‖2 − 2f1

)
.

From (4), (12) and above equality, we have

( n∑
i=1

hn+1
ii

)2
= (n− 1)

(
δ +

n∑
i=1

(hn+1
ii )2 +

∑
1≤i6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2 − 2f1

)
.

We set

b := δ +
∑

1≤i6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2 − 2f1.
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For α 6= β ∈ {1, . . . , n}, we let a1 = hn+1
αα and a2 = hn+1

ββ , then from Lemma.2.1, we
have a1a2 ≥ b

2 . Therefore

hn+1
αα hn+1

ββ ≥ δ

2
− f1 +

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2

+
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2. (15)

On the other hand from Gauss equation (2) and (1), we have

f1 = K(eβ , eα)−
2m+1∑
r=n+1

hr
ααhr

ββ +
2m+1∑
r=n+1

(hr
αβ)2,

therefore

f1 + hn+1
αα hn+1

ββ = K(eβ, eα)−
2m+1∑
r=n+2

hr
ααhr

ββ +
2m+1∑
r=n+1

(hr
αβ)2.

Then from (15) and the above equality, we have

K(eβ, eα)−
2m+1∑
r=n+2

hr
ααhr

ββ +
2m+1∑
r=n+1

(hr
αβ)2

≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.

After simplification we get

K(eβ , eα)−
2m+1∑
r=n+2

hr
ααhr

ββ

≥ δ

2
+

∑
1≤i<j≤n
i6=α∨j 6=β

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n
i6=α∨j 6=β

(hr
ij)

2. (16)

Since

2m+1∑
r=n+2

hr
ααhr

ββ =
1
2

2m+1∑
r=n+2

(hr
αα + hr

ββ)2 − 1
2

2m+1∑
r=n+2

(hr
αα)2 − 1

2

2m+1∑
r=n+2

(hr
ββ)2,
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therefore from (16) we get

K(eβ , eα) ≥ δ

2
+

1
2

2m+1∑
r=n+2

(hr
αα + hr

ββ)2 +
∑

1≤i<j≤n
i6=α∨j 6=β

(hn+1
ij )2

+
1
2

2m+1∑
r=n+2

n∑
i=1

i6=α,β

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n
i6=α∨j 6=β

(hr
ij)

2 ≥ δ

2
. (17)

From (11) and the above inequality we have

2n2
∆f

f
≤ R−

(
n1(n1 − 1) + n2(n2 − 1)

)δ

2
= R−

(n(n− 1)
2

− n1n2

)
δ.

By substituting δ in the above inequality, we get (7)
b) By (10) and (17), for any β ∈ {n1 + 1, . . . , n}, we have

∆f

f
=

n1∑
α=1

K(eα, eβ) ≥
n1∑

α=1

δ

2

in which δ is defined in (14). Therefore ∆f
f ≥ n1

δ
2 . By substituting δ in the above

inequality, we get (8).

Corollary 3.2.A necessary condition for an anti-invariant warped product sub-
manifold M1×f M2 in generalized Sasakian space form M(f1, f2, f3) such that struc-
ture vector field of M(f1, f2, f3) be normal to M1 ×f M2, to be minimal is
a)

2n2
∆f

f
≤

(n(n− 1)
2

− n1n2

)
(n2 − n− 2)f1 +

(
1− n(n− 1)

2
+ n1n2

)
R

b) 2∆f
n1f ≥ R − (n − 2)(n + 1)f1, in which dim Mi = ni(i = 1, 2), n1 + n2 = n > 2

and R and ∆ are the scalar curvature and Laplacian operator of M , respectively.

In Theorem 3.1 the anti-invariant submanifold, was a warped product manifold.
In the next theorem we remove this assumption and indeed we generalize the Chen’s
inequality, Lemma 1.1, for anti-invariant submanifolds Mn(n > 2) of generalized
Sasakian space forms.

