ON (h,k) -GROWTH OF EVOLUTION OPERATORS IN BANACH SPACES

Andrea Amalia Minda

ABSTRACT. The paper considers some concept of uniform and nonuniform asymptotical growth and polynomial growth as particular cases of (h,k)-stability of evolution operators in Banach spaces. Some illustrating examples clarify the relations between these properties.

2000 Mathematics Subject Classification: 34D05, 34E05.

1. INTRODUCTION

Let T be the set defined by $T = \{(t,s) \in \mathbf{R}^2_+ : t \ge s \ge 0\}$ We recall that an operator-valued function $\Phi : T \to B(X)$ is called an *evolution operator* on the Banach spaces X iff:

e₁) $\Phi(t,t) = \mathbf{I}$ (the identity operator on X) for every $t \ge 0$; e₂) $\Phi(t,s) \Phi(s,t_0) = \Phi(t,t_0)$ for all (t,s) and $(s,t_0) \in T$. Furthermore, if

e₃) there are $M \ge 1$ and a nondecreasing function $\varphi : \mathbf{R}_+ \to [1, \infty)$ such that:

$$\|\Phi(t,s)\| \le M\varphi(t-s)$$
 for all $(t,s) \in T$

then Φ is called with *uniform growth*.

If $h, k : \mathbf{R}_+ \to [1, \infty)$ then we introduce the concept of (h,k)-stability by **Definition 1.1.** If $h, k : \mathbf{R}_+ \to (0, \infty)$ are nondecreasing functions then the evolution operator $\Phi : T \to \mathcal{B}(X)$ is said to be (h,k)-stable (and we denote (h,k)-s) iff there are $N \ge 1$ and $t_0 \ge 0$ such that:

$$\frac{h(t)}{h(s)} \|\Phi(t, t_0) x_0\| \le Nk(s) \|\Phi(s, t_0) x_0\|$$
(1)

for all $t \ge s \ge t_0 \ge 0$ and all $x_0 \in X$.

Remark 1.1. If $h, k : \mathbf{R}_+ \to (0, \infty)$ are nondecreasing functions, then an evolution operator $\Phi : T \to \mathcal{B}(X)$ is (h,k)-stable iff there are $N \ge 1$ and $t_0 \ge 0$ such that:

$$\frac{h(t)}{h(s)} \left\| \Phi(t,s)x \right\| \le Nk(s) \left\| x \right\|$$
(2)

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 0$.

Another concepts of stability are given by

Definition 1.2. The evolution operator $\Phi: T \to B(X)$ is called:

The evolution operator $\Phi: T \to \mathcal{B}(X)$ is called:

(i) uniformly exponentially stable (and denote u.e.s) iff there are $N \ge 1$, $t_0 \ge 0$ and $\alpha > 0$ such that :

$$e^{\alpha(t-s)} \left\| \Phi(t,s)x \right\| \le N \|x\| \tag{3}$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 0$;

(ii) exponentially stable in the sense Barreira-Valls (and denote B.V.e.s) iff there are $N \ge 1$, $t_0 \ge 0$, $\alpha > 0$ and $\beta \ge 0$ such that:

$$e^{\alpha(t-s)} \left\| \Phi(t,s)x \right\| \le N e^{\beta s} \|x\| \tag{4}$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 0$; (iii)(nonuniformly) exponentially stable (and denote e.s) iff there are $N \ge 1$, $t_0 \ge 0$, $\alpha > 0$ and a nondecreasing function $k : \mathbf{R}_+ \to [1, \infty)$ such that:

$$e^{\alpha(t-s)} \left\| \Phi(t,s)x \right\| \le Nk(s) \|x\| \tag{5}$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 0$.

The particular cases of (h,k)-stability considered in this paper are : the uniform exponential growth, the exponential growth in the sense Barreira-Valls, the non-uniform exponential growth, uniform polynomial growth, polynomial growth in the sense Barreira-Valls and non-uniform polinomial growth. In what follows we present some relations between these concepts (implications and counterexamples).

