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1. Introduction

Our purpose in this paper is to obtain some strong convergence results for quasi-
contractive operators in arbitrary Banach space via the iterative schemes introduced
in [13, 14]. We also establish stablity theorems for Kirk’s iterative process. The
convergence results obtained are generalizations and extensions of those of [3, 8, 9,
18, 19] while our stability results generalize some of the results of Rhoades [20, 21]
and the results of the author [12].

Let (E, ||.||) be a normed linear space and T : E → E a selfmap of E. Suppose
that FT = { p ∈ E | Tp = p } is the set of fixed points of T.

In a normed linear space or a Banach space setting, we have several iterative
processes that have been defined by many researchers to approximate the fixed
points of different operators. Some of them are the following:
For x0 ∈ E, define the sequence {xn}∞n=0 by

xn+1 =
k∑

i=0

αiT
ixn, x0 ∈ E, n = 0, 1, 2, · · · ,

k∑
i=0

αi = 1, (1)
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αi ≥ 0, α0 6= 0, αi ∈ [0, 1], where k is a fixed integer. See Kirk [11] for this iterative
process.

Another iterative process of interest is the Ishikawa scheme defined as follows:
For x0 ∈ E, define the sequence {xn}∞n=0 by

xn+1 = (1− αn)xn + αnTzn,
zn = (1− βn)xn + βnTxn

}
n = 0, 1, · · · , (2)

For the iterative process in (2), see Ishikawa [7].
The following two iterative processes have been recently introduced in [13, 14]:
(I) For x0 ∈ E, define the sequence {xn}∞n=0 by

xn+1 = αn,0xn +
∑k

i=1 αn,iT
izn,

∑k
i=0 αn,i = 1, n = 0, 1, 2, · · · ,

zn =
∑s

j=0 βn,jT
jxn,

∑s
j=0 βn,j = 1,

}
(3)

k ≥ s, αn,i ≥ 0, αn,0 6= 0, βn,j ≥ 0, βn,0 6= 0, αn,i, βn,j ∈ [0, 1], where k and s are
fixed integers.

(II) For x0 ∈ E, define the sequence {xn}∞n=0 by

xn+1 = αn,0 xn +
∑k

i=1 αn,iTizn,
∑k

i=0 αn,i = 1, n = 0, 1, 2, · · · ,
zn =

∑s
j=0 βn,jTjxn,

∑s
j=0 βn,j = 1,

}
(4)

k ≥ s, αn,i ≥ 0, αn,0 6= 0, βn,j ≥ 0, βn,0 6= 0, αn,i, βn,j ∈ [0, 1], where k and s are
fixed integers and S0 is an identity operator.

Remark 1.1 It has been shown in [13, 14] that the iterative algorithms defined
in (3) and (4) generalize many well-known schemes in the literature.

Definition 1.1 [6].Let (E, d) be a complete metric space, T : E → E a selfmap
of E. Suppose that FT 6= φ (i.e. nonempty) is the set of fixed points of T. Let
{xn}∞n=0 ⊂ E be the sequence generated by an iterative procedure involving T which
is defined by

xn+1 = f(T, xn), n = 0, 1, · · · , (?)

where x0 ∈ E is the initial approximation and f is some function. Suppose {xn}∞n=0

converges to a fixed point p of T . Let {yn}∞n=0 ⊂ E and set
εn = d(yn+1, f(T, yn)), (n = 0, 1, · · · ). Then, the iterative procedure (?) is said to be
T -stable or stable with respect to T if and only if lim

n→∞
εn = 0 implies lim

n→∞
yn = p.

