COEFFICIENT ESTIMATES FOR STARLIKE FUNCTIONS OF ORDER β

Aisha Ahmed Amer, Maslina Darus

Abstract. In this paper, we consider the subclass of starlike functions of order β denoted by $S L^{*}(\beta)$ and determine the coefficient estimates for this subclass. In addition, the Fekete -Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for this class is obtained when μ is real.

1. Introduction

Let H denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\Sigma_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z:|z|<1\}$ on the complex plane \mathbb{C}. Robertson introduced in [6] the class $S^{*}(\beta)$ of starlike functions of order $\beta \leq 1$, which is defined by $S^{*}(\beta)=\left\{f \in A: \operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>\beta \quad,(z \in \mathbb{U})\right\}$. If $(0 \leq \beta<1)$, then a function in either of this set is univalent, if $\beta<0$ it may fail to be univalent. If f and g are analytic functions in \mathbb{U}. Then the function f is said to be subordinate to g, and can be written as $f \prec g$ and $f(z) \prec g(z) \quad(z \in \mathbb{U})$ if and only if there exists the Schwarz function w, analytic in \mathbb{U} such that $w(0)=0,|w(z)|<1$ for $|z|<1$ and $f(z)=g(w(z))$. Furthermore, if g is univalent in \mathbb{U} we have the following equivalence $f \prec g \Leftrightarrow f(0)=g(0)$ and $f(u) \subseteq g(u)$. The class $S S^{*}(\beta)$ of strongly starlike functions of order β
$S S^{*}(\beta)=\left\{f \in A:\left|\operatorname{Arg} \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\beta \pi}{2}\right\}, 0<\beta \leq 1$, which was introduced in [4]. Moreover, $K-S T \subset S L^{*}$, for $K=2+\sqrt{2}$, where $K-S T$ is the class of k-starlike functions introduced in [5], such that $K-S T:=\left\{f \in A: \left.\operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>K \right\rvert\, \frac{z f^{\prime}(z)}{f(z)}-\right.$ $1 \mid\}, K \geq 0$. Let us consider $Q(f, z)=\frac{z f^{\prime}(z)}{f(z)}$. In this way many interesting classes of analytic functions have been defined (see for instance [1]). In this paper we consider the class $S L^{*}(\beta)$ such that $S L^{*}(\beta)=\left\{f \in A:\left|Q^{2}(f, z)-(1-\beta)\right|<1-\beta\right\}$. It is easy to see that $f \in S L^{*}(\beta)$ if and only if $\frac{z f^{\prime}(z)}{f(z)} \prec q_{0}(z)=\sqrt{(1-\beta)(1+z)}, q_{0}(0)=1-\beta$.

Theorem 1 [1] The function f belongs to the class $S L^{*}(\beta)$ if and only if there exists an analytic function $q \in H, q(0)=0, q(z) \prec q_{0}(z)=\sqrt{(1-\beta)(1+z)}, q_{0}(0)=1-\beta$ such that $f(z)=z \exp \int_{0}^{z} \frac{q(t)-1}{t} d t$.

In [1], the authors set $q_{1}=\frac{3+2 z}{3+z}, \quad q_{2}=\frac{5+3 z}{5+z}, \quad q_{3}=\frac{8+4 z}{8+z}, \quad q_{4}=\frac{9+5 z}{9+z}$ and since $q_{i} \prec q_{0}$ for $i=1,2,3,4$, then by (1), the functions

$$
f_{1}(z)=z+\frac{z^{2}}{3}, \quad f_{2}(z)=z\left(1+\frac{z}{5}\right)^{2}, \quad f_{3}(z)=z\left(1+\frac{z}{8}\right)^{3}, \quad f_{4}(z)=z\left(1+\frac{z}{9}\right)^{4}
$$

are in $S L^{*}(\beta)$.

2. Main Results

Theorem 2 If the function $f(z)=z+a_{2} z^{2}+\cdots$ belongs to the class $S L^{*}(\beta)$, then $\sum_{k=2}^{\infty}\left(k^{2}-2(1-\beta)\right)\left|a_{k}\right|^{2} \leq 1-\beta$.

