SOME RESULTS FOR ANTI-INVARIANT SUBMANIFOLD IN GENERALIZED SASAKIAN SPACE FORM

Fereshteh Malek, Vahid Nejadakbary

Abstract. In this paper we prove some inequalities, relating R, the scalar curvature and H, the mean curvature vector field of an anti-invariant submanifold in a generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. Also, we obtain a necessary condition for such anti-invariant submanifolds, to admit a minimal manifold.

2000 Mathematics Subject Classification: Primary 53C40; Secondary: 53C25.

1. Introduction

In [2], B.Y.Chen established in the following lemma the sharp inequality for submanifolds in Riemannian manifolds with constant sectional curvature.

Lemma 1.1.Let $M^{n}(n>2)$ be a submanifold of a Riemannian manifold $R^{m}(c)$ of constant sectional curvature c. Then

$$
\inf K \geq \frac{1}{2}\left\{R-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-(n+1)(n-2) c\right\}
$$

in which for any $p \in M$

$$
(\inf K)(p):=\inf \left\{K(\pi) \mid \text { plane sections } \pi \subset T_{p} M\right\}
$$

and R is scalar curvature of M. Equality hold if and only if, with respect to suitable orthonormal frame $\left\{e_{1}, \ldots, e_{n}, \ldots, e_{m}\right\}$, the shape operators $A_{e_{r}}\left(r=n+1, \ldots, e_{m}\right)$ of M in $R^{m}(c)$ take the following forms:

$$
A_{e_{n+1}}=\left(\begin{array}{ccccc}
a & 0 & 0 & \ldots & 0 \\
0 & b & 0 & \ldots & 0 \\
0 & 0 & \mu & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \mu
\end{array}\right), a+b=\mu ;
$$

$$
A_{e_{r}}=\left(\begin{array}{ccccc}
h_{11}^{r} & h_{12}^{r} & 0 & \ldots & 0 \\
h_{21}^{r} & -h_{11}^{r} & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0
\end{array}\right), r=n+2, \ldots, m .
$$

In present paper, we are going to establish the similar inequalities for antiinvariant submanifold M with $\operatorname{dim} M>2$ in generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$, we will do this in two cases:

1) Structural vector field of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be tangent to M,
2) Structural vector field of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be normal to M.

Also, we establish the sharp relationships between the function f of an anti-invariant warped product submanifold $M_{1} \times_{f} M_{2}$ in generalized Sasakian space form and squared mean curvature and scalar curvature of M.

2.Preliminaries

In this section, we recall some definitions and basic formulas which we will use later.

A $(2 n+1)$-dimensional Riemannian manifold (\bar{M}, g) is said to be almost contact metric manifold if there exist on \bar{M} a (1,1)-tensor field ϕ, a vector field ξ (is called the structure vector field) and a 1-form η such that $\eta(\xi)=1, \phi^{2}(X)=-X+\eta(X) \xi$ and $g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)$ for any vector fields X, Y on \bar{M}. Also, it can be simply proved that in an almost contact metric manifold we have $\phi \xi=0$, $\eta \circ \phi=0$ and $\eta(X)=g(X, \xi)$ for any $X \in \tau(\bar{M})$ (see for instance [1]). We denote an almost contact metric manifold by $(\bar{M}, \phi, \xi, \eta, g)$.

If in almost contact metric manifold ($\bar{M}, \phi, \xi, \eta, g$),

$$
2 \Phi(X, Y)=d \eta(X, Y),
$$

where $\Phi(X, Y)=g(Y, \phi X)$, then $(\bar{M}, \phi, \xi, \eta, g)$ is called the contact metric manifold. Also, if in an almost contact metric manifold ($\bar{M}, \phi, \xi, \eta, g$),

$$
\left(\nabla_{X} \phi\right)(Y)=\eta(Y) X-g(X, Y) \xi
$$

then $(\bar{M}, \phi, \xi, \eta, g)$ is called the Sasakian manifold. It is easy to see that every Sasakian manifold is contact metric manifold.

The submanifold M of almost contact metric manifold $\left(\bar{M}^{2 n+1}, \phi, \xi, \eta, g\right)$ is called the anti-invariant submanifold if for any $p \in M$,

$$
\phi_{p}\left(T_{p} M\right) \subset T_{p}^{\perp} M
$$

Also, a submanifold M in contact metric manifold $\left(\bar{M}^{2 n+1}, \phi, \xi, \eta, g\right)$ is called the Legendrian submanifold if $\operatorname{dim} M=n$ and for any $p \in M, T_{p} M \subset K e r \eta_{p}$. It is easy to see that Legendrian submanifolds are anti-invariant.