Remark 1.2. (i) Since the metric is induced by the norm, we have εn = ||yn+1−
f(T, yn)||, n = 0, 1, · · · , in place of εn = d(yn+1, f(T, yn)), n = 0, 1, · · · , in the
definitions of stability stated above whenever we are working in normed linear space
or Banach space.
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(ii) we obtain the Kirk’s iterative process from (?) if f(T, xn) =
∑k

i=0 αiT
ixn, n =

0, 1, 2, · · · ,
∑k

i=0 αi = 1, where αi ≥ 0, α0 6= 0, αi ∈ [0, 1] and k is a fixed integer.
Any other iterative process can be obtained in a similar manner from (?).

Several stability results established in metric spaces and normed linear spaces
are available in the literature. Some of the various authors whose contributions are
of colossal value in the study of stability of the fixed point iterative procedures are
Ostrowski [17], Harder and Hicks [6], Rhoades [18, 20], Osilike and Udomene [16],
and Berinde [3, 4]. The first stability result on T− stable mappings was due to
Ostrowski [17].

Definition 1.2 [4, 22] (a) A function ψ : R+ → R+ is called a comparison func-
tion if it satisfies the following conditions:
(i) ψ is monotone increasing;
(ii) lim

n→∞
ψn(t) = 0, ∀ t ≥ 0.

Remark 1.3. (i) Every comparison function satisfies ψ(0) = 0.
(ii) ψn(t) is the n−th iterate of ψ(t).
We shall employ the following contractive definitions: Let E be an arbitrary Banach
space,
(i) for an operator T : E → E, there exist a ∈ [0, 1) and a monotone increasing
function ϕ : R+ → R+, with ϕ(0) = 0, such that

||Tx− Ty|| ≤ ϕ(||x− Tx||) + a||x− y||, ∀ x, y ∈ E. (5)

(ii) also, for operators Ti : E → E, i = 0, 1, 2, · · · , k there exist ai ∈ [0, 1), i =
0, 1, 2, · · · , k, and a monotone increasing function ϕ : R+ → R+, with ϕ(0) = 0,
such that

||Tix− Tiy|| ≤ ϕ(||x− Tix||) + ai||x− y||, ∀ x, y ∈ E, (6)

where T0 =identity operator.
Other forms of the contractive conditions which shall be used are given in two

of our Lemmas in the sequel:
Lemma 1.1 [12]. Let (E, || · ||) be a normed linear space and let T : E → E
be a selfmap of E satisfying (5), where ϕ : R+ → R+ is a sublinear, monotone
increasing function such that ϕ(0) = 0, ϕ(Lu) ≤ Lϕ(u), L ≥ 0. Then, ∀ i ∈ N, and
∀ x, y ∈ E, ||T ix− T iy|| ≤

∑i
j=1

(
i
j

)
bi−jϕj(||x− Tx||) + bi||x− y||, ∀ x, y ∈ E.

Lemma 1.2 [15]. Let {ψk(t)}n
k=0 be a sequence of comparison functions. Then,

any convex linear combination
∑n

j=0 cjψ
j(t) of the comparison functions is also a

comparison function, where
∑n

j=0 cj = 1 and co, c1, · · · , cn are positive constants.
Lemma 1.3 [15]. If ψ : R+ → R+ is a subadditive comparison function and {εn}∞n=0
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is a sequence of positive numbers such that lim
n→∞

εn = 0, then for any sequence of

positive numbers {un}∞n=0 satisfying

un+1 ≤
m∑

k=0

δkψ
k(un) + εn, n = 0, 1, · · · , (7)

where δ0, δ1, · · · , δm ∈ [0, 1] with 0 ≤
∑m

k=0 δk ≤ 1, we have lim
n→∞

un = 0.