Proof. If $f \in S L^{*}(\beta)$, then $Q(f, z)<q_{0}(z)=\sqrt{(1-\beta)(1+z)}$. Let $Q(f, z)=$ $\sqrt{(1-\beta)(1+w(z))}$, where $Q(f, z)=\frac{z f^{\prime}(z)}{f(z)}$ and w satisfies $w(0)=0,|w(z)|<1$ for $|z|<1$, then $1-\beta) f^{2}(z)=z^{2} f^{\prime 2}(z)-(1-\beta) f^{2}(z) w(z)$. And using this, we can obtain

$$
\begin{aligned}
2 \pi(1-\beta) \Sigma_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{2 k} & =(1-\beta) \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \\
& \geq(1-\beta) \int_{0}^{2 \pi} \mid\left(f^{2}\left(r e^{i \theta}\right) w\left(r e^{i \theta}\right) \mid d \theta\right. \\
& =\int_{0}^{2 \pi}\left|r e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)\right|^{2}-(1-\beta)\left|f^{2}\left(r e^{i \theta}\right)\right| \\
& =\left(2 \pi \Sigma_{k=1}^{\infty} k^{2}\left|a_{k}\right|^{2} r^{2 k}\right)+(1-\beta)\left(2 \pi \Sigma_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{2 k}\right)
\end{aligned}
$$

For $0<r<1$. The extreme in this sequence of inequality gives $\sum_{k=1}^{\infty}\left(k^{2}-(1-\right.$ $\beta)\left|a_{k}\right|^{2} r^{2 k}-(1-\beta) \sum_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{2 k} \leq 0$. Eventually, if we let $r \rightarrow 1^{-}$, then $\sum_{k=1}^{\infty}\left(k^{2}-\right.$ $2(1-\beta)\left|a_{k}\right|^{2} \leq 0$, that is $\Sigma_{k=2}^{\infty}\left(k^{2}-2(1-\beta)\left|a_{k}\right|^{2} \leq 1-\beta\right.$.

Corollary 1 If the function $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$, belongs to the class $S L^{*}(\beta)$, then

$$
\left|a_{k}\right| \leq \sqrt{\frac{1-\beta}{\left(k^{2}-2(1-\beta)\right)}}
$$

for $k \geq 2$.

Theorem 3 If the function $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ belongs to class $S L^{*}(\beta)$, then $\left|a_{2}\right| \leq$ $\frac{1-\beta}{2(\beta+1)},\left|a_{3}\right| \leq \frac{1-\beta}{2(\beta+2)}$, and $\left|a_{4}\right| \leq \frac{1-\beta}{2(\beta+3)}$.

These estimates are sharp.
Proof. If $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ belongs to class $S L^{*}(\beta)$, then $(1-\beta) f^{2}(z)=z^{2} f^{\prime 2}(z)-$ $(1-\beta) f^{2}(z) w(z)$. where w satisfies $w(0)=0,|w(z)|<1$. Let us denote $\left(z f^{\prime}(z)\right)^{2}=$ $\sum_{k=2}^{\infty} A_{k} z^{k}, f^{2}(z)=\Sigma_{k=2}^{\infty} B_{k} z^{k}, w(z)=\sum_{k=1}^{\infty} C_{k} z^{k}$.
Then we have $A_{k}=\sum_{l=1}^{k \bar{k}}-1 l(k-l) a_{l} a_{k-l}, B_{k}=\Sigma_{l=1}^{k-1} a_{l} a_{k-l}$ and

$$
\begin{equation*}
\Sigma_{k=2}^{\infty}\left(A_{k}-(1-\beta) B_{k}\right) z^{k}=(1-\beta)\left(\Sigma_{k=1}^{\infty} C_{k} z^{k}\right)\left(\Sigma_{k=2}^{\infty} B_{k} z^{k}\right) \tag{2}
\end{equation*}
$$

