ON P-VALENT STRONGLY STARLIKE AND STRONGLY CONVEX FUNCTIONS

Ali muhammad

Abstract. In this paper, we define some new classes $S^{*}(a, c, \lambda, p, \alpha, \beta)$ and $C(a, c, \lambda, p, \alpha, \beta)$ of strongly starlike and strongly convex functions or order α and type β by using Cho- Kown -Srivastava integral operators. We also derive some interesting properties, such as inclusion relationships of these classes.

2000 Mathematics Subject Classification: 30C45, 30C50.
Keywords: Analytic functions; Strongly srarlike functions; Strongly convex functions; Cho Kown Srivastava integral operators.

1. Introduction

Let $A(p)$ denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}, p \in \mathbb{N}=\{1,2,3, \ldots\} . \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the unit disk $E=\{z: z \in \mathbb{C}$ and $|z|<1\}$.
A function $f(z) \in A(p)$ is said to be in the class $S^{*}(p, \beta)$ of p-valently starlike function of order β in E if it satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta, z \in E, 0 \leq \beta<p \tag{1.2}
\end{equation*}
$$

The class $S^{*}(p, \beta)$ was introduced and studied by Goodman [4], see also [11]. For recent investigation and more detail the interested reader are refers to the work by $[12,13]$. Also, we note that $S^{*}(p, 0)=S_{p}^{*}$, where S_{p}^{*} is the class of p-valently starlike functions in E.

A function $f(z) \in A(p)$ is said to be in the class $C(p, \beta)$ of p-valently convex function of order β in E if it satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\beta, z \in E, 0 \leq \beta<p \tag{1.3}
\end{equation*}
$$

The class $C(p, \beta)$ was introduced and studied by Goodman [4], see also [10]. Also we note that $C(p, 0)=C_{p}$, where C_{p} is the class of p-valently convex functions in E.

A function $f(z) \in A(p)$ is said to be strongly starlike of order α and type β in E if it satisfies the following inequality:

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}-\beta\right)\right|<\frac{\alpha \pi}{2}, z \in E, 0 \leq \alpha<p \text { and } 0 \leq \beta<p \tag{1.4}
\end{equation*}
$$

We denote this class by $S^{*}(p, \alpha, \beta)$.A function $f(z) \in A(p)$ is said to be strongly convex of order α and type β in E if it satisfies the following inequality:

$$
\begin{equation*}
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\beta\right)\right|<\frac{\alpha \pi}{2}, z \in E, 0 \leq \alpha<p \text { and } 0 \leq \beta<p \tag{1.5}
\end{equation*}
$$

We denote this class by $C(p, \alpha, \beta)$.
It is obvious that $f(z) \in A(p)$ belongs to $C(p, \alpha, \beta)$ if and only if $\frac{z f^{\prime}(z)}{p} \in$ $S^{*}(p, \alpha, \beta)$. Also, we note that $S^{*}(p, \alpha, \beta)=S^{*}(p, \beta)$ and $C(p, \alpha, \beta)=C(p, \beta)$.

In our present investigation we shall make use of the Gauss hypergeometric functions defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k} z^{k}}{(c)_{k}(1)_{k}}, \tag{1.6}
\end{equation*}
$$

where $a, b, c \in \mathbb{C}, c \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\}$ and $(k)_{n}$ denote the Pochhammer symbol (or the shifted factorial) given, in terms of the Gamma function Γ, by

$$
(k)_{n}=\frac{\Gamma(k+n)}{\Gamma(k)}= \begin{cases}k(k+1) \ldots(k+n-1) & n \in \mathbb{N} \\ 1 & n=0\end{cases}
$$

We note that the series defined by (1.6) converges absolutely for $z \in E$ and hence represents an analytic function in the open unit disk E, see [14].