2. Exponential growth

Let $\Phi: T \to B(X)$ be an evolution operator on Banach space X. **Definition 2.1.** The evolution operator $\Phi: T \to \mathcal{B}(X)$ is with : (i) uniform exponential growth iff there are $N \ge 1$, $t_0 \ge 0$ and $\alpha > 0$ such that :

$$\|\Phi(t,s)x\| \le N e^{\alpha(t-s)} \|x\| \tag{6}$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 0$; (ii) exponential growth in the sense Barreira-Valls iff there are $N \ge 1$, $t_0 \ge 0$, $\alpha > 0$ and $\beta \ge 0$ such that:

$$\|\Phi(t,s)x\| \le N e^{\alpha(t-s)} e^{\beta s} \|x\| \tag{7}$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 0$;

(iii)(nonuniform) exponential growth iff there are $N \ge 1$, $\alpha > 0$, $t_0 \ge 0$ and a nondecreasing function $k : \mathbf{R}_+ \to [1, +\infty)$ such that:

$$\|\Phi(t,s)x\| \le Ne^{\alpha(t-s)}k(s) \|x\|$$
 (8)

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 0$.

Remark 2.1. The evolution operator $\Phi : T \to \mathcal{B}(X)$ is with *exponential growth in* the sense Barreira-Valls iff there are $N \ge 1$, $t_0 \ge 0$, a > 0 and $0 < b \le a$ such that:

$$\|\Phi(t,s)x\| \le Ne^{at}e^{-bs} \|x\|$$
(9)

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 0$.

Let \mathcal{E}^- the set of all functions $f : \mathbf{R}_+ \to [1, \infty)$ with the property that there is $\alpha > 0$ such that $f(t) = e^{-\alpha t}$ for every $t \ge 0$.

Remark 2.2. We have that:

i) Φ is u.e.g. iff there is $h \in \mathcal{E}^-$ such that Φ is (h, h)-stable;

ii) Φ is B.V.e.g. iff there are $h, k \in \mathcal{E}^-$ such that Φ is (h, k)-stable;

iii) Φ is e.g. iff there exist $h \in \mathcal{E}^-$ such that Φ is (h, k)-stable.

Remark 2.3. It is obvious that: $u.e.g \Rightarrow B.V.e.g \Rightarrow e.g$

Example 2.1.(*Evolution operator with B.V.e.g and without u.e.g*)

Let $u : \mathbf{R}_+ \to (0, \infty)$ be the function defined by u(t) = exp(3t - tcost). Then $\Phi: T \to \mathcal{B}(\mathbf{R}), \Phi(t, s)x = \frac{u(t)}{u(s)}x$ is an evolution operator on $X = \mathbf{R}$ with:

$$|\Phi(t,s)x| = |x| \exp(3t - t\cos t - 3s + s\cos s) \le |x| \exp(4t - 2s)$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 = 1$. This shows, by Remark 2.1. with a = 4 and b = 2 that Φ is with B.V.e.g. If we suppose that Φ is with u.e.g then there exist $N \ge 1$ and $\alpha > 0$ such that: $exp(3t - tcost - 3s + scoss) \le Nexp\alpha(t - s)$ for all $t \ge s \ge t_0 \ge 0$. For $t = 2n\pi + \frac{\pi}{2}$ and $s = 2n\pi$ we obtain a contradiction.

Proposition 2.1. If the evolution operator Φ is u.e.s then it is with u.e.g.

Proof. It is immediate from Definition 1.2 and Definition 2.1.

Proposition 2.2. If the evolution operator Φ is B.V.e.s then it is with B.V.e.g.

Proof. If the evolution operator Φ is B.V.e.s then there are $N \ge 1$, $\beta > 0$, $\alpha > 0$ and $t_0 > 0$ such that:

$$\|\Phi(t,s)x\| \le Ne^{-\alpha t}e^{\beta s}\|x\| \le Ne^{(\alpha+2\beta)t}e^{-\beta s}\|x\|$$

for all $t \ge s \ge t_0$ and all $x \in X$.