Thus we have

$$
A_{2}=a_{1}=1, \quad A_{3}=4 a_{2} a_{1}=4 a_{2}, \quad A_{4}=6 a_{3}+4 a_{2}^{2}
$$

and

$$
\begin{equation*}
A_{5}=8 a_{1} a_{4}+12 a_{2} a_{3} \tag{3}
\end{equation*}
$$

also

$$
B_{2}=a_{1}=1, \quad B_{3}=2 a_{2}, \quad B_{4}=2 a_{3}+a_{2}^{2}
$$

and

$$
\begin{equation*}
B_{5}=2 a_{1} a_{4}+2 a_{2} a_{3} \tag{4}
\end{equation*}
$$

Equating the second and third coefficients of both side of (2) we obtain:
(i) $A_{3}-(1-\beta) B_{3}=C_{1} B_{2}$
(ii) $A_{4}-\left(1-\beta^{2}\right) B_{4}=C_{1} B_{3}+C_{2} B_{2}$
(iii) $A_{5}-\left(1-\beta^{2}\right) B_{5}=C_{1} B_{4}+C_{2} B_{3}+C_{3} B_{5}$.

It is well known that $\left|C_{k}\right| \leq 1$ and $\Sigma_{k=1}^{\infty}\left|C_{k}\right|^{2} \leq 1$, therefore we obtain by (3) and (4) that

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{1-\beta}{2(1+\beta)}, \quad\left|a_{3}\right| \leq \frac{1-\beta}{4+2 \beta}, \quad\left|a_{4}\right| \leq \frac{1-\beta}{2(\beta+3)} \tag{5}
\end{equation*}
$$

Conjecture. Let $f \in S L^{*}(\beta)$ and $f(z)=\Sigma_{k=1}^{\infty} a_{k} z^{k}$.T hen $\left|a_{n+1}\right| \leq \frac{1-\beta}{2(\beta+n)}$. This is yet to be proven.

Next, we refer to a classical result of Fekete and Szegö [3] to determine the maximum value of $\left|a_{3}-\mu a_{2}^{2}\right|$ for functions f belonging to H whenever μ is real. Other work related to the functional of Fekete and Szegö can be found in [7].
A. A. Amer, M. Darus - Coefficient estimates for starlike functions of order β

3. Fekete-Szegö for the class $S L^{*}(\beta)$

In order to prove our result we have to recall the following lemma:
Lemma 1 [2] Let h be analytic in \mathbb{U} with $\operatorname{Re} h(z)>0$ and be given by $h(z)=$ $1+c_{1} z+c_{2} z^{2}+\ldots$ for $z \in \mathbb{U}$, then

$$
\left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leq 2-\frac{\left|c_{1}\right|^{2}}{2}
$$

Theorem 4 Let f be given by (1) and belongs to the class $S L^{*}(\beta)$. Then, for $0 \leq$ $\beta<1$, and

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{lc}
\frac{1-\beta}{\beta+2} & i f \\
\frac{1-\beta}{2(\beta+2)}\left(1-\mu \frac{1-\beta}{2(\beta+2)}\right) & \mu \leq \frac{1+3 \beta}{2(\beta+2)} \\
\text { if } & \mu \geq \frac{1+3 \beta}{2(\beta+2)}
\end{array}\right. \\
& \text { Proof. } a_{3}-\mu a_{2}^{2}=\frac{(1-\beta)^{2}(1+3 \beta)}{8(1+\beta)^{2}(\beta+2)} c_{1}^{2}+\frac{(1-\beta)}{2(2+\beta)} c_{2}-\mu \frac{(1-\beta)^{2}}{4(1+\beta)^{2}} c_{1}^{2}
\end{aligned} \begin{aligned}
&=\frac{(1-\beta)}{2(2+\beta)}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{2}\left(\frac{1-\beta}{2(2+\beta)}\right) c_{1}^{2}+\frac{(1-\beta)^{2}(1+3 \beta)-2 \mu(\beta+2)(1-\beta)^{2}}{8(1+\beta)^{2}(\beta+2)} c_{1}^{2}, \\
&\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(1-\beta)^{2}(1+3 \beta)+2(1+\beta)^{2}(1-\beta)-2 \mu(\beta+2)(1-\beta)^{2}}{8(1+\beta)^{2}(\beta+2)}\left|c_{1}\right|^{2} \\
&+\frac{(1-\beta)}{2(2+\beta)}\left(2-\frac{\left|c_{1}\right|^{2}}{2}\right) \\
&=\phi(x), w i t h \quad x=\left|c_{1}\right|
\end{aligned}
$$