Lemma 1.4. Let (E, || · ||) be a normed linear space and let T : E → E be a selfmap
of E satisfying

||Tx− Ty|| ≤ ϕ(||x− Tx||) + ψ(||x− y||), ∀ x, y ∈ E, (8)

where ψ : R+ → R+ is a sublinear comparison function and ϕ : R+ → R+, a sublin-
ear monotone increasing function such that ϕ(0) = 0 and ψs(ϕr(x)) ≤ ϕr(ψs(x)),
∀ x ∈ R+, r, s ∈ N. Then, ∀ i ∈ N, we have

||T ix− T iy|| ≤
i∑

j=1

(
i

j

)
ϕj(ψi−j(||x− Tx||)) + ψi(||x− y||), ∀ x, y ∈ E. (9)

Proof: We first proof the sublinearity of both ϕ and ψ as follows: In order to show
that ψi (i.e. iterate of ψ) is sublinear, we have to show that ψi is both subadditive
and positively homogeneous. We first establish that ψ subadditive implies that each
iterate ψi of ψ is also subadditive: Since ψ is subadditive, we have ψ(x + y) ≤
ψ(x) + ψ(y), ∀ x, y ∈ R+. Therefore,using subadditivity of ψ in ψ2 yields

ψ2(x+y) = ψ(ψ(x+y)) ≤ ψ(ψ(x)+ψ(y)) ≤ ψ(ψ(x)) + ψ(ψ(y)) = ψ2(x) + ψ2(y),

which implies that ψ2 is subadditive. Similarly, applying subadditivity of ψ2 in ψ3,
we get

ψ3(x+y) = ψ(ψ2(x+y)) ≤ ψ(ψ2(x) + ψ2(y)) ≤ ψ(ψ2(x))+ψ(ψ2(y)) = ψ3(x) + ψ3(y),

which implies that ψ3 is also subadditive. Hence, in general, each ψn, n = 1, 2, · · · ,
is subadditive. We now prove that ψ positively homogeneous implies that each
iterate ψi of ψ is also positively homogeneous: Therefore, we have that ψ(αx) =
αψ(x), ∀ x ∈ R+, α > 0. Using positive homogeneity of ψ in ψ2, we have

ψ2(αx) = ψ(ψ(αx)) = ψ(αψ(x)) = αψ(ψ(x)) = αψ2(x), ∀ x ∈ R+, α > 0,

which implies that ψ2 is positively homogeneous. Hence, in general, each ψn, n =
1, 2, · · · , is positively homogeneous. Thus, we have that ψn, n = 1, 2, · · · , is sublin-
ear. In a similar manner, we can prove that ϕj , j = 1, 2, · · · , is sublinear.
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The second part of the proof of this lemma is by induction on i as follows: If
i = 1, then (9) becomes
||Tx−Ty|| ≤

∑1
j=1

(
1
j

)
ϕj(ψ1−j(||x−Tx||))+ψ(||x−y||) = ϕ(||x−Tx||)+ψ(||x−y||),

that is, (9) reduces to (8) when i = 1 and hence the result holds. Assume as an
inductive hypothesis that (9) holds for i = m, m ∈ N, i.e.

||Tmx− Tmy|| ≤
m∑

j=1

(
m

j

)
ϕj(ψm−j(||x− Tx||)) + ψm(||x− y||), ∀ x, y ∈ E.

We then show that the statement is true for i = m+ 1;

||Tm+1x− Tm+1y|| = ||Tm(Tx)− Tm(Ty)||
≤

∑m
j=1

(
m
j

)
ϕj(ψm−j(||Tx− T 2x||)) + ψm(||Tx− Ty||)

≤
∑m

j=1

(
m
j

)
ϕj(ψm−j(ϕ(||x− Tx||) + ψ(||x− Tx||)))

+ ψm(ϕ(||x− Tx||) + ψ(||x− y||))
≤

∑m
j=1

(
m
j

)
ϕj [ψm−j(ϕ(||x− Tx||)) + ψm+1−j(||x− Tx||)]

+ ψm(ϕ(||x− Tx||)) + ψm+1(||x− y||)
≤

∑m
j=1

(
m
j

)
ϕj [ϕ(ψm−j(||x− Tx||)) + ψm+1−j(||x− Tx||)]