Proposition 2.3 If the evolution operator Φ is e.s then it is with e.g. *Proof.* It is trivial.

3. POLYNOMIAL GROWTH

Definition 3.1. The evolution operator $\Phi: T \to \mathcal{B}(X)$ is said to be with: (i) uniform polynomial growth (and denote u.p.g) iff there are $N \ge 1$, $\alpha > 0$ and $t_0 \ge 1$ such that :

$$t^{-\alpha}s^{\alpha}\|\Phi(t,s)x\| \le N\|x\| \tag{10}$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 1$;

(ii) polynomial growth in the sense Barreira-Valls (and denote B.V.p.g) iff there are $N \ge 1$, $\alpha > 0$, $\beta \ge 0$ and $t_0 \ge 1$ such that:

$$t^{-\alpha}s^{\alpha} \left\| \Phi(t,s)x \right\| \le Ns^{\beta} \|x\| \tag{11}$$

for all $t \ge s \ge t_0 \ge 1$ and all $x \in X$;

(iii)(nonuniform) polynomial growth (and denote p.g) iff there are $N \ge 1$, $\alpha > 0$, $t_0 \ge 1$ and a nondecreasing function $k : \mathbf{R}_+ \to (0, \infty)$ such that:

$$t^{-\alpha}s^{\alpha} \left\| \Phi(t,s)x \right\| \le Nk(s) \|x\| \tag{12}$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 1$.

Remark 3.1. The evolution operator $\Phi: T \to \mathcal{B}(X)$ is with *polynomial growth* in the sense Barreira-Valls iff there are $N \ge 1$, $t_0 \ge 1$, a > 0 and $0 < b \le a$ such that:

$$\|\Phi(t,s)x\| \le Nt^{a}s^{-b} \|x\| \tag{13}$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 1$.

Let \mathcal{P}^- the set of all functions $f : \mathbf{R}_+ \to [1, \infty)$ with the property that there is $\alpha > 0$ such that $f(t) = t^{-\alpha}$ for every $t \ge 0$.

Remark 3.2. The preceding definition shows that:

i) Φ is u.p.g. iff there are $h \in \mathcal{P}^-$ and $k = const. \geq 1$ such that Φ is (h, k)-stable; ii) Φ is B.V.p.g. iff there are $h \in \mathcal{P}^-$ and $k \in \mathcal{P}^+$ such that Φ is (h, k)-stable; iii) Φ is p.g. iff there are $h \in \mathcal{P}^-$ and a nondecreasing function $k : \mathbf{R}_+ \to (0, \infty)$

such that Φ is (h, k)-stable.

Remark 3.3. It is obvious that: $u.p.g \Rightarrow B.V.p.g \Rightarrow p.g$ The following examples show that the converse implications are not valid. **Example 3.1.** (*Evolution operator with B.V.p.g and without u.p.g.*) The evolution operator (on \mathbf{R}) $\Phi: \Delta \to \mathcal{B}(\mathbf{R}), \Phi(t,s)x = \frac{(t+1)^2(s+1)^{cosln(s+1)}}{(s+1)^2(t+1)^{cosln(t+1)}}x$ satisfies the inequality $s |\Phi(t,s)x| \leq \frac{s}{(s+1)}(t+1)^3 |x| \leq 8t^3 |x|, t^{-3}s^3 |\Phi(t,s)x| \leq 8s^2 |x|$ for all $(t,s,x) \in \Delta \times \mathbf{R}$ with $s \geq t_0 = 1$. It follows that Φ is with B.V.p.g. If we suppose that Φ is with u.p.g. then there are $N \geq 1$, $\alpha \geq 1$ and $t_0 \geq 1$ such that :

$$s^{\alpha}(t+1)^{2}(s+1)^{cosln(s+1)} \leq Nt^{\alpha}(s+1)^{2}(t+1)^{cosln(t+1)}$$

for all $t \ge s \ge t_0 \ge 1$.

From here, for $t = exp(2n\pi + \frac{\pi}{2}) - 1$ and $s = exp(2n\pi) - 1$ taking $n \to \infty$ we obtain a contradiction.