where we have used Lemma 1. and equations

$$
a_{2}=\frac{1-\beta}{2(1+\beta)} c_{1}
$$

and

$$
a_{3}=\frac{(1-\beta)^{2}(1+3 \beta)}{8(1+\beta)^{2}(\beta+2)} c_{1}^{2}+\frac{(1-\beta)}{2(2+\beta)} c_{2}
$$

Elementary calculation indicates that the function attains its maximum value at

$$
x_{o}=0
$$

and thus establishing
A. A. Amer, M. Darus - Coefficient estimates for starlike functions of order β

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \phi\left(x_{0}\right)=\frac{1-\beta}{2+\beta} .
$$

Next, we have

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| \leq & \frac{(1-\beta)^{2}(1+3 \beta)+2(1+\beta)^{2}(1-\beta)-2 \mu(\beta+2)(1-\beta)^{2}}{8(1+\beta)^{2}(\beta+2)}\left|c_{1}\right|^{2} \\
& +\frac{1-\beta}{2+\beta}-\frac{1-\beta}{4(2+\beta)}\left|c_{1}\right|^{2} \\
& =\frac{(1-\beta)^{2}(1+3 \beta)-2 \mu(\beta+2)(1-\beta)^{2}}{8(1+\beta)^{2}(\beta+2)}\left|c_{1}\right|^{2}+\frac{1-\beta}{2+\beta}
\end{aligned}
$$

Secondly, we consider the case $\mu \geq \frac{1+3 \beta}{2(\beta+2)}$.
Write

$$
a_{3}-\mu a_{2}^{2}=a_{3}-\frac{1+3 \beta}{2(\beta+2)} a_{2}^{2}+\left(\frac{1+3 \beta}{2(\beta+2)}-\mu\right) a_{2}^{2} .
$$

From (9), we have

$$
\left|a_{2}\right| \leq \frac{1-\beta}{2(\beta+1)}
$$

and

$$
\left|a_{3}\right| \leq \frac{1-\beta}{2(\beta+2)}
$$

Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left|a_{3}-\frac{1+3 \beta}{2(\beta+2)} a_{2}^{2}\right|+\left(\frac{1+3 \beta}{2(\beta+2)}-\mu\right)\left|a_{2}\right|^{2}
$$

and hence $\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1-\beta}{2(\beta+2)}-\mu\left(\frac{1-\beta}{2(\beta+2)}\right)^{2}$.
The proof of Theorem 3.1 is now complete.
Acknowledgement: The work here is fully supported by MOHE:UKM-ST-06-FRGS0244-2010, Malaysia.

References

[1] J. Sokol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Scient. Univ. Tech. Res., 19(1996), 101-105.
[2] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, (1975).
A. A. Amer, M. Darus - Coefficient estimates for starlike functions of order β
[3] M. Fekete and G.Szegö, Eine Bermerkung uber ungerade schlichte functionen, J. Lond. Math. Soc., 8(1933), 85-89.
[4] J. Stankiewicz, Quelques problemes extremaux dans les classes des fonctions a -angulairement etoilees, Ann. Univ. Mariae Curie.Sk.odowska, Sect. A 20 (1966), 59-75.
[5] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327336.
[6] M.S. Robertson, Certain classes of starlike functions, Michigan Math. J. 76 (1) (1954), 755758.
[7] S. P. Goyal and Pranay Goswami, Certain coefficient inequalities for Sakaguchi type functions and applications to fractional derivative operator, Acta Universitatis Apulensis, No. 19/2009, 159-166.

Aisha Ahmed Amer, Maslina Darus
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia.
Email: maslina@ukm.my