+ ϕ(ψm(||x− Tx||)) + ψm+1(||x− y||)
≤

∑m
j=1

(
m
j

)
ϕj+1(ψm−j(||x− Tx||)) +

∑m
j=1

(
m
j

)
ϕj(ψm+1−j(||x

− Tx||)) + ϕ(ψm(||x− Tx||)) + ψm+1(||x− y||)
=

(
m
m

)
ϕm+1(||x− Tx||) + [

(
m

m−1

)
+

(
m
m

)
]ϕm(ψ(||x− Tx||))

+ [
(

m
m−2

)
+

(
m

m−1

)
]ϕm−1(ψ2(||x− Tx||))

+ · · ·+ [
(
m
1

)
+

(
m
0

)
]ϕ(ψm(||x− Tx||)) + ψm+1(||x− y||)

=
(
m+1
m+1

)
ϕm+1(||x− Tx||) +

(
m+1

m

)
ϕm(ψ(||x− Tx||))

+
(
m+1
m−1

)
ϕm−1(ψ2(||x− Tx||)) + · · ·

+
(
m+1

2

)
ϕ2(ψm−1(||x− Tx||)) +

(
m+1

1

)
ϕ(ψm(||x− Tx||))

+ ψm+1(||x− y||)
=

∑m+1
j=1

(
m+1

j

)
ϕj(ψm+1−j(||x− Tx||)) + ψm+1(||x− y||).

Lemma 1.5. Let (E, || · ||) be a normed linear space and let T : E → E be a
selfmap of E satisfying

||Tx− Ty|| ≤ L||x− Tx||+ ψ(||x− y||), ∀ x, y ∈ E, L ≥ 0, (10)

where ψ : R+ → R+ is a sublinear comparison function. Then, ∀ i ∈ N, we have

||T ix− T iy|| ≤
i∑

j=1

(
i

j

)
Ljψi−j(||x− Tx||) + ψi(||x− y||), ∀ x, y ∈ E. (11)
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Proof: The proof of sublinearity of ψi (i.e. iterate of ψ) for each i = 1, 2, · · · , is
the same as that of Lemma 1.4. The second part of the proof of this lemma is by
induction on i: If i = 1, then (11) becomes
||Tx− Ty|| ≤

∑1
j=1

(
1
j

)
Ljψ1−j(||x− Tx||) +ψ(||x− y||) = L||x− Tx||+ψ(||x− y||),

that is, (11) reduces to (10) when i = 1 and hence the result holds. Assume as an
inductive hypothesis that (11) holds for i = m, m ∈ N, i.e.

||Tmx− Tmy|| ≤
m∑

j=1

(
m

j

)
Ljψm−j(||x− Tx||) + ψm(||x− y||), ∀ x, y ∈ E.

We then show that the statement is true for i = m+ 1;

||Tm+1x− Tm+1y|| = ||Tm(Tx)− Tm(Ty)||
≤

∑m
j=1

(
m
j

)
Ljψm−j(||Tx− T 2x||) + ψm(||Tx− Ty||)

≤
∑m

j=1

(
m
j

)
Ljψm−j(L||x− Tx||+ ψ(||x− Tx||))

+ ψm(L||x− Tx||+ ψ(||x− y||))
≤

∑m
j=1

(
m
j

)
Lj+1ψm−j(||x− Tx||) +

∑m
j=1

(
m
j

)
Ljψm+1−j(||x

− Tx||) + Lψm(||x− Tx||) + ψm+1(||x− y||)
=

(
m
m

)
Lm+1||x− Tx||+ [

(
m

m−1

)
+

(
m
m

)
]Lmψ(||x− Tx||)

+ [
(

m
m−2

)
+

(
m

m−1

)
]Lm−1ψ2(||x− Tx||) + · · ·

+ [
(
m
1

)
+

(
m
2

)
]L2ψm−1(||x− Tx||) + [

(
m
1

)
+

(
m
0

)
]Lψm(||x

− Tx||) + ψm+1(||x− y||)
=

(
m+1
m+1

)
Lm+1||x− Tx||+

(
m+1

m

)
Lmψ(||x− Tx||)

+
(
m+1
m−1

)
Lm−1ψ2(||x− Tx||) + · · ·

+
(
m+1

2

)
L2ψm−1(||x− Tx||) +

(
m+1

1

)
Lψm(||x− Tx||)

+ ψm+1(||x− y||)
=

∑m+1
j=1

(
m+1

j

)
Ljψm+1−j(||x− Tx||) + ψm+1(||x− y||).