Let $(\bar{M}, \phi, \xi, \eta, g)$ be an almost contact manifold. If $\pi_{p} \subset T_{p} \bar{M}$ is generated by $\{X, \phi X\}$ where $0 \neq X \in T_{p} \bar{M}$ is normal to ξ_{p}, is called the ϕ-section of \bar{M} at p and $K\left(\pi_{p}\right)$ is the ϕ-sectional curvature of π_{p}. If in a Sasakian manifold, there exists $c \in \Re$ such that for any $p \in \bar{M}$ and for any ϕ-section π_{p} of $\bar{M}, K\left(\pi_{p}\right)=c$ then \bar{M} is called the Sasakian space form. In [5] it is proved that in a Sasakian space form the curvature tensor is

$$
\begin{aligned}
\bar{R}(X, Y,) Z= & \frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\} \\
& +\frac{c-1}{4}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& +\frac{c-1}{4}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi\} .
\end{aligned}
$$

Almost contact manifolds are said to be Generalized Sasakian space form if

$$
\begin{align*}
\bar{R}(X, Y,) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi\}, \tag{1}
\end{align*}
$$

where f_{1}, f_{2}, f_{3} are differentiable functions on \bar{M}. We denote this kind of manifolds by $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$.It is clear that every Sasakian space form is a generalized Sasakian space form, but the converse is not necessarily true.

Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and f a positive differentiable function on M_{1}. The warped product of M_{1} and M_{2} is the Riemannian manifold

$$
M_{1} \times_{f} M_{2}=\left(M_{1} \times M_{2}, g\right),
$$

Where $g=g_{1}+f^{2} g_{2}, f$ is called the warped function. (see, for instance [3] and [4]).

Let M^{n} be a submanifold of $\bar{M}^{2 m+1}$ in which h is the second fundamental form of M and \bar{R} and R are the curvature tensors of \bar{M} and M respectively. The Gauss equation is given by

$$
\begin{align*}
\bar{R}(X, Y, Z, W)= & R(X, Y, Z, W) \\
& +g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)) \tag{2}
\end{align*}
$$

for any vector fields X, Y, Z, W on M.
The normal vector field H is called the mean curvature vector field of M if for a local orthonormal frame $\left\{e_{1}, \cdots, e_{n}, \cdots, e_{2 m+1}\right\}$ for \bar{M} such that e_{1}, \cdots, e_{n} restricted to M, are tangent to M, we have

$$
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)
$$

thus

$$
\begin{equation*}
n^{2}\|H\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{i}\right), h\left(e_{j}, e_{j}\right)\right) \tag{3}
\end{equation*}
$$

As is known, M is said to be minimal if H vanishes identically.
Also, we set

$$
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), i, j \in\{1, \cdots, n\}, r \in\{n+1, \cdots, 2 m+1\}
$$

the coefficients of the second fundamental form h with respect to $\left\{e_{1}, \cdots, e_{n}\right.$, $\left.\cdots, e_{2 m+1}\right\}$, and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \tag{4}
\end{equation*}
$$

Now by (3) and (4) the gauss equation (2) can be rewritten as follows:

$$
\begin{equation*}
\sum_{1 \leq i, j \leq n} \bar{R}_{m}\left(e_{j}, e_{i}, e_{i}, e_{j}\right)=R-n^{2}\|H\|^{2}+\|h\|^{2} \tag{5}
\end{equation*}
$$

in which R is the scalar curvature of M. Let M^{n} be a Riemannian manfold and $\left\{e_{1}, \cdots, e_{n}\right\}$ be a local orthonormal frame of M. For a differentiable function f on M, the Laplacian Δf of f is defined by

$$
\begin{equation*}
\Delta f=\sum_{j=1}^{n}\left(\left(\nabla_{e_{j}} e_{j}\right) f-e_{j}\left(e_{j} f\right)\right) \tag{6}
\end{equation*}
$$

We recall the following result of B.Y.Chen for later use.
Lemma 2.1.([2]) Let $n \geq 2$ and a_{1}, \cdots, a_{n} and b are real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right) .
$$

Then $2 a_{1} a_{2} \geq b$,with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\cdots=a_{n} .
$$

3.SUBMANIFOLDS NORMAL TO STRUCTURE VECTOR FIELD IN GENERALIZED SASAKIAN SPACE FORM

In this section, we are going to establish the inequalities for anti-invariant submanifold M with $\operatorname{dim} M>2$ in generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ when Structural vector field of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is normal to M.

Theorem 3.1.Let $M_{1} \times_{f} M_{2}$ be an anti-invariant submanifold in generalized Sasakian space form $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$ such that structure vector field of $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$ be normal to $M_{1} \times_{f} M_{2}$ and $\operatorname{dim} M_{i}=n_{i}(i=1,2)$ and $n_{1}+n_{2}=n>2$ then
a)

$$
\begin{align*}
2 n_{2} \frac{\Delta f}{f} \leq & \left(\frac{n(n-1)}{2}-n_{1} n_{2}\right)\left(\left(\frac{n^{2}(n-2)}{n-1}\right)\|H\|^{2}+(n+1)(n-2) f_{1}\right) \\
& +\left(1-\frac{n(n-1)}{2}+n_{1} n_{2}\right) R \tag{7}
\end{align*}
$$

b)

$$
\begin{equation*}
\frac{2 \Delta f}{n_{1} f} \geq R-(n-2)\left(\frac{n^{2}}{n-1}\|H\|^{2}+(n+1) f_{1}\right) \tag{8}
\end{equation*}
$$

in which H, R, Δ are mean curvature vector, scalar curvature and Laplacian operator of M,respectively.

