ON WEAK CONCIRCULAR SYMMETRIES OF KENMOTSU MANIFOLDS

Shyamal Kumar Hui

ABSTRACT. The object of the present paper is to study weakly concircular symmetric and weakly concircular Ricci symmetric Kenmotsu manifolds.

Keywords and phrases: weakly symmetric manifold, weakly concircular symmetric manifold, weakly Ricci symmetric manifold, concircular Ricci tensor, weakly concircular Ricci symmetric manifold, Kenmotsu manifold.

2000 Mathematics Subject Classification: 53C15, 53C25.

1. INTRODUCTION

The notion of weakly symmetric manifolds were introduced by Tamássy and Binh [10]. A non-flat Riemannian manifold (M^n, g) (n > 2) is called a weakly symmetric manifold if its curvature tensor R of type (0,4) satisfies the condition

$$(\nabla_X R)(Y, Z, U, V) = A(X)R(Y, Z, U, V) + B(Y)R(X, Z, U, V) + H(Z)R(Y, X, U, V) + D(U)R(Y, Z, X, V) + E(V)R(Y, Z, U, X)$$
(1)

for all vector fields $X, Y, Z, U, V \in \chi(M^n)$, where A, B, H, D and E are 1-forms (not simultaneously zero) and ∇ denotes the operator of covariant differentiation with respect to the Riemannian metric g. The 1-forms are called the associated 1-forms of the manifold and an *n*-dimensional manifold of this kind is denoted by $(WS)_n$. In 1999 De and Bandyopadhyay [3] studied a $(WS)_n$ and proved that in such a manifold the associated 1-forms B = H and D = E. Hence (1) reduces to the following:

$$\begin{aligned} (\nabla_X R)(Y, Z, U, V) &= A(X)R(Y, Z, U, V) + B(Y)R(X, Z, U, V) \\ &+ B(Z)R(Y, X, U, V) + D(U)R(Y, Z, X, V) \\ &+ D(V)R(Y, Z, U, X). \end{aligned}$$

A transformation of an *n*-dimensional Riemannian manifold M, which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation [13]. The interesting invariant of a concircular transformation is the concircular curvature tensor \tilde{C} , which is defined by [13]

$$\tilde{C}(Y, Z, U, V) = R(Y, Z, U, V) - \frac{r}{n(n-1)} \big[g(Z, U)g(Y, V) - g(Y, U)g(Z, V) \big], \quad (3)$$

where r is the scalar curvature of the manifold.

Recently Shaikh and Hui [8] introduced the notion of weakly concircular symmetric manifolds. A Riemannian manifold $(M^n, g)(n > 2)$ is called weakly concircular symmetric manifold if its concircular curvature tensor \tilde{C} of type (0,4) is not identically zero and satisfies the condition

$$(\nabla_X \tilde{C})(Y, Z, U, V) = A(X)\tilde{C}(Y, Z, U, V) + B(Y)\tilde{C}(X, Z, U, V) + H(Z)\tilde{C}(Y, X, U, V) + D(U)\tilde{C}(Y, Z, X, V) + E(V)\tilde{C}(Y, Z, U, X)$$
(4)

for all vector fields $X, Y, Z, U, V \in \chi(M^n)$, where A, B, H, D and E are 1-forms (not simultaneously zero) and an *n*-dimensional manifold of this kind is denoted by $(W\tilde{C}S)_n$. Also it is shown that [8], in a $(W\tilde{C}S)_n$ the associated 1-forms B = H and D = E, and hence the defining condition (4) of a $(W\tilde{C}S)_n$ reduces to the following form:

$$(\nabla_X \tilde{C})(Y, Z, U, V) = A(X)\tilde{C}(Y, Z, U, V) + B(Y)\tilde{C}(X, Z, U, V) + B(Z)\tilde{C}(Y, X, U, V) + D(U)\tilde{C}(Y, Z, X, V) + D(V)\tilde{C}(Y, Z, U, X),$$
(5)

where A, B and D are 1-forms (not simultaneously zero).

Again Tamássy and Binh [11] introduced the notion of weakly Ricci symmetric manifolds. A Riemannian manifold (M^n, g) (n > 2) is called weakly Ricci symmetric manifold if its Ricci tensor S of type (0,2) is not identically zero and satisfies the condition

$$(\nabla_X S)(Y,Z) = A(X)S(Y,Z) + B(Y)S(X,Z) + D(Z)S(Y,X),$$
(6)

where A, B and D are three non-zero 1-forms, called the associated 1-forms of the manifold, and ∇ denotes the operator of covariant differentiation with respect to the metric tensor g. Such an n-dimensional manifold is denoted by $(WRS)_n$.