Remark 1.4. In addition to both (5) and (6), the contractive conditions (8)
and (10) shall also be used to prove some of our results.

2. Main results

We now establish some convergence results:
Theorem 2.1.Let E be an arbitrary Banach space, K a closed convex subset of E
and T : K → K an operator satisfying (5), where ϕ : R+ → R+ is a subadditive
monotone increasing function such that ϕ(0) = 0, ϕ(Lu) ≤ Lϕ(u), u ∈ R+. Let
x0 ∈ K, {xn}∞n=0 be the iterative process defined by (3). Then, {xn}∞n=0 converges
strongly to the fixed point p of T.
Proof: We shall employ Lemma 1.1 and the triangle inequality to establish that
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lim
n→∞

xn = p. However, we shall first establish that T satisfying the given contractive
condition has a unique fixed point. Suppose that there exist p1, p2 ∈ FT , p1 6= p2,
with ||p1 − p2|| > 0. Therefore, we have

0 < ||p1 − p2|| = ||T ip1 − T ip2|| ≤
∑i

j=1

(
i
j

)
ai−jϕj(||p1 − Tp1||) + ai||p1 − p2||

=
∑i

j=1

(
i
j

)
ai−jϕj(0) + ai||p1 − p2||,

from which we have that (1−ai)||p1− p2|| ≤ 0. Since a ∈ [0, 1), then, 1−ai > 0 and
||p1 − p2|| ≤ 0.

Also, since norm is nonnegative we have ||p1 − p2|| = 0. That is, p1 = p2.
Thus, T has a unique fixed point.
We now prove that {xn}∞n=0 converges strongly to a fixed point of T : Then, we

have

||xn+1 − p|| ≤
∑k

i=1 αn,i||T ip− T izn||+ αn,0||xn − p||
≤

∑k
i=1 αn,i

{∑i
j=1

(
i
j

)
ai−jϕj(||p− Tp||) + ai||p− zn||

}
+ αn,0||xn − p||

=
(∑k

i=1 αn,ia
i
)
||p− zn||+ αn,0||xn − p||

=
(∑k

i=1 αn,ia
i
)
||

∑s
r=0 βn,r T

rp−
∑s

r=0 βn,r T
rxn||+ αn,0||xn − p||

≤
(∑k

i=1 αn,ia
i
)
{
∑s

r=1 βn,r||T rp− T rxn||+ βn,0||xn − p||}
+ αn,0||xn − p||

=
(∑k

i=1 αn,ia
i
) ∑s

r=1 βn,r||T rp− T rxn||+
(∑k

i=1 αn,ia
i
)
βn,0||xn − p||

+ αn,0||xn − p||
≤

(∑k
i=1 αn,ia

i
) ∑s

r=1 βn,r[
∑r

j=1

(
r
j

)
ar−jϕj(||p− Tp||) + ar||p− xn|| ]

+
(∑k

i=1 αn,ia
i
)
βn,0||xn − p||+ αn,0||xn − p||

= [(
∑k

i=1 αn,ia
i)(

∑s
r=0 βn,ra

r) + αn,0 ]||xn − p||
≤ Πn

ν=0[ (
∑k

i=1 αν,ia
i)(

∑s
r=0 βν,ra

r) + αν,0 ]||x0 − p|| → 0 as n →∞. (12)

We claim that 0 ≤ (
∑k

i=1 αν,ia
i)(

∑s
r=0 βν,ra

r) + αν,0 < 1 as follows:∑k
i=1 αν,ia

i ≤
∑k

i=1 |αν,ia
i| = |αν,1a|+ |αν,2a

2|+ · · ·+ |αν,ka
k|

= |αν,1||a|+ |αν,2||a|2 + · · ·+ |αν,k||a|k
< |αν,1|+ |αν,2|+ · · ·+ |αν,k| = αν,1 + αν,2 + · · ·+ αν,k

= 1− αν,0, αν,0 ∈ (0, 1).