Proof. a) In the warped product manifold $M_{1} \times{ }_{f} M_{2}$, it is easily seen that

$$
\nabla_{X} Z=\nabla_{Z} X=\frac{1}{f}(X f) Z,
$$

for any vector fields X and Z tangent to M_{1} and M_{2}, respectively (see [6]). If X and Z are unit vector fields, then the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X and Z is given by

$$
\begin{equation*}
K(X \wedge Z)=g\left(\nabla_{Z} \nabla_{X} X-\nabla_{X} \nabla_{Z} X, Z\right)=\frac{1}{f}\left(\left(\nabla_{X} X\right) f-X^{2} f\right) . \tag{9}
\end{equation*}
$$

We choose a local orthonomal fram $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ for \bar{M} such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to M_{1} and $e_{n_{1}+1}, \ldots, e_{n}$ are tangent to M_{2} and e_{n+1} is parallel to H.

By using (6) and (9), we get

$$
\begin{equation*}
\frac{\Delta f}{f}=\sum_{i=1}^{n_{1}} K\left(e_{i}, e_{j}\right), \tag{10}
\end{equation*}
$$

for any $j \in\left\{n_{1}+1, \ldots, n\right\}$. With simple computation on last equality we get

$$
\begin{equation*}
2 n_{2} \frac{\Delta f}{f}=R-\sum_{1 \leq i \neq j \leq n_{1}} K\left(e_{j}, e_{i}\right)-\sum_{n_{1}+1 \leq i \neq j \leq n} K\left(e_{j}, e_{i}\right) . \tag{11}
\end{equation*}
$$

From (3), with respect to this frame we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{i}\right), h\left(e_{j}, e_{j}\right)\right)=\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}, \tag{12}
\end{equation*}
$$

from (1) and (5), we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=R+\|h\|^{2}-n(n-1) f_{1} . \tag{13}
\end{equation*}
$$

We set

$$
\begin{equation*}
\delta:=R-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-(n+1)(n-2) f_{1} . \tag{14}
\end{equation*}
$$

Therefore (13), reduces to $n^{2}\|H\|^{2}=(n-1)\left(\delta+\|h\|^{2}-2 f_{1}\right)$.
From (4), (12) and above equality, we have

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left(\delta+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-2 f_{1}\right) .
$$

We set

$$
b:=\delta+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-2 f_{1} .
$$

For $\alpha \neq \beta \in\{1, \ldots, n\}$, we let $a_{1}=h_{\alpha \alpha}^{n+1}$ and $a_{2}=h_{\beta \beta}^{n+1}$, then from Lemma.2.1, we have $a_{1} a_{2} \geq \frac{b}{2}$. Therefore

$$
\begin{align*}
h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1} \geq & \frac{\delta}{2}-f_{1}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2} \\
& +\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} . \tag{15}
\end{align*}
$$

On the other hand from Gauss equation (2) and (1), we have

$$
f_{1}=K\left(e_{\beta}, e_{\alpha}\right)-\sum_{r=n+1}^{2 m+1} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{\alpha \beta}^{r}\right)^{2},
$$

therefore

$$
f_{1}+h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}=K\left(e_{\beta}, e_{\alpha}\right)-\sum_{r=n+2}^{2 m+1} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{\alpha \beta}^{r}\right)^{2} .
$$

Then from (15) and the above equality, we have

$$
\begin{aligned}
& K\left(e_{\beta}, e_{\alpha}\right)-\sum_{r=n+2}^{2 m+1} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{\alpha \beta}^{r}\right)^{2} \\
& \geq \frac{\delta}{2}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} .
\end{aligned}
$$

After simplification we get

$$
\begin{align*}
& K\left(e_{\beta}, e_{\alpha}\right)-\sum_{r=n+2}^{2 m+1} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r} \\
& \geq \frac{\delta}{2}+\sum_{\substack{1 \leq i<j \leq n \\
i \neq \alpha \vee j \neq \beta}}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{\substack{r=n+2}}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{\substack{r=n+2}}^{2 m+1} \sum_{\substack{1 \leq i<j \leq n \\
i \neq \alpha \backslash j \neq \beta}}\left(h_{i j}^{r}\right)^{2} . \tag{16}
\end{align*}
$$

Since

$$
\sum_{r=n+2}^{2 m+1} h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}=\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{\alpha \alpha}^{r}+h_{\beta \beta}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{\alpha \alpha}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{\beta \beta}^{r}\right)^{2},
$$

therefore from (16) we get

$$
\begin{align*}
K\left(e_{\beta}, e_{\alpha}\right) \geq & \frac{\delta}{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{\alpha \alpha}^{r}+h_{\beta \beta}^{r}\right)^{2}+\sum_{\substack{1 \leq i<j \leq n \\
i \neq \alpha \vee j \neq \beta}}\left(h_{i j}^{n+1}\right)^{2} \\
& +\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{\substack{i=1 \\
i \neq \alpha, \beta}}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{\substack{1 \leq i<j \leq n \\
i \neq \alpha \vee j \neq \beta}}\left(h_{i j}^{r}\right)^{2} \geq \frac{\delta}{2} \tag{17}
\end{align*}
$$