Let $\{e_i : i = 1, 2, \dots, n\}$ be an orthonormal basis of the tangent space at each point of the manifold and let

$$P(Y,V) = \sum_{i=1}^{n} \tilde{C}(Y, e_i, e_i, V),$$
(7)

then from (3), we get

$$P(Y,V) = S(Y,V) - \frac{r}{n}g(Y,V).$$
(8)

The tensor P is called the concircular Ricci symmetric tensor [4], which is a symmetric tensor of type (0,2). In [4] De and Ghosh introduced the notion of weakly concircular Ricci symmetric manifolds. A Riemannian manifold $(M^n, g)(n > 2)$ is called weakly concircular Ricci symmetric manifold [4] if its concircular Ricci tensor P of type (0,2) is not identically zero and satisfies the condition

$$(\nabla_X P)(Y, Z) = A(X)P(Y, Z) + B(Y)P(X, Z) + D(Z)P(Y, X),$$
(9)

where A, B and D are three 1-forms (not simultaneously zero).

In [12] Tanno classified connected almost contact metric manifolds whose automorphism groups possess the maximum dimension. For such a manifold, the sectional curvature of plane sections containing ξ is a constant, say c. He proved that they could be divided into three classes: (i) homogeneous normal contact Riemannian manifolds with c > 0, (ii) global Riemannian products of a line or a circle with a Kähler manifold of constant holomorphic sectional curvature if c = 0 and (iii) a warped product space $R \times_f C^n$ if c < 0. It is known that the manifolds of class (i) are characterized by a dimitting a Sasakian structure. The manifolds of class (ii) are characterized by a tensorial relation admitting a cosymplectic structure. Kenmotsu [5] characterized the differential geometric properties of the manifolds of class (iii) which are nowadays called Kenmotsu manifolds and later studied by several authors.

As a generalization of both Sasakian and Kenmotsu manifolds, Oubiña [6] introduced the notion of trans-Sasakian manifolds, which are closely related to the locally conformal Kähler manifolds. A trans-Sasakian manifold of type (0,0), $(\alpha,0)$ and $(0,\beta)$ are called the cosympletic, α -Sasakian and β -Kenmotsu manifolds respectively, α, β being scalar functions. In particular, if $\alpha = 0, \beta = 1$; and $\alpha = 1, \beta = 0$ then a trans-Sasakian manifold will be a Kenmotsu and Sasakian manifold respectively.

Tamássy and Binh [11] studied weakly symmetric and weakly Ricci symmetric Sasakian manifolds and proved that in such a manifold the sum of the associated 1-forms vanishes everywhere. Again Özgür [7] studied weakly symmetric and weakly Ricci symmetric Kenmotsu manifolds and proved that in such a manifold the sum of the associated 1-forms is zero everywhere and hence such a manifold does not

exist unless the sum of the associated 1-forms is everywhere zero. In this connection Shaikh and Hui [9] studied weakly symmetric and weakly Ricci symmetric trans-Sasakian manifolds and proved that the sum of the associated 1-forms of a weakly symmetric and also of a weakly Ricci symmetric trans-Sasakian manifold of non-vanishing ξ -sectional curvature are non-zero everywhere and hence such two structure exists, provided that the manifold is of non-vanishing ξ -sectional curvature.

The object of the present paper is to study weakly concircular symmetric and weakly concircular Ricci symmetric Kenmotsu manifolds. Section 2 deals with preliminaries of Kenmotsu manifolds. In section 3 of the paper we have obtained all the 1-forms of a weakly concircular symmetric Kenmotsu manifold and hence such a structure exist, provided that $r \neq -n(n-1)$. Again in section 4 we study weakly concircular Ricci symmetric Kenmotsu manifolds and obtained all the 1-forms of a weakly concircular Ricci symmetric Kenmotsu manifold and consequently such a structure exist, provided that $r \neq -n(n-1)$. Also it is proved that the sum of the associated 1-forms of a weakly concircular Ricci symmetric Kenmotsu manifold is non-vanishing, provided that $r \neq -n(n-1)$.

2. Kenmotsu manifolds

A smooth manifold (M^n, g) (where n = 2m + 1, m > 1) is said to be an almost contact metric manifold [1] if it admits a (1,1) tensor field ϕ , a vector field ξ , an 1-form η and a Riemannian metric g which satisfy

$$\phi \xi = 0, \qquad \eta(\phi X) = 0, \qquad \phi^2 X = -X + \eta(X)\xi,$$
 (10)

$$g(\phi X, Y) = -g(X, \phi Y), \quad \eta(X) = g(X, \xi), \quad \eta(\xi) = 1,$$
 (11)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$
(12)

for all vector fields X, Y on M.