Theorem 3.3.If Mn(n > 2) be an anti-invariant submanifold in a generalized
Sasakian space form M

2m+1(f1, f2, f3) such that structure vector field of M
2m+1(f1, f2, f3)
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be normal to M then

inf K ≥ 1
2

{
R− n2(n− 2)

n− 1
‖H‖2 − (n + 1)(n− 2)f1

}
, (18)

in which
K = {K(π)| plane section fields π ⊂ TM}

and R is the scalar curvature of M . Equality holds if and only if, with respect
to an orthonormal frame {e1, . . . , en, . . . , e2m+1}, the shape operators Aer(r = n +
1, . . . , 2m + 1) of M in M

2m+1(f1, f2, f3) take the following forms:

Aen+1 =


hn+1

11 hn+1
12 0 . . . 0

hn+1
21 hn+1

22 0 . . . 0
0 0 hn+1

33 . . . 0
...

...
...

. . .
...

0 0 0 0 hn+1
nn

 , (19)

in which hn+1
11 + hn+1

22 = hn+1
33 = . . . = hn+1

nn and

Aer =


hr

11 hr
12 0 . . . 0

hr
21 −hr

11 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 0 0

 , r = n + 2, . . . , 2m + 1. (20)

Proof. Let π ⊂ TM be a 2-plane field. We choose a local orthonormal frame
{e1, . . . , e2m+1} for M such that e1, . . . , en are tangent to M , π generated by {e1, e2}
and en+1 is parallel to H. With a similar computation as in theorem 3.1, we get
K(e1, e2) ≥ δ

2 , in which δ is defined in (14). Therefore we get (18).
If the equality sign of (18) holds, then for a local orthonormal frame, (17) be-

comes equality. with recursive computation, inequality (15) also change to equality.
Therefore by (17)

hr
11 + hr

22 = 0 n + 2 ≤ r ≤ 2m + 1,

hr
ii = 0 n + 2 ≤ r ≤ 2m + 1, 3 ≤ i ≤ n,

hr
1j = hr

j1 = hr
2j = hr

j2 = 0 n + 1 ≤ r ≤ 2m + 1, 3 ≤ j ≤ n,

hr
ij = 0 n + 1 ≤ r ≤ 2m + 1, 3 ≤ i 6= j ≤ n,
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from lemma 2.1 and (15), we have hn+1
11 + hn+1

22 = hn+1
33 = . . . = hn+1

nn . Therefore we
get (19) and (20). The converse statement is straightforward.
Corollary 3.4.A necessary condition for anti-invariant submanifold Mn(n > 2) in a
generalized Sasakian space form M

2m+1(f1, f2, f3) such that structure vector field of
M

2m+1(f1, f2, f3) be normal to M , to be minimal, is inf K ≥ 1
2 {R− (n + 1)(n− 2)f1} ,

in which K := {K(π)| plane section fields π ⊂ TM} and R is scalar curva-
ture of M . Equality holds if and only if, with respect to an orthonormal frame
{e1, . . . , en, . . . , e2m+1}, the shape operators Aer(r = n + 1, . . . , e2m+1) of M in
M

2m+1(f1, f2, f3) take the following forms:

Aen+1 =


hn+1

11 hn+1
12 0 . . . 0

hn+1
21 hn+1

22 0 . . . 0
0 0 hn+1

33 . . . 0
...

...
...

. . .
...

0 0 0 0 hn+1
nn

 ,

in which hn+1
11 + hn+1

22 = hn+1
33 = . . . = hn+1

nn and

Aer =


hr

11 hr
12 0 . . . 0

hr
21 −hr

11 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 0 0

 , r = n + 2, . . . , 2m + 1.

Remark 3.5.Since the structure vector field in a generalized Sasakian space form is
normal to Legendrian submanifolds and Legendrian submanifolds are anti-invariant,
therefore Theorems (3.1) and (3.3) and corollaries (3.2) and (3.4) are satisfied when
submanifolds in generalized Sasakian space form are a Legendrian.