From (11) and the above inequality we have

$$
2 n_{2} \frac{\Delta f}{f} \leq R-\left(n_{1}\left(n_{1}-1\right)+n_{2}\left(n_{2}-1\right)\right) \frac{\delta}{2}=R-\left(\frac{n(n-1)}{2}-n_{1} n_{2}\right) \delta
$$

By substituting δ in the above inequality, we get (7)
b) By (10) and (17), for any $\beta \in\left\{n_{1}+1, \ldots, n\right\}$, we have

$$
\frac{\Delta f}{f}=\sum_{\alpha=1}^{n_{1}} K\left(e_{\alpha}, e_{\beta}\right) \geq \sum_{\alpha=1}^{n_{1}} \frac{\delta}{2}
$$

in which δ is defined in (14). Therefore $\frac{\Delta f}{f} \geq n_{1} \frac{\delta}{2}$. By substituting δ in the above inequality, we get (8).

Corollary 3.2.A necessary condition for an anti-invariant warped product submanifold $M_{1} \times_{f} M_{2}$ in generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ such that structure vector field of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be normal to $M_{1} \times_{f} M_{2}$, to be minimal is a)

$$
2 n_{2} \frac{\Delta f}{f} \leq\left(\frac{n(n-1)}{2}-n_{1} n_{2}\right)\left(n^{2}-n-2\right) f_{1}+\left(1-\frac{n(n-1)}{2}+n_{1} n_{2}\right) R
$$

b) $\frac{2 \Delta f}{n_{1} f} \geq R-(n-2)(n+1) f_{1}$, in which $\operatorname{dim} M_{i}=n_{i}(i=1,2), n_{1}+n_{2}=n>2$ and R and Δ are the scalar curvature and Laplacian operator of M, respectively.

In Theorem 3.1 the anti-invariant submanifold, was a warped product manifold. In the next theorem we remove this assumption and indeed we generalize the Chen's inequality, Lemma 1.1, for anti-invariant submanifolds $M^{n}(n>2)$ of generalized Sasakian space forms.

Theorem 3.3.If $M^{n}(n>2)$ be an anti-invariant submanifold in a generalized Sasakian space form $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$ such that structure vector field of $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$
be normal to M then

$$
\begin{equation*}
\inf \mathcal{K} \geq \frac{1}{2}\left\{R-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-(n+1)(n-2) f_{1}\right\} \tag{18}
\end{equation*}
$$

in which

$$
\mathcal{K}=\{K(\pi) \mid \text { plane section fields } \pi \subset T M\}
$$

and R is the scalar curvature of M. Equality holds if and only if, with respect to an orthonormal frame $\left\{e_{1}, \ldots, e_{n}, \ldots, e_{2 m+1}\right\}$, the shape operators $A_{e_{r}}(r=n+$ $1, \ldots, 2 m+1)$ of M in $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$ take the following forms:

$$
A_{e_{n+1}}=\left(\begin{array}{ccccc}
h_{11}^{n+1} & h_{12}^{n+1} & 0 & \cdots & 0 \tag{19}\\
h_{21}^{n+1} & h_{22}^{n+1} & 0 & \cdots & 0 \\
0 & 0 & h_{33}^{n+1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & h_{n n}^{n+1}
\end{array}\right)
$$

in which $h_{11}^{n+1}+h_{22}^{n+1}=h_{33}^{n+1}=\ldots=h_{n n}^{n+1}$ and

$$
A_{e_{r}}=\left(\begin{array}{ccccc}
h_{11}^{r} & h_{12}^{r} & 0 & \ldots & 0 \tag{20}\\
h_{21}^{r} & -h_{11}^{r} & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0
\end{array}\right), r=n+2, \ldots, 2 m+1 .
$$

Proof. Let $\pi \subset T M$ be a 2-plane field. We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ for \bar{M} such that e_{1}, \ldots, e_{n} are tangent to M, π generated by $\left\{e_{1}, e_{2}\right\}$ and e_{n+1} is parallel to H. With a similar computation as in theorem 3.1, we get $K\left(e_{1}, e_{2}\right) \geq \frac{\delta}{2}$, in which δ is defined in (14). Therefore we get (18).