Example 3.2. (Evolution operator with p.g. and without B.V.p.g.) Let $u : \mathbf{R}_+ \to [1, \infty)$ be a function with $u(n) = e^n$ and $u\left(n + \frac{1}{n}\right) = e^2$ for every $n \in \mathbf{N}^*$.

Then

$$\Phi: \Delta \to \mathcal{B}(\mathbf{R}), \Phi(t,s)x = \frac{t^2 u(s)}{s^2 u(t)}x$$

is an evolution operator on \mathbf{R} with the property

$$|\Phi(t,s)x| = \frac{t^2 u(s) |x|}{s^2 u(t)} \le N(s) t^2 s^{-2} |x|$$

for all $(t, s, x) \in T \times \mathbf{R}$, where

$$N(s) = 1 + u(s)$$

This shows that Φ is with p.g.

If we suppose that Φ is B.V.p.s then there are $N \ge 1$, $\alpha > 0$, $\beta \ge 0$ and $t_0 > 0$ such that

$$s^{\alpha-\beta-2}u(s) \le Nt^{\alpha-2}u(t)$$

for all $t \ge s \ge t_0$.

Then for s = n and $t = n + \frac{1}{n}$ we obtain a contradiction and hence Φ does not have B.V.p.g.

Proposition 3.1. If the evolution operator Φ is with u.p.g then it has u.e.g.

Proof. Using the fact that the function $\varphi(t) = \frac{e^t}{t}$ is nondecreasing on $[1, +\infty)$ we obtain that if Φ is with u.p.g then by Definition 2.1 we have:

$$\|\Phi(t,t_0)x\| \le Nt^{\alpha}s^{-\alpha} \|x\| \le Ne^{\alpha t}e^{-\alpha s} \|x\| \le Ne^{\alpha(t-s)} \|x\|$$

for all $(t, s, x) \in T \times X$ with $s \ge t_0 \ge 1$.

Proposition 3.2. If the evolution operator Φ has p.g then it is with e.g.

Proof. It is immediate from Definition 2.1 and Definition 3.1, using the inequality $t \leq e^t$ for all $t \geq 1$.

References

[1] M.Pinto, Asymptotic integrations of systems resulting from the perturbation of an h-system, J.Math. Anal. Appl. 131,(1988) 194-216;

[2] J.L.Fenner, M.Pinto, On (h,k) manifolds with asymptotic phase, J.Math. Anal. Appl. **216**(1997) 549-568;

[3] R.Naulin, M.Pinto, Dichotomies and asymptotic solutions of nonlinear differential systems, Nonlinear Analysis TMA, 23, (1994) 871-882;

[4] M.Pinto, Dichotomies and asymptotic formulae of solutions of differential equations, J.Math. Anal. Appl., 195,(1995) 16-31;

[5] L.Barreira, C.Valls, *Stability of Nonautonomous Differential Equations*, Lecture Notes in Math., vol 1926, (2008);

[6] L.Barreira, C.Valls, *Polynomial growth rates*, Nonlinear Analysis, 71,(2009) 5208-5219;

[7] M. Megan, On h - stability of evolution operators, Qualitative Problems for Differential Equations and Control Theory, World Sci. Publishing (1995) 33-40;

[8] M.Megan, On (h,k)-dichotomy of evolution operators in Banach spaces, Dynamic Systems and Applications, 5, (1996) 189-196;

[9] A.A. Minda, M. Megan, On (h,k)-stability of evolution operators in Banch spaces, Seminarul de Analiza Matematica si Aplicatii in Teoria Controlului, Universitatea de Vest din Timisoara (2009), 1-6.

[10] A. A. Minda, M. Megan, On (h,k)- exponential stability of evolution operators in Banach spaces, accepted for publication in J. Adv. Math. Studies, Vol 3(2010), No. 2.

Andrea Amalia Minda Eftimie Murgu University of Reşiţa P-ţa Traian Vuia No. 1-4, Reşiţa, Romania E-mail: *a.minda@uem.ro*