We define a function $\phi_{p}(a, c ; z)$ by

$$
\phi_{p}(a, c ; z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k} z^{p+k}}{(c)_{k}}, a \in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} \quad(z \in E) .
$$

Using the function $\phi_{p}(a, c ; z)$, we consider a function $\phi_{p}^{\dagger}(a, c ; z)$ defined by

$$
\phi_{p}(a, c ; z) * \phi_{p}^{\dagger}(a, c ; z)=\frac{z^{p}}{(1-z)^{\lambda+p}}, z \in E,
$$

where $\lambda>-p$. This function yields the following family of linear operators

$$
\begin{equation*}
I_{p}^{\lambda}(a, c) f(z)=\phi_{p}^{\dagger}(a, c ; z) * f(z), \quad z \in E, \tag{1.7}
\end{equation*}
$$

where $a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}$. For a function $f(z) \in A(p)$, given by (1.1), it follows from (1.7) that for $\lambda>-p$ and $a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}$

$$
\begin{align*}
I_{p}^{\lambda}(a, c) f(z) & =z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}(\lambda+p)}{(c)_{k}(1)_{k}} a_{p+k} z^{p+k} \tag{1.8}\\
& =z^{P}{ }_{2} F_{1}(c, \lambda+p ; a ; z) * f(z), z \in E
\end{align*}
$$

From equation (1.8) we deduce that

$$
\begin{array}{r}
z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}=(\lambda+p) I_{p}^{\lambda+1}(a, c) f(z)-\lambda I_{p}^{\lambda}(a, c) f(z), \\
z\left(I_{p}^{\lambda}(a+1, c) f(z)\right)^{\prime}=a I_{p}^{\lambda}(a, c) f(z)-(a-p) I_{p}^{\lambda}(a+1, c) f(z) . \tag{1.10}
\end{array}
$$

We also note that

$$
\begin{aligned}
& I_{p}^{0}(p+1,1) f(z)=p \int_{0}^{z} \frac{f(t)}{t} d t, \quad I_{p}^{0}(p, 1) f(z)=I_{p}^{1}(p+1,1) f(z)=f(z), \\
& I_{p}^{1}(p, 1) f(z)=\frac{z f^{\prime}(z)}{p}, I_{p}^{2}(p, 1) f(z)=\frac{2 z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{p(p+1)} \\
& I_{p}^{2}(p+1,1) f(z)=\frac{f(z)+z f^{\prime}(z)}{p+1}, \quad I_{p}^{n}(a, a) f(z)=D^{n+p-1} f(z), n \in \mathbb{N}, n>-p,
\end{aligned}
$$

where D^{n+p-1} is the Ruscheweyh derivative of $(n+p-1)$ th order, see [5].
The operator $I_{p}^{\lambda}(a, c)\left(\lambda>-p, a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}\right)$was recently introduced by Cho et.al [1], who investigated (among other things) some inclusion relationships and argument properties of various subclasses of multivalent functions in $A(p)$, which were defined by means of the operator $I_{p}^{\lambda}(a, c)$.

For $\lambda=c=1$ and $a=n+p$, Cho-kown-Srivastava operator $I_{p}^{\lambda}(a, c)$ yields

$$
I_{p}^{1}(n+p, 1)=I_{n, p}(n>-p),
$$

where $I_{n, p}$ denotes an integral operator of the ($\mathrm{n}+\mathrm{p}-1$)th order, which was studied by Liu and Noor [6], see also [7, 8]. The linear operator $I_{1}^{\lambda}(\mu+2,1)(\lambda>-1, \mu>-2)$ was also recently introduced and studied by Choi et.al [2]. For relevant details about further special cases of the Choi-Saigo Srivastava operator the interested reader may refer to the works by Choi et. al [2] and Cho et. al [1], see also [3].

Using the operator $I_{p}^{\lambda}(a, c)$ we now define new subclasses of $A(p)$ as follows:

Definition 1.1.

$S^{*}(a, c, \lambda, p, \alpha, \beta)=\left\{f(z) \in A(p): I_{p}^{\lambda}(a, c) f(z) \in S^{*}(p, \alpha, \beta), \frac{z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}}{I_{p}^{\lambda}(a, c) f(z)} \neq \beta\right\}$.
where $z \in E$.
It is easy to see that $S^{*}(p, 1,0, p, \alpha, \beta)=S^{*}(p, \alpha, \beta)$ and $S^{*}(p+1,1,1, p, \alpha, \beta)=$ $S^{*}(p, \alpha, \beta)$, is the class of strongly starlike functions of order α and type β as given by (1.4).

Definition 1.2.