If the equality sign of (18) holds, then for a local orthonormal frame, (17) becomes equality. with recursive computation, inequality (15) also change to equality. Therefore by (17)

$$
\begin{gathered}
h_{11}^{r}+h_{22}^{r}=0 \quad n+2 \leq r \leq 2 m+1 \\
h_{i i}^{r}=0 \quad n+2 \leq r \leq 2 m+1,3 \leq i \leq n \\
h_{1 j}^{r}=h_{j 1}^{r}=h_{2 j}^{r}=h_{j 2}^{r}=0 \quad n+1 \leq r \leq 2 m+1,3 \leq j \leq n, \\
h_{i j}^{r}=0 \quad n+1 \leq r \leq 2 m+1,3 \leq i \neq j \leq n,
\end{gathered}
$$

from lemma 2.1 and (15), we have $h_{11}^{n+1}+h_{22}^{n+1}=h_{33}^{n+1}=\ldots=h_{n n}^{n+1}$. Therefore we get (19) and (20). The converse statement is straightforward.
Corollary 3.4.A necessary condition for anti-invariant submanifold $M^{n}(n>2)$ in a generalized Sasakian space form $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$ such that structure vector field of $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$ be normal to M, to be minimal, is $\inf \mathcal{K} \geq \frac{1}{2}\left\{R-(n+1)(n-2) f_{1}\right\}$, in which $\mathcal{K}:=\{K(\pi) \mid$ plane section fields $\pi \subset T M\}$ and R is scalar curvature of M. Equality holds if and only if, with respect to an orthonormal frame $\left\{e_{1}, \ldots, e_{n}, \ldots, e_{2 m+1}\right\}$, the shape operators $A_{e_{r}}\left(r=n+1, \ldots, e_{2 m+1}\right)$ of M in $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$ take the following forms:

$$
A_{e_{n+1}}=\left(\begin{array}{ccccc}
h_{11}^{n+1} & h_{12}^{n+1} & 0 & \ldots & 0 \\
h_{21}^{n+1} & h_{22}^{n+1} & 0 & \cdots & 0 \\
0 & 0 & h_{33}^{n+1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & h_{n n}^{n+1}
\end{array}\right) \text {, }
$$

in which $h_{11}^{n+1}+h_{22}^{n+1}=h_{33}^{n+1}=\ldots=h_{n n}^{n+1}$ and

$$
A_{e_{r}}=\left(\begin{array}{ccccc}
h_{11}^{r} & h_{12}^{r} & 0 & \ldots & 0 \\
h_{21}^{r} & -h_{11}^{r} & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0
\end{array}\right), r=n+2, \ldots, 2 m+1 .
$$

Remark 3.5.Since the structure vector field in a generalized Sasakian space form is normal to Legendrian submanifolds and Legendrian submanifolds are anti-invariant, therefore Theorems (3.1) and (3.3) and corollaries (3.2) and (3.4) are satisfied when submanifolds in generalized Sasakian space form are a Legendrian.

4.SUbmanifolds tangent to structure vector field in a generalized SASAKIAN SPACE FORM

In this section, we are going to establish the inequalities for anti-invariant submanifold M with $\operatorname{dim} M>2$ in generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ when Structural vector field of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be tangent to M.
Theorem 4.1.If $M_{1} \times_{f} M_{2}$ is an anti-invariant warped product submanifold in a generalized Sasakian space form $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$ such that $\operatorname{dim} M_{i}=n_{i}(i=1,2)$ and $n_{1}+n_{2}=n>2$, and the structure vector field of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is tangent to M_{2}
then

$$
\begin{equation*}
\frac{2 \Delta f}{n_{1} f} \geq R-(n-2)\left(\frac{n^{2}}{n-1}\|H\|^{2}+(n+1) f_{1}-2 f_{3}\right) \tag{21}
\end{equation*}
$$

in which H, R and Δ are mean curvature vector, scalar curvature and Laplacian operator of M, respectively.
Proof. We choose local orthonormal frame $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to $M_{1}, e_{n_{1}}, \ldots, e_{n}$ are tangent to $M_{2}, e_{n}=\xi$ and e_{n+1} is parallel to H.

From Gauss equation, similar to the proof of Theorem 3.1, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=R-n(n-1) f_{1}+2(n-1) f_{3}+\|h\|^{2} \tag{22}
\end{equation*}
$$

We set

$$
\begin{equation*}
\delta:=R-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-(n+1)(n-2) f_{1}+2(n-2) f_{3} \tag{23}
\end{equation*}
$$

then from (22) we have $n^{2}\|H\|^{2}=(n-1)\left(\|h\|^{2}+\delta-2 f_{1}+2 f_{3}\right)$, and substituting (3) and (4) in the above equality, we get

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left(\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\delta-2 f_{1}+2 f_{3}\right)
$$

Now we set $b:=\delta-2 f_{1}+2 f_{3}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}$.
For $\alpha \in\{1, \ldots, n-1\}$, we let $a_{1}=h_{\alpha \alpha}^{n+1}$ and $a_{2}=h_{n n}^{n+1}$, then from Lemma.2.1, we have $a_{1} a_{2} \geq \frac{b}{2}$. Therefore

$$
h_{\alpha \alpha}^{n+1} h_{n n}^{n+1} \geq \frac{\delta}{2}-\left(f_{1}-f_{3}\right)+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} .
$$

Therefore

$$
\begin{align*}
h_{\alpha \alpha}^{n+1} h_{n n}^{n+1}+\left(f_{1}-f_{3}\right) \geq & \frac{\delta}{2}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2} \\
& +\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} . \tag{24}
\end{align*}
$$