An almost contact metric manifold $M^n(\phi, \xi, \eta, g)$ (where n = 2m + 1, m > 1) is said to be Kenmotsu manifold if the following condition holds [5]:

$$\nabla_X \xi = X - \eta(X)\xi \tag{13}$$

and

$$(\nabla_X \phi)(Y) = g(\phi X, Y)\xi - \eta(Y)\phi X, \tag{14}$$

where ∇ denotes the Riemannian connection of g.

In a Kenmotsu manifold, the following relations hold [5]:

$$(\nabla_X \eta)(Y) = g(X, Y) - \eta(X)\eta(Y), \tag{15}$$

$$R(X,Y)\xi = \eta(X)Y - \eta(Y)X,$$
(16)

$$R(\xi, X)Y = \eta(Y)X - g(X, Y)\xi,$$
(17)

$$\eta(R(X,Y)Z) = \eta(Y)g(X,Z) - \eta(X)g(Y,Z), \tag{18}$$

$$S(X,\xi) = -(n-1)\eta(X),$$
(19)

$$S(\xi,\xi) = -(n-1), \ i.e., \ Q\xi = -(n-1)\xi \tag{20}$$

for any vector field X, Y, Z on M and R is the Riemannian curvature tensor and S is the Ricci tensor of type (0, 2) such that g(QX, Y) = S(X, Y).

3. Weakly concircular symmetric Kenmotsu manifolds

Definition 1. A Kenmotsu manifold $M^n(\phi, \xi, \eta, g)$ (where n = 2m + 1, m > 1) is said to be weakly concircular symmetric if its concircular curvature tensor \tilde{C} of type (0,4) satisfies (5).

Setting $Y = V = e_i$ in (5) and taking summation over $i, 1 \le i \le n$, we get

$$(\nabla_X S)(Z,U) - \frac{dr(X)}{n}g(Z,U)$$
(21)
= $A(X) \left[S(Z,U) - \frac{r}{n}g(Z,U) \right] + B(Z) \left[S(X,U) - \frac{r}{n}g(X,U) \right]$
+ $D(U) \left[S(X,Z) - \frac{r}{n}g(X,Z) \right] + B(R(X,Z)U) + D(R(X,U)Z)$
 $-\frac{r}{n(n-1)} \left[\{ B(X) + D(X) \} g(Z,U) - B(Z)g(X,U) - D(U)g(Z,X) \right].$

Plugging $X = Z = U = \xi$ in (21) and then using (16) and (20), we obtain

$$A(\xi) + B(\xi) + D(\xi) = \frac{dr(\xi)}{r + n(n-1)}, \quad r + n(n-1) \neq 0.$$
 (22)

This leads to the following:

Theorem 1. In a weakly concircular symmetric Kenmotsu manifold $M^n(\phi, \xi, \eta, g)$ (where n = 2m + 1, m > 1), the relation (22) holds. Next, substituting X and Z by ξ in (21) and then using (16), (17) and (19), we obtain

$$[A(\xi) + B(\xi)] \Big[\frac{r}{n} + n - 1 \Big] \eta(U)$$

$$+ \Big[\frac{r}{n(n-1)} + 1 \Big] \Big[(n-2)D(U) + \eta(U)D(\xi) \Big] - \frac{dr(\xi)}{n} \eta(U) = 0.$$
(23)

By virtue of (22), it follows from (23) that

$$D(U) = \left[D(\xi) + \frac{r + n(n-2)}{n^2(n-1)(n-2)} dr(\xi) \right] \eta(U), \quad r + n(n-1) \neq 0.$$
(24)

Next, setting $X = U = \xi$ in (21) and proceeding in a similar manner as above, we get

$$B(Z) = \left[B(\xi) + \frac{r + n(n-2)}{n^2(n-1)(n-2)}dr(\xi)\right]\eta(Z), \quad r + n(n-1) \neq 0.$$
(25)

Again, setting $Z = U = \xi$ in (21) and using (16) and (20), we get

$$A(X) = \frac{dr(X)}{r+n(n-1)} - \frac{1}{n-1} [B(X) + D(X)]$$

$$- \frac{n-2}{n-1} [B(\xi) + D(\xi)] \eta(X), \quad r+n(n-1) \neq 0.$$
(26)

This leads to the following:

Theorem 2. In a weakly concircular symmetric Kenmotsu manifold $M^n(\phi, \xi, \eta, g)$ (where n = 2m + 1, m > 1), the associated 1-forms D, B and A are given by (24), (25) and (26), respectively.