Similarly, we have that∑s
r=0 βν,ra

r ≤
∑s

r=0 |βν,ra
r| = |βν,0|+ |βν,1a|+ |βν,2a

2|+ · · ·+ |βν,ka
s|

= |βν,0|+ |βν,1||a|+ |βν,2||a|2 + · · ·+ |βν,s||a|s
< |βν,0|+ |βν,1|+ · · ·+ |βν,s| = βν,0 + βν,1 + · · ·+ βν,s = 1.
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Therefore, (
∑k

i=1 αν,ia
i)(

∑s
r=0 βν,ra

r) + αν,0 < 1− αν,0 + αν,0 = 1.
Hence, we obtain from (12) that ||xn+1 − p|| → 0 as n →∞,
i.e. {xn}∞n=0 converges strongly to p.

Theorem 2.2.Let E be an arbitrary Banach space, K a closed convex subset of E
and Ti : K → K, (i = 0, 1, · · · , k), selfoperators satisfying (6), where ϕ : R+ → R+

is a monotone increasing function such that ϕ(0) = 0. Let x0 ∈ K, {xn}∞n=0 be
the iterative process defined by (4). Then, {xn}∞n=0 converges strongly to the unique
common fixed point p of Ti (for each i).

Proof. Let FTi be the set of common fixed points of Ti (i = 0, 1, · · · , k). Suppose
that there exist p1, p2 ∈ FTi , p1 6= p2, with ||p1 − p2|| > 0. Therefore, we have

0 < ||p1 − p2|| = ||Tip1 − Tip2|| ≤ ϕ(||p1 − Tip1||) + ai||p1 − p2||
= ai||p1 − p2||,

from which it follows that we have that p1 = p2. That is, Ti (i = 0, 1, · · · , k) have a
unique common fixed point.

We now prove that {xn}∞n=0 converges strongly to a fixed point of Ti.
Then, we have

||xn+1 − p|| ≤
∑k

i=1 αn,i||Tip− Tizn||+ αn,0||xn − p||
≤

∑k
i=1 αn,i {ϕ(||p− Tip||) + ai||p− zn||}+ αn,0||xn − p||

=
(∑k

i=1 αn,iai

)
||p− zn||+ αn,0||xn − p||

=
(∑k

i=1 αn,iai

)
||

∑s
r=0 βn,rTrp−

∑s
r=0 βn,rTrxn||+ αn,0||xn − p||

≤
(∑k

i=1 αn,iai

)
{
∑s

r=0 βn,r||Trp− Trxn||}+ αn,0||xn − p||

≤
(∑k

i=1 αn,iai

) ∑s
r=0 βn,r[ϕ(||p− Trp||) + ar||p− xn|| ] + αn,0||xn − p||

= [ (
∑k

i=1 αn,iai)(
∑s

r=0 βn,rar) + αn,0 ]||xn − p||
≤ Πn

ν=0[ (
∑k

i=1 αν,iai)(
∑s

r=0 βν,rar) + αν,0 ]||x0 − p|| → 0 as n →∞, (13)

where as in Theorem 2.1, we can show that 0 ≤ (
∑k

i=1 αν,iai)(
∑s

r=0 βν,rar)+αν,0 <
1.

Hence, we obtain from (13) that ||xn+1 − p|| → 0 as n →∞,
i.e. {xn}∞n=0 converges strongly to p.