On the other hand from (1) and the Gauss equation, for $\alpha \in\{1, \ldots, n-1\}$ we have

$$
f_{1}-f_{3}=K\left(e_{\alpha}, e_{n}\right)-\sum_{r=n+1}^{2 m+1} h_{\alpha \alpha}^{r} h_{n n}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{\alpha n}^{r}\right)^{2}
$$

By comparing the above equality with (24), we obtain

$$
\begin{gathered}
K\left(e_{\alpha}, e_{n}\right)-\sum_{r=n+2}^{2 m+1} h_{\alpha \alpha}^{r} h_{n n}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{\alpha n}^{r}\right)^{2} \\
\geq \frac{\delta}{2}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} .
\end{gathered}
$$

After simplification, we have

$$
\begin{align*}
K\left(e_{\alpha}, e_{n}\right)-\sum_{r=n+2}^{2 m+1} h_{\alpha \alpha}^{r} h_{n n}^{r} \geq & \frac{\delta}{2}+\sum_{\substack{1 \leq i<j \leq n \\
i \neq \alpha<j \neq n}}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2} \\
& +\sum_{r=n+2}^{2 m+1} \sum_{\substack{1 \leq i<j \leq n \\
i \neq \alpha \vee j \neq n}}\left(h_{i j}^{r}\right)^{2} . \tag{25}
\end{align*}
$$

Since

$$
\sum_{r=n+2}^{2 m+1} h_{\alpha \alpha}^{r} h_{n n}^{r}=\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{\alpha \alpha}^{r}+h_{n n}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{\alpha \alpha}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{n n}^{r}\right)^{2},
$$

therefore from (25) we get

$$
\begin{gathered}
K\left(e_{\alpha}, e_{n}\right) \geq \frac{\delta}{2}+\sum_{\substack{1 \leq i<j \leq n \\
i \neq \alpha j \neq n}}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{\substack{i=1 \\
i \neq \alpha, n}}^{n}\left(h_{i i}^{r}\right)^{2} \\
+\sum_{r=n+2}^{2 m+1} \sum_{\substack{1 \leq i<j \leq n \\
i \neq \alpha \backslash j \neq n}}\left(h_{i j}^{r}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{\alpha \alpha}^{r}+h_{n n}^{r}\right)^{2} . \\
\quad \Rightarrow K\left(e_{\alpha}, e_{n}\right) \geq \frac{\delta}{2} .
\end{gathered}
$$

Therefore
$2 \sum_{\alpha=1}^{n_{1}} K\left(e_{\alpha}, e_{n}\right) \geq n_{1} \delta \stackrel{(10),(23)}{\Longrightarrow} 2 \frac{\Delta f}{n_{1} f} \geq R-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-(n+1)(n-2) f_{1}+2(n-2) f_{3}$.
Corollary 4.2.A necessary condition for anti-invariant warped product submanifold $M_{1} \times_{f} M_{2}$, in a generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ such that $\operatorname{dim} M_{i}=$
$n_{i}(i=1,2)$ and $n_{1}+n_{2}=n>2$ and the structure vector field of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is tangent to M_{2}, to be minimal is

$$
\frac{2 \Delta f}{n_{1} f} \geq R-(n-2)\left((n+1) f_{1}-2 f_{3}\right),
$$

in which R is the scalar curvature of M.
In Theorem 4.1 the anti-invariant submanifold, was a warped product manifold. In the next theorem we remove this assumption and indeed we generalize the Chen's inequality, Lemma 1.1, for anti-invariant submanifolds $M^{n}(n>2)$ of generalized Sasakian space forms.
Theorem 4.3.Let $M^{n}(n>2)$ be an anti-invariant submanifold in a generalized Sasakian space form $\bar{M}^{2 m+1}\left(f_{1}, f_{2}, f_{3}\right)$ such that structure vector field of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be tangent to M. Then

$$
\begin{equation*}
\inf \mathcal{K} \geq \inf \left\{\mathcal{A}+(n-2) f_{3}, \mathcal{A}+(n-1) f_{3}, \mathcal{A}+\frac{P}{2} f_{3}-2\left|f_{3}\right|\right\} \tag{26}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathcal{K}:=\{K(\pi) \mid \text { plane section fields } \pi \subset T M\}, \\
\mathcal{A}:=\frac{1}{2}\left\{R-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-(n+1)(n-2) f_{1}\right\}, \\
P:=\sum_{1 \leq i \neq j \leq n}\left(\left(\eta\left(e_{i}\right)\right)^{2}+\left(\eta\left(e_{j}\right)\right)^{2}\right),
\end{gathered}
$$

in which $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ is an orthonormal frame such that e_{1}, \ldots, e_{n} are tangent to M and for any $i \in\{1, \ldots, n\}, \xi \neq e_{i}$ and R is the scalar curvature of M.
Proof. Let π be a 2 -plane field in $T M$.