$C(a, c, \lambda, p, \alpha, \beta)=\left\{f(z) \in A(p): I_{p}^{\lambda}(a, c) f(z) \in C(p, \alpha, \beta), 1+\frac{z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime \prime}}{\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}} \neq \beta\right\}$.
where $z \in E$.
Obviously, $f(z) \in C(a, c, \lambda, p, \alpha, \beta)$ if and only if $\frac{z f^{\prime}(z)}{p} \in S^{*}(a, c, \lambda, p, \alpha, \beta)$, $C(p, 1,0, p, \alpha, \beta)=C(p, \alpha, \beta)$ and $C(p+1,1,1, p, \alpha, \beta)=C(p, \alpha, \beta)$ is the class of strongly convex functions of order α and type β as given by (1.5).

2. Preliminaries and Main results

In order to prove our main results we shall need the following result.
Lemma 2.1.[9] Let a function $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ be analytic in E and $h(z) \neq 0, z \in E$. If there exists a point $z_{0} \in E$ such that

$$
\begin{equation*}
|\arg h(z)|<\frac{\pi}{2} \alpha \quad\left(|z|<\left|z_{0}\right|\right) \text { and }\left|\arg h\left(z_{0}\right)\right|=\frac{\pi}{2} \alpha \quad(0 \leq \alpha<1) \tag{2.1}
\end{equation*}
$$

then we have,

$$
\begin{equation*}
\frac{z_{0} h^{\prime}\left(z_{0}\right)}{h\left(z_{0}\right)}=i k \alpha \tag{2.2}
\end{equation*}
$$

where

$$
\begin{align*}
k & \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \text { when } \arg h\left(z_{0}\right)=\frac{\pi}{2} \alpha, \tag{2.3}\\
k & \leq-\frac{1}{2}\left(\left(a+\frac{1}{a}\right) \text { when } \arg h\left(z_{0}\right)=\frac{\pi}{2} \alpha,\right. \tag{2.4}
\end{align*}
$$

and

$$
\left(h\left(z_{0}\right)\right)^{\frac{1}{\alpha}}= \pm i \alpha, \quad(\alpha>0) .
$$

Theorem 2.2. $S^{*}(a, c, \lambda+1, p, \alpha, \beta) \subset S^{*}(a, c, \lambda, p, \alpha, \beta) \subset S^{*}(a+1, c, \lambda, p, \alpha, \beta)$.
Proof. Set

$$
\begin{equation*}
\frac{z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}}{I_{p}^{\lambda}(a, c) f(z)}=\beta+(p-\beta) h(z) \tag{2.5}
\end{equation*}
$$

Then $h(z)$ is analytic in E with $h(0)=1$ and $h(z) \neq 0, z \in E$. Applying the identity (1.9) in (2.1) and differentiating the resulting equation with respect to z we have

$$
\frac{z\left(I^{\lambda+1}(a, c) f(z)\right)^{\prime}}{I^{\lambda+1}(a, c) f(z)}-\beta=(p-\beta) h(z)+\frac{(p-\beta) z h^{\prime}(z)}{(\lambda+\beta)+(p-\beta) h(z)}
$$

Suppose there exists a point $z_{0} \in E$ such that the conditions (2.1) to (2.4) of Lemma 2.1 are satisfied. Thus, if

$$
\arg h\left(z_{0}\right)=\frac{-\pi}{2} \alpha, z_{0} \in E
$$

then

$$
\begin{aligned}
\frac{z\left(I^{\lambda+1}(a, c) f(z)\right)^{\prime}}{I^{\lambda+1}(a, c) f(z)}-\beta & =(p-\beta) h\left(z_{0}\right)\left[1+\frac{\frac{z_{0} h^{\prime}\left(z_{0}\right)}{h\left(z_{0}\right)}}{(\lambda+\beta)+(p-\beta) h\left(z_{0}\right)}\right] \\
& =(p-\beta) a^{\alpha} e^{-\frac{\pi \alpha}{2}}\left[1+\frac{i k \alpha}{(\lambda+\beta)+(p-\beta) a^{\alpha} e^{-\frac{\pi \alpha}{2}}}\right]
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \arg \left(\frac{z\left(I^{\lambda+1}(a, c) f(z)\right)^{\prime}}{I^{\lambda+1}(a, c) f(z)}-\beta\right)=\frac{-\pi \alpha}{2}+\arg \left[1+\frac{i k \alpha}{(\lambda+\beta)+(p-\beta) a^{\alpha} e^{-\frac{\pi \alpha}{2}}}\right]=\frac{-\pi \alpha}{2} \\
& +\tan ^{-1}\left[\frac{k \alpha\left((\lambda+\beta)+(p-\beta) a^{\alpha} \cos \left(\frac{\pi \alpha}{2}\right)\right.}{(\lambda+\beta)^{2}+2(\lambda+\beta)(p-\beta) a^{\alpha} \cos \left(\frac{\pi \alpha}{2}\right)+(p-\beta)^{2} a^{2 \alpha}-k \alpha(p-\beta) a^{\alpha} \sin \left(\frac{\pi \alpha}{2}\right)}\right]
\end{aligned}
$$