Theorem 2.3.Let E be an arbitrary Banach space, K a closed convex subset of
E, and T : K → K an operator satisfying

||Tx− Ty|| ≤ ϕ(||x− Tx||) + a||x− y||
1 +M ||x− Tx||

, ∀ x, y ∈ E, a ∈ [0, 1), M ≥ 0, (14)
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where ϕ : R+ → R+ is a monotone increasing function such that ϕ(0) = 0. Let
x0 ∈ K, {xn}∞n=0 defined by (2) be the Ishikawa iterative process with αn, βn ∈
[0, 1] and

∑∞
k=0 αk = ∞. Then, the Ishikawa iterative process converges strongly to

the fixed point of T.

Proof. We shall first establish that T has a unique fixed point by using condition
(14): Suppose not. Then, there exist x∗, y∗ ∈ FT , x

∗ 6= y∗ and ||x∗ − y∗|| > 0.
Therefore, we have

0 < ||x∗ − y∗|| = ||Tx∗ − Ty∗|| ≤ ϕ(||x∗−Tx∗||)+a||x∗−y∗||
1+M ||x∗−Tx∗||

= a||x∗ − y∗||

from which it follows that (1− a)||x∗− y∗|| ≤ 0, which leads to 1− a > 0 ( since a ∈
[0, 1) ), but ||x∗ − y∗|| ≤ 0 (which is a contradiction).

Therefore, since norm is nonnegative, ||x∗ − y∗|| = 0 i.e. x∗ = y∗ = p,
thus proving the uniqueness of the fixed point for T. Hence, FT = {p} .

We now prove that {xn}∞n=0 converges strongly to the fixed point p using condi-
tion (14). Therefore, we have

||xn+1 − p|| ≤ ||(1− αn)xn + αnTzn − (1− αn + αn)p||
≤ (1− αn)||xn − p||+ aαn||p− zn||
≤ [1− αn(1− a)− aαnβn(1− a)]||xn − p||
≤ [1− (1− a)αn]||xn − p||
≤ Πn

k=0[1− (1− a)αk]||x0 − p||
≤ Πn

k=0e
−(1−a)αk ||x0 − p||

= e−[(1−a)
∑n

k=0 αk]||x0 − p|| → 0 as n →∞, (15)

since
∑∞

k=0 αk = ∞ and a ∈ [0, 1). Hence, we obtain from (15) that
||xn+1 − p|| → 0 as n →∞, i.e. {xn}∞n=0 converges strongly to p.

Remark 2.1. If in each of Theorem 2.1 and Theorem 2.2, the iterative processes
defined by

xn+1 =
k∑

i=0

αn,iT
ixn,

k∑
i=0

αn,i = 1, n = 0, 1, 2, · · · , (16)

αn,i ≥ 0, αn,0 6= 0, αn,i ∈ [0, 1], where k is a fixed integer;
and

xn+1 =
k∑

i=0

αn,iTixn,

k∑
i=0

αn,i = 1, n = 0, 1, 2, · · · , (17)

αn,i ≥ 0, αn,0 6= 0, αn,i ∈ [0, 1], where k is a fixed integer and T0 =identity operator;
are employed, then we obtain corresponding results for the one-step processes defined
in (16) and (17). Again, we refer to [13, 14] for these iterative processes too.
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Remark 2.2. Theorem 2.1, Theorem 2.2 and Theorem 2.3 are generalizations
and extensions of both Theorem 1 and Theorem 2 of Berinde [3], Theorem 2 and
Theorem 3 of Kannan [8], Theorem 3 of Kannan [9], Theorem 4 of Rhoades [18] as
well as Theorem 8 of Rhoades [19]. See also Berinde [4] for the results of Rhoades
[18, 19].

We prove the following stability results:

Theorem 2.4.Let (E, ||.||) is a normed linear space and T : E → E a selfmap
of E satisfying (8). Let x0 ∈ E and {