4.Submanifolds tangent to structure vector field in a generalized
Sasakian space form

In this section, we are going to establish the inequalities for anti-invariant sub-
manifold M with dim M > 2 in generalized Sasakian space form M(f1, f2, f3) when
Structural vector field of M(f1, f2, f3) be tangent to M .
Theorem 4.1.If M1 ×f M2 is an anti-invariant warped product submanifold in a
generalized Sasakian space form M

2m+1(f1, f2, f3) such that dim Mi = ni(i = 1, 2)
and n1 +n2 = n > 2, and the structure vector field of M(f1, f2, f3) is tangent to M2
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then
2∆f

n1f
≥ R− (n− 2)

( n2

n− 1
‖H‖2 + (n + 1)f1 − 2f3

)
, (21)

in which H, R and ∆ are mean curvature vector, scalar curvature and Laplacian
operator of M , respectively.
Proof. We choose local orthonormal frame {e1, . . . , e2m+1} such that e1, . . . , en1 are
tangent to M1, en1 , . . . , en are tangent to M2, en = ξ and en+1 is parallel to H.

From Gauss equation, similar to the proof of Theorem 3.1, we have

n2‖H‖2 = R− n(n− 1)f1 + 2(n− 1)f3 + ‖h‖2, (22)

We set

δ := R− n2(n− 2)
n− 1

‖H‖2 − (n + 1)(n− 2)f1 + 2(n− 2)f3, (23)

then from (22) we have n2‖H‖2 = (n − 1)(‖h‖2 + δ − 2f1 + 2f3), and substituting
(3) and (4) in the above equality, we get

( n∑
i=1

hn+1
ii

)2
= (n− 1)

( n∑
i=1

(hn+1
ii )2 +

∑
1≤i6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + δ − 2f1 + 2f3

)
.

Now we set b := δ − 2f1 + 2f3 +
∑

1≤i6=j≤n(hn+1
ij )2 +

∑2m+1
r=n+2

∑n
i,j=1(h

r
ij)

2.

For α ∈ {1, . . . , n− 1}, we let a1 = hn+1
αα and a2 = hn+1

nn , then from Lemma.2.1, we
have a1a2 ≥ b

2 . Therefore

hn+1
αα hn+1

nn ≥ δ

2
− (f1 − f3) +

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.

Therefore

hn+1
αα hn+1

nn + (f1 − f3) ≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2

+
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2. (24)

On the other hand from (1) and the Gauss equation, for α ∈ {1, . . . , n− 1} we have

f1 − f3 = K(eα, en)−
2m+1∑
r=n+1

hr
ααhr

nn +
2m+1∑
r=n+1

(hr
αn)2.
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By comparing the above equality with (24), we obtain

K(eα, en)−
2m+1∑
r=n+2

hr
ααhr

nn +
2m+1∑
r=n+1

(hr
αn)2

≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.

After simplification, we have

K(eα, en)−
2m+1∑
r=n+2

hr
ααhr

nn ≥ δ

2
+

∑
1≤i<j≤n
i6=α∨j 6=n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2

+
2m+1∑
r=n+2

∑
1≤i<j≤n
i6=α∨j 6=n

(hr
ij)

2. (25)

Since

2m+1∑
r=n+2

hr
ααhr

nn =
1
2

2m+1∑
r=n+2

(hr
αα + hr

nn)2 − 1
2

2m+1∑
r=n+2

(hr
αα)2 − 1

2

2m+1∑
r=n+2

(hr
nn)2,

therefore from (25) we get

K(eα, en) ≥ δ

2
+

∑
1≤i<j≤n
i6=α∨j 6=n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

i6=α,n

(hr
ii)

2

+
2m+1∑
r=n+2

∑
1≤i<j≤n
i6=α∨j 6=n

(hr
ij)

2 +
1
2

2m+1∑
r=n+2

(hr
αα + hr

nn)2.

⇒ K(eα, en) ≥ δ

2
.

Therefore

2
n1∑

α=1

K(eα, en) ≥ n1δ
(10),(23)

=⇒ 2
∆f

n1f
≥ R− n2(n− 2)

n− 1
‖H‖2 − (n + 1)(n− 2)f1 + 2(n− 2)f3.