This gives that

$$
\arg \left(\frac{z\left(I^{\lambda+1}(a, c) f(z)\right)^{\prime}}{I^{\lambda+1}(a, c) f(z)}-\beta\right) \leq \frac{-\pi \alpha}{2}
$$

since

$$
k \leq \frac{-1}{2}\left(a+\frac{1}{a}\right) \leq-1 \text { and } z_{0} \in E
$$

this contradicts the condition $f(z) \in S^{*}(a, c, \lambda, p, \alpha, \beta)$.
On the other hand if we set

$$
\arg h\left(z_{0}\right)=\frac{\pi \alpha}{2}
$$

then it can similarly be shown that

$$
\arg \left(\frac{z\left(I^{\lambda+1}(a, c) f(z)\right)^{\prime}}{I^{\lambda+1}(a, c) f(z)}-\beta\right) \geq \frac{\pi \alpha}{2}
$$

since

$$
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \text { and } z_{0} \in E
$$

which again contradicts the hypothesis that $f(z) \in S^{*}(a, c, \lambda, p, \alpha, \beta)$.
Thus the function defined by (2.5) has to satisfy the following inequality:

$$
\arg h(z) \leq \frac{\pi \alpha}{2}, z \in E .
$$

which implies that

$$
\left|\arg \left(\frac{z\left(I^{\lambda+1}(a, c) f(z)\right)^{\prime}}{I^{\lambda+1}(a, c) f(z)}-\beta\right)\right|<\frac{\pi \alpha}{2}, z \in E .
$$

The proof of part (ii) lies on the similar lines. This completes the proof of Theorem 2.2.

Theorem 2.3. $C(a, c, \lambda+1, p, \alpha, \beta) \subset C(a, c, \lambda, p, \alpha, \beta) \subset C(a+1, c, \lambda, p, \alpha, \beta)$ Proof. To prove this inclusion relationship, we observe from Theorem 2.2 that

$$
\begin{aligned}
f(z) & \in C(a, c, \lambda+1, p, \alpha, \beta) \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in S^{*}(a, c, \lambda+1, p, \alpha, \beta) \\
& \Rightarrow \frac{z f^{\prime}(z)}{p} \in S^{*}(a, c, \lambda, p, \alpha, \beta) \Leftrightarrow f(z) \in C(a, c, p, \alpha, \beta) .
\end{aligned}
$$

The proof of second part lies on similar lines. This completes the proof of Theorem 2.3.

For a function $f(z) \in A(p)$ the integral operator, $\mathcal{F}_{\delta, p}: A(p) \longrightarrow A(p)$ is defined by

$$
\begin{align*}
\mathcal{F}_{\delta, p}(f)(z) & =\frac{\delta+p}{z^{p}} \int_{0}^{z} t^{\delta-1} f(t) d t=\left(z^{p}+\sum_{k=1}^{\infty} \frac{\delta+p}{\delta+p+k} z^{p+k}\right) * f(z) \tag{2.6}\\
& =z^{p}{ }_{2} F_{1}(1, \delta+p, \delta+p+1 ; z) * f(z), \quad z \in E, \text { see }[2]
\end{align*}
$$

It follows from (2.6) that

$$
\begin{equation*}
z\left(\left(I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)\right)^{\prime}=(\delta+p) I_{p}^{\lambda}(a, c) f(z)-\delta I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)\right. \tag{2.7}
\end{equation*}
$$