4. Weakly concircular Ricci symmetric Kenmotsu manifolds

Definition 2. A Kenmotsu manifold $M^n(\phi, \xi, \eta, g)$ (where n = 2m + 1, m > 1) is said to be weakly concircular Ricci symmetric if its concircular Ricci tensor P of type (0,2) satisfies (9).

In view of (8), (9) yields

$$(\nabla_X S)(Y,Z) - \frac{dr(X)}{n}g(Y,Z) = A(X) \left[S(Y,Z) - \frac{r}{n}g(Y,Z)\right] + B(Y) \left[S(X,Z) - \frac{r}{n}g(X,Z)\right] + D(Z) \left[S(X,Y) - \frac{r}{n}g(X,Y)\right].$$
(27)

Setting $X = Y = Z = \xi$ in (27), we get the relation (22) and hence we can state the following:

Theorem 3. In a weakly concircular Ricci symmetric Kenmotsu manifold $M^n(\phi, \xi, \eta, g)$ (where n = 2m + 1, m > 1), the relation (22) holds. Next, substituting X and Y by ξ in (27) and using (19) and (22), we obtain

$$D(Z) = D(\xi)\eta(Z), \quad r + n(n-1) \neq 0.$$
 (28)

Again putting $X = Z = \xi$ in (27) and proceeding in a similar manner as above we get

$$B(Y) = B(\xi)\eta(Y), \quad r + n(n-1) \neq 0.$$
 (29)

Again, setting $Y = Z = \xi$ in (27) and using (20) and (22), we get

$$A(X) = \frac{dr(X)}{r + n(n-1)} + \left[A(\xi) - \frac{dr(\xi)}{r + n(n-1)}\right]\eta(X), \quad r + n(n-1) \neq 0.$$
(30)

This leads to the following:

Theorem 4. If in a weakly concircular Ricci symmetric Kenmotsu manifold $M^n(\phi, \xi, \eta, g)$ (where n = 2m + 1, m > 1), $r + n(n - 1) \neq 0$ then the associated 1-forms D, B and A are given by (28), (29) and (30), respectively. Adding (28), (29) and (30) and using (22), we get

$$A(X) + B(X) + D(X) = \frac{dr(X)}{r + n(n-1)} \quad \forall \ X.$$
(31)

This leads to the following:

Theorem 5. If in a weakly concircular Ricci symmetric Kenmotsu manifold $M^n(\phi, \xi, \eta, g)$ (where n = 2m + 1, m > 1), $r + n(n - 1) \neq 0$, the sum of the associated 1-forms is given by (31).

Also from (31), we can state the following:

Corollary 1. There exist no weakly concircular Ricci symmetric Kenmotsu manifold of constant scalar curvature, unless the sum of the associated 1-forms is everywhere zero.

References

[1] Blair, D. E., *Contact manifolds in Riemannian geometry*, Lecture Notes in Math. **509**, Springer-Verlag, 1976.

[2] Blair, D. E. and Oubina, J. A., Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Math. Debrecen, 34 (1990), 199–207.

[3] De, U. C. and Bandyopadhyay, S., On weakly symmetric Riemannian spaces, Publ. Math. Debrecen, 54 (1999), 377–381.

[4] De, U. C. and Ghosh, G. C., On weakly concircular Ricci symmetric manifolds, South East Asian J. Math. and Math. Sci., 3(2) (2005), 9–15.

[5] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103.

[6] Oubiña, J. A., New class of almost contact metric manifolds, Publ. Math. Debrecen, 32 (1985), 187–193.

[7] Özgür, C., On weakly symmetric Kenmotsu manifolds, Diff. Geom.-Dynamical Systems, 8 (2006), 204–209.

[8] Shaikh, A. A. and Hui, S. K., On weakly concircular symmetric manifolds, Ann. Sti. Ale Univ., "Al. I. CUZA", Din Iasi, LV, f.1 (2009), 167–186.

[9] Shaikh, A. A. and Hui, S. K., On weak symmetries of trans-Sasakian manifolds, Proc. Estonian Acad. Sci., 58(4) (2009), 213–223.

[10] Tamássy, L. and Binh, T. Q., On weakly symmetric and weakly projective symmetric Rimannian manifolds, Coll. Math. Soc., J. Bolyai, 56 (1989), 663–670.

[11] Tamássy, L. and Binh, T. Q., On weak symmetries of Einstein and Sasakian manifolds, Tensor N. S., 53 (1993), 140–148.

[12] Tanno, S., The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21 (1969), 21–38.

[13] Yano, K., Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo, 16 (1940), 195–200.

S. K. Hui

Nikhil Banga Sikshan Mahavidyalaya Bishnupur, Bankura – 722122 West Bengal, India

Email: shyamal_hui@yahoo.co.in