1) If ξ is tangent to π then:
we choose locale orthonormal frame $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ such that e_{1}, \ldots, e_{n} are tangent to M and e_{n+1} is parallel to $H, e_{1}=\xi$ and π generated by $\left\{e_{1}, e_{2}\right\}$. Therefore From Gauss equation, similar to the proof of theorem 4.1, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=R-n(n-1) f_{1}+2(n-1) f_{3}+\|h\|^{2}, \tag{27}
\end{equation*}
$$

We defined δ as in (23)

$$
\delta:=R-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-(n+1)(n-2) f_{1}+2(n-2) f_{3},
$$

then from (27) we have

$$
n^{2}\|H\|^{2}=(n-1)\left(\|h\|^{2}+\delta-2 f_{1}+2 f_{3}\right),
$$

and substituting (3) and (4) in the above equality, we get

$$
\begin{align*}
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}= & (n-1)\left(\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right. \\
& \left.+\delta-2 f_{1}+2 f_{3}\right) \tag{28}
\end{align*}
$$

Now set

$$
b:=\delta-2 f_{1}+2 f_{3}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
$$

From Lemma.2.1, we have

$$
\begin{align*}
h_{11}^{n+1} h_{22}^{n+1} \geq & \frac{\delta}{2}-\left(f_{1}-f_{3}\right)+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2} \\
& +\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} . \tag{29}
\end{align*}
$$

Therefore

$$
\begin{align*}
h_{11}^{n+1} h_{22}^{n+1}+\left(f_{1}-f_{3}\right) \geq & \frac{\delta}{2}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2} \\
& +\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} . \tag{30}
\end{align*}
$$

On the other hand from (1) and the Gauss equation, we have

$$
f_{1}-f_{3}=K\left(e_{1}, e_{2}\right)-\sum_{r=n+1}^{2 m+1} h_{11}^{r} h_{22}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{12}^{r}\right)^{2} .
$$

By comparing the above equality with (30), we obtain

$$
\begin{aligned}
& K\left(e_{1}, e_{2}\right)-\sum_{r=n+2}^{2 m+1} h_{11}^{r} h_{22}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{12}^{r}\right)^{2} \\
& \geq \frac{\delta}{2}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} .
\end{aligned}
$$

After simplification, we have

$$
\begin{gathered}
K\left(e_{1}, e_{2}\right) \geq \frac{\delta}{2}+\sum_{\substack{1 \leq i<j \leq n \\
i \neq 1 j j \neq 2}}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{\substack{i=1 \\
i \neq 1,2}}^{n}\left(h_{i i}^{r}\right)^{2} \\
+\sum_{\substack{r=n+2}}^{2 m+1} \sum_{\substack{1 \leq i \leq j \leq n \\
i \neq 1 \backslash j \neq 2}}\left(h_{i j}^{r}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{11}^{r}+h_{22}^{r}\right)^{2} . \\
\Rightarrow K\left(e_{1}, e_{2}\right) \geq \frac{\delta}{2} .
\end{gathered}
$$

By substituting δ in the above inequality, we have

$$
\begin{equation*}
K\left(e_{1}, e_{2}\right) \geq \mathcal{A}+(n-2) f_{3} \tag{31}
\end{equation*}
$$

2) If ξ is normal to π then:
we choose a locale orthonormal frame $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ such that e_{1}, \ldots, e_{n} are tangent to M and e_{n+1} is parallel to $H, e_{n}=\xi$ and π generated by $\left\{e_{1}, e_{2}\right\}$. Therefore from Gauss equation, similar to the proof of Theorem 4.1, we have (27). Therefore

$$
n^{2}\|H\|^{2}=(n-1)\left(\|h\|^{2}+\delta-2 f_{1}+2 f_{3}\right)
$$

in which δ is defined in (23). By substituting (3) and (4) in the above equality, we get (28). From Lemma.2.1 we have (29) and then

$$
\begin{align*}
h_{11}^{n+1} h_{22}^{n+1}+f_{1} \geq & \frac{\delta}{2}+f_{3}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2} \\
& +\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} . \tag{32}
\end{align*}
$$

On the other hand from (1) and the Gauss equation, we have

$$
f_{1}=K\left(e_{1}, e_{2}\right)-\sum_{r=n+1}^{2 m+1} h_{11}^{r} h_{22}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{12}^{r}\right)^{2} .
$$

By comparing the above equality and (32), we obtain

$$
\begin{aligned}
& K\left(e_{1}, e_{2}\right)-\sum_{r=n+2}^{2 m+1} h_{11}^{r} h_{22}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{12}^{r}\right)^{2} \\
& \geq \frac{\delta}{2}+f_{3}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} .
\end{aligned}
$$

By simple computation, we have

$$
K\left(e_{1}, e_{2}\right) \geq \frac{\delta}{2}+f_{3} .
$$

By substituting δ in the above inequality, we get

$$
\begin{equation*}
K\left(e_{1}, e_{2}\right) \geq \mathcal{A}+(n-1) f_{3} . \tag{33}
\end{equation*}
$$