A. Muhammad - On P-valent strongly starlike and strongly convex functions

We have the following result.
Theorem 2.4. Let $\delta>-\beta$ and $0 \leq \beta<p$.If $f(z) \in S^{*}(a, c, \lambda, p, \alpha, \beta)$ with

$$
\frac{z\left(I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)\right)^{\prime}}{I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)} \neq \beta, \text { for all } z \in E
$$

then we have

$$
\mathcal{F}_{\delta, p}(f)(z) \in S^{*}(a, c, \lambda, p, \alpha, \beta)
$$

Proof. We begin by setting

$$
\begin{equation*}
\frac{z\left(I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)\right)^{\prime}}{I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)}=\beta+(p-\beta) h(z), \quad z \in E . \tag{2.8}
\end{equation*}
$$

Then $h(z)$ is analytic in E with $h(0)=1$. Using (2.7) and (2.8), we find that

$$
\begin{equation*}
(\delta+p) \frac{\left(I_{p}^{\lambda}(a, c) f(z)\right.}{I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)}=(\delta+p)+(p-\beta) h(z) \tag{2.9}
\end{equation*}
$$

Differentiation both sides of (2.9) logarithmically, we obtain

$$
\frac{z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}}{I_{p}^{\lambda}(a, c) f(z)}-\beta=(p-\beta) h(z)+\frac{(p-\beta) z h^{\prime}(z)}{(\delta+\beta)+(p-\beta) h(z)} .
$$

Suppose now there exists a point $z_{0} \in E$ such that

$$
|\arg h(z)|<\frac{\pi}{2} \alpha\left(|z|<\left|z_{0}\right|\right) \text { and }|\arg h(z)|=\frac{\pi}{2} \alpha
$$

Then by Lemma 2.1, we can write that

$$
\frac{z_{0} h^{\prime}\left(z_{0}\right)}{h\left(z_{0}\right)}=i k \alpha \text { and }\left(h\left(z_{0}\right)\right)^{\frac{1}{\alpha}}= \pm i \alpha(\alpha>0) .
$$

If

$$
\arg h\left(z_{0}\right)=\frac{\pi}{2} \alpha, z_{0} \in E
$$

then

$$
\begin{aligned}
\frac{z\left(I_{p}^{\lambda}(a, c) f\left(z_{0}\right)\right)^{\prime}}{I_{p}^{\lambda}(a, c) f\left(z_{0}\right)}-\beta & =(p-\beta) h\left(z_{0}\right)\left[1+\frac{\frac{z h^{\prime}\left(z_{0}\right)}{h\left(z_{0}\right)}}{(\delta+\beta)+(p-\beta) h\left(z_{0}\right)}\right] \\
& =(p-\beta) a^{\alpha} e^{i \frac{i \alpha \alpha}{2}}\left[1+\frac{i k \alpha}{(\delta+\beta)+(p-\beta) a^{\alpha} e^{i \frac{\pi \alpha}{2}}}\right]
\end{aligned}
$$

This shows that

$$
\begin{aligned}
& \arg \left(\frac{z\left(I_{p}^{\lambda}(a, c) f\left(z_{0}\right)\right)^{\prime}}{I_{p}^{\lambda}(a, c) f\left(z_{0}\right)}-\beta\right)=\frac{\pi \alpha}{2}+\arg \left\{1+\frac{i k \alpha}{(\delta+\beta)+(p-\beta) a^{\alpha} e^{i \frac{\pi \alpha}{2}}}\right\}=\frac{\pi \alpha}{2} \\
& +\tan ^{-1}\left\{\frac{k \alpha(\delta+\beta+(p-\beta)) a^{\alpha} \cos \left(\frac{\pi \alpha}{2}\right)}{(\delta+\beta)^{2}+2(\delta+\beta)(p-\beta) a^{\alpha} \cos \left(\frac{\pi \alpha}{2}\right)+(p-\beta)^{2} a^{2 \alpha}+k \alpha(p-\beta) a^{\alpha} \sin \left(\frac{\pi \alpha}{2}\right)}\right\} \\
& \geq \frac{\pi \alpha}{2},
\end{aligned}
$$

since

$$
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \geq 1 \text { and } z_{0} \in E
$$

which contradicts the assumption that $f(z) \in S^{*}(a, c, \lambda, p, \alpha, \beta)$.
Similarly in the case when