Corollary 4.2.A necessary condition for anti-invariant warped product submanifold
M1 ×f M2, in a generalized Sasakian space form M(f1, f2, f3) such that dim Mi =
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ni(i = 1, 2) and n1 + n2 = n > 2 and the structure vector field of M(f1, f2, f3) is
tangent to M2, to be minimal is

2∆f

n1f
≥ R− (n− 2)

(
(n + 1)f1 − 2f3

)
,

in which R is the scalar curvature of M .

In Theorem 4.1 the anti-invariant submanifold, was a warped product mani-
fold. In the next theorem we remove this assumption and indeed we generalize the
Chen’s inequality, Lemma 1.1, for anti-invariant submanifolds Mn(n > 2) of gener-
alized Sasakian space forms.
Theorem 4.3.Let Mn(n > 2) be an anti-invariant submanifold in a generalized
Sasakian space form M

2m+1(f1, f2, f3) such that structure vector field of M(f1, f2, f3)
be tangent to M . Then

inf K ≥ inf
{
A+ (n− 2)f3,A+ (n− 1)f3,A+

P

2
f3 − 2|f3|

}
, (26)

where
K := {K(π)| plane section fields π ⊂ TM},

A :=
1
2

{
R− n2(n− 2)

n− 1
‖H‖2 − (n + 1)(n− 2)f1

}
,

P :=
∑

1≤i6=j≤n

((
η(ei)

)2
+

(
η(ej)

)2
)

,

in which {e1, . . . , e2m+1} is an orthonormal frame such that e1, . . . , en are tangent
to M and for any i ∈ {1, . . . , n}, ξ 6= ei and R is the scalar curvature of M .
Proof. Let π be a 2-plane field in TM .
1) If ξ is tangent to π then:
we choose locale orthonormal frame {e1, . . . , e2m+1} such that e1, . . . , en are tangent
to M and en+1 is parallel to H, e1 = ξ and π generated by {e1, e2}. Therefore From
Gauss equation, similar to the proof of theorem 4.1, we have

n2‖H‖2 = R− n(n− 1)f1 + 2(n− 1)f3 + ‖h‖2, (27)

We defined δ as in (23)

δ := R− n2(n− 2)
n− 1

‖H‖2 − (n + 1)(n− 2)f1 + 2(n− 2)f3,
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then from (27) we have

n2‖H‖2 = (n− 1)
(
‖h‖2 + δ − 2f1 + 2f3

)
,

and substituting (3) and (4) in the above equality, we get( n∑
i=1

hn+1
ii

)2
= (n− 1)

( n∑
i=1

(hn+1
ii )2 +

∑
1≤i6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2

+δ − 2f1 + 2f3

)
. (28)

Now set

b := δ − 2f1 + 2f3 +
∑

1≤i6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2.

From Lemma.2.1, we have

hn+1
11 hn+1

22 ≥ δ

2
− (f1 − f3) +

∑
1≤i<j≤n

(hn+1
ij )2

+
1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2. (29)

Therefore

hn+1
11 hn+1

22 + (f1 − f3) ≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2

+
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2. (30)

On the other hand from (1) and the Gauss equation, we have

f1 − f3 = K(e1, e2)−
2m+1∑
r=n+1

hr
11h

r
22 +

2m+1∑
r=n+1

(hr
12)

2.

By comparing the above equality with (30), we obtain

K(e1, e2)−
2m+1∑
r=n+2

hr
11h

r
22 +

2m+1∑
r=n+1

(hr
12)

2

≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.
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After simplification, we have

K(e1, e2) ≥ δ

2
+

∑
1≤i<j≤n
i6=1∨j 6=2

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

i6=1,2

(hr
ii)

2

+
2m+1∑
r=n+2

∑
1≤i<j≤n
i6=1∨j 6=2

(hr
ij)

2 +
1
2

2m+1∑
r=n+2

(hr
11 + hr

22)
2.

⇒ K(e1, e2) ≥
δ

2
.