3) If ξ be neither tangent or normal to π then:
we choose locale orthonormal frame $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ such that e_{1}, \ldots, e_{n} are tangent to M and e_{n+1} is parallel to H and π generated by $\left\{e_{1}, e_{2}\right\}$ and for any $i \in\{1, \ldots, n\}$, $\xi \neq e_{i}$. Therefore from Gauss equation, similar to the proof of theorem 4.1, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=R+\|h\|^{2}-n(n-1) f_{1}+P f_{3}, \tag{34}
\end{equation*}
$$

in which

$$
P:=\sum_{1 \leq i \neq j \leq n}\left(\left(\eta\left(e_{i}\right)\right)^{2}+\left(\eta\left(e_{j}\right)\right)^{2}\right) .
$$

We set

$$
\begin{equation*}
\delta:=R-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-(n+1)(n-2) f_{1}+P f_{3}, \tag{35}
\end{equation*}
$$

then from (34) we have

$$
n^{2}\|H\|^{2}=(n-1)\left(\|h\|^{2}+\delta-2 f_{1}\right),
$$

and substituting (3) and (4) in the above equality, we get

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left(\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\delta-2 f_{1}\right) .
$$

Now set

$$
b:=\delta-2 f_{1}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
$$

From Lemma.2.1, we have

$$
\begin{aligned}
h_{11}^{n+1} h_{22}^{n+1} \geq & \frac{\delta}{2}-f_{1}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2} \\
& +\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
h_{11}^{n+1} h_{22}^{n+1}+f_{1} \geq \frac{\delta}{2}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} \cdot(\tag{36}
\end{equation*}
$$

On the other hand, from gauss equation we have

$$
f_{1}=K\left(e_{1}, e_{2}\right)+\left(\left(\eta\left(e_{1}\right)\right)^{2}+\left(\eta\left(e_{2}\right)\right)^{2}\right) f_{3}-\sum_{r=n+1}^{2 m+1} h_{11}^{r} h_{22}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{12}^{r}\right)^{2}
$$

Then (36) becomes

$$
\begin{aligned}
& K\left(e_{1}, e_{2}\right)+\left(\left(\eta\left(e_{1}\right)\right)^{2}+\left(\eta\left(e_{2}\right)\right)^{2}\right) f_{3}-\sum_{r=n+2}^{2 m+1} h_{11}^{r} h_{22}^{r}+\sum_{r=n+1}^{2 m+1}\left(h_{12}^{r}\right)^{2} \\
& \geq \frac{\delta}{2}+\sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i=1}^{n}\left(h_{i i}^{r}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{1 \leq i<j \leq n}^{n}\left(h_{i j}^{r}\right)^{2} .
\end{aligned}
$$

After simplification we have

$$
\begin{equation*}
K\left(e_{1}, e_{2}\right) \geq \frac{\delta}{2}-\left(\left(\eta\left(e_{1}\right)\right)^{2}+\left(\eta\left(e_{2}\right)\right)^{2}\right) f_{3} \tag{37}
\end{equation*}
$$

On the other hand, for $i \in\{1,2\}$

$$
\begin{gathered}
0<g\left(\xi-e_{i}, \xi-e_{i}\right)=g(\xi, \xi)-2 g\left(\xi, e_{i}\right)+g\left(e_{i}, e_{i}\right) \\
\Rightarrow g\left(\xi, e_{i}\right)<1 \\
\Rightarrow 0 \leq\left(g\left(\xi, e_{i}\right)\right)^{2}<1 . \\
\Rightarrow 0 \leq\left(\eta\left(e_{1}\right)\right)^{2}+\left(\eta\left(e_{2}\right)\right)^{2}<2 .
\end{gathered}
$$

Therefore (37) can be rewriten as

$$
\begin{aligned}
K\left(e_{1}, e_{2}\right) & \geq \frac{\delta}{2}-2\left|f_{3}\right| \\
& \geq \frac{1}{2}\left\{R-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-(n+1)(n-2) f_{1}+P f_{3}\right\}-2\left|f_{3}\right|
\end{aligned}
$$

From (31) and (33) and the above inequality, we get (26).

References

[1] E. Blair, Contact manifols in Riemannian Geometry, Lecture Note in Math, 509,Springer Inc, Berlin, 1976.
[2] B. Y. Chen.Some pinching and classification theorems for minimal submanifold, Arch.Math.(Basel),60(6)(1993),568-578.
[3] B .Y .Chen. Geometry of warped products as Riemannian submanifolds and related problems. Soochow J. Math,28(2)(2002),125-156.
[4] B. Y. Chen. On isometric minimal immersions from warped products into real space forms, Proc. Edinb. Math. Soc. (2), 45(3)(2002),579-587.
[5] K. Ogiuo, On almost contact manifolds admitting axiom of planes or axiom of free mobility, Kodai Math. Sem. Rep. 16(1964),223-232.
[6] B.O'Neill, Semi Riemannian geometry, Volume 103 of Pure Applied Mathematics, Academic Press Inc, New York, 1983, With application to relativity.

Fereshteh Malek
Department of Mathematics, Faculty of Science
K. N. Toosi University of Technology
P.O.Box: 16315-1618, Tehran, Iran.
email: malek@kntu.ac.ir
Vahid Nejadakbary,
Department of Mathematics,Faculty of Science
K. N. Toosi University of Technology
email: vahid.nej@gmail.com