$$
\arg h\left(z_{0}\right)=-\frac{\pi}{2} \alpha, z_{0} \in E
$$

we can prove that

$$
\arg \left(\frac{z\left(I_{p}^{\lambda}(a, c) f\left(z_{0}\right)\right)^{\prime}}{I_{p}^{\lambda}(a, c) f\left(z_{0}\right)}-\beta\right) \leq \frac{-\pi \alpha}{2},
$$

since

$$
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \leq-1 \text { and } z_{0} \in E
$$

contradicting once again the condition that $f(z) \in S^{*}(a, c, \lambda, p, \alpha, \beta)$.
We thus conclude that $h(z)$ must satisfy the following inequality

$$
|\arg h(z)|<\frac{\pi}{2} \alpha, z \in E
$$

This shows that

$$
\left|\arg \frac{z\left(I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)\right)^{\prime}}{I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)}-\beta\right|<\frac{\pi \alpha}{2}, z \in E,
$$

and hence the proof is complete.
Theorem 2.5. Let $\delta>-\beta$ and $0 \leq \beta<p$. If $f(z) \in C(a, c, \lambda, p, \alpha, \beta)$ and

$$
1+\frac{z\left(I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)\right)^{\prime \prime}}{\left(I_{p}^{\lambda}(a, c) \mathcal{F}_{\delta, p}(f)(z)\right)^{\prime}} \neq \beta \text { for all } z \in E
$$

then we have

$$
\mathcal{F}_{\delta, p}(f)(z) \in C(a, c, \lambda, p, \alpha, \beta)
$$

Proof. Since

$$
\begin{aligned}
f(z) & \in C(a, c, \lambda, p, \alpha, \beta) \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in S^{*}(a, c, \lambda, p, \alpha, \beta) \\
& \Rightarrow \frac{\mathcal{F}_{\delta, p}(f)(z)}{p} \in S^{*}(a, c, \lambda, p, \alpha, \beta) \Leftrightarrow \frac{z\left(\mathcal{F}_{\delta, p}(f)(z)\right)^{\prime}}{p} \in S^{*}(a, c, \lambda, p, \alpha, \beta) \\
& \Leftrightarrow \mathcal{F}_{\delta, p}(f)(z) \in C(a, c, \lambda, p, \alpha, \beta)
\end{aligned}
$$

Acknowledgements. We would like to thank Honourable Director Finance Sarwar Khan for providing us excellent research facilities.

References

[1] N. E. Cho, O. S. Kown, and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. App. 292 (2004), 470-483.
[2] J. H. Choi, M. Siago, and H .M. Srivastava, Some inclusion properties of certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
[3] N. E. Cho, O. H. Kown, and H. M. Srivastava, Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl. 300 (2004), 505-520.
[4] A. W. Goodman, On the Schwarz Christoffel transformation and P-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204-233.
[5] R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980), 353-357.
[6] J. L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21 (2002),81-90.
[7] K. I. Noor, Some classes of p-valent analytic functions defined by certain integral operator, Appl. Math. Compute. 157 (2004), 835-840.
[8] K. I. Noor and M. A. Noor, On certain classes of analytic functions defined by Noor integral operator, J. Math. Appl. 281 (2003), 244-252.
[9] M. Nunokawa, On the order of strongly starlikness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 234-237.
[10] S. Owa, On certain classes of P-valent functions with negative coefficients, Simon Stevin 59 (1985), 385-402.
A. Muhammad - On P-valent strongly starlike and strongly convex functions
[11] D. A. Patel and N. K. Thakare, On convex hulls and extreme points of P valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. Roumanie (N.S) 27 (1983), 145 -160.
[12] J. Patel, N. E. Cho and H. M. Srivastava, Certain subclasses of multivalent functions associated with a family of linear operators, Math. Comput. Modelling 43 (2006), 320-338.
[13] H. M. Srivastava, J. Patel, and G. P. Mohapatra, A certain class of p-valently analytic functions, Math. Comput. Modelling 41 (2005), 321-334.
[14] E. T. Whittaker and G. N. Watson, A course on Modern Analysis: An introduction to the general Theory of Infinite processes and of Analytic Functions; With an account of the principle of Transcendental Functions, 4th Edition, Cambridge University Press, Cambridge, 1927.

Ali Muhammad
Depatment of Basic Sciences
University of Engineering and Technology
Technology Peshawar Pakistan
E-mail:ali7887@gmail.com