By substituting δ in the above inequality, we have

K(e1, e2) ≥ A+ (n− 2)f3. (31)

2) If ξ is normal to π then:
we choose a locale orthonormal frame {e1, . . . , e2m+1} such that e1, . . . , en are tan-
gent to M and en+1 is parallel to H, en = ξ and π generated by {e1, e2}. Therefore
from Gauss equation, similar to the proof of Theorem 4.1, we have (27). Therefore

n2‖H‖2 = (n− 1)
(
‖h‖2 + δ − 2f1 + 2f3

)
,

in which δ is defined in (23). By substituting (3) and (4) in the above equality, we
get (28). From Lemma.2.1 we have (29) and then

hn+1
11 hn+1

22 + f1 ≥ δ

2
+ f3 +

∑
1≤i<j≤n

(hn+1
ij )2

+
1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2. (32)

On the other hand from (1) and the Gauss equation, we have

f1 = K(e1, e2)−
2m+1∑
r=n+1

hr
11h

r
22 +

2m+1∑
r=n+1

(hr
12)

2.

By comparing the above equality and (32), we obtain

K(e1, e2)−
2m+1∑
r=n+2

hr
11h

r
22 +

2m+1∑
r=n+1

(hr
12)

2

≥ δ

2
+ f3 +

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.
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By simple computation, we have

K(e1, e2) ≥
δ

2
+ f3.

By substituting δ in the above inequality, we get

K(e1, e2) ≥ A+ (n− 1)f3. (33)

3) If ξ be neither tangent or normal to π then:
we choose locale orthonormal frame {e1, . . . , e2m+1} such that e1, . . . , en are tangent
to M and en+1 is parallel to H and π generated by {e1, e2} and for any i ∈ {1, . . . , n},
ξ 6= ei. Therefore from Gauss equation, similar to the proof of theorem 4.1, we have

n2‖H‖2 = R + ‖h‖2 − n(n− 1)f1 + Pf3, (34)

in which

P :=
∑

1≤i6=j≤n

((
η(ei)

)2
+

(
η(ej)

)2
)

.

We set

δ := R− n2(n− 2)
n− 1

‖H‖2 − (n + 1)(n− 2)f1 + Pf3, (35)

then from (34) we have

n2‖H‖2 = (n− 1)(‖h‖2 + δ − 2f1),

and substituting (3) and (4) in the above equality, we get

( n∑
i=1

hn+1
ii

)2
= (n− 1)

( n∑
i=1

(hn+1
ii )2 +

∑
1≤i6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + δ − 2f1

)
.

Now set

b := δ − 2f1 +
∑

1≤i6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2.

From Lemma.2.1, we have

hn+1
11 hn+1

22 ≥ δ

2
− f1 +

∑
1≤i<j≤n

(hn+1
ij )2

+
1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.
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Therefore

hn+1
11 hn+1

22 + f1 ≥
δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.(36)

On the other hand, from gauss equation we have

f1 = K(e1, e2) +
((

η(e1)
)2

+
(
η(e2)

)2
)

f3 −
2m+1∑
r=n+1

hr
11h

r
22 +

2m+1∑
r=n+1

(hr
12)

2.

Then (36) becomes

K(e1, e2) +
((

η(e1)
)2

+
(
η(e2)

)2
)

f3 −
2m+1∑
r=n+2

hr
11h

r
22 +

2m+1∑
r=n+1

(hr
12)

2

≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +
2m+1∑
r=n+2

n∑
1≤i<j≤n

(hr
ij)

2.

After simplification we have

K(e1, e2) ≥
δ

2
−

((
η(e1)

)2
+

(
η(e2)

)2
)

f3. (37)

On the other hand, for i ∈ {1, 2}

0 < g(ξ − ei, ξ − ei) = g(ξ, ξ)− 2g(ξ, ei) + g(ei, ei)

⇒ g(ξ, ei) < 1

⇒ 0 ≤
(
g(ξ, ei)

)2
< 1.

⇒ 0 ≤
(
η(e1)

)2
+

(
η(e2)

)2
< 2.

Therefore (37) can be rewriten as

K(e1, e2) ≥ δ

2
− 2|f3|.

≥ 1
2

{
R− n2(n− 2)

n− 1
‖H‖2 − (n + 1)(n− 2)f1 + Pf3

}
− 2|f3|

From (31) and (33) and the above inequality, we get (26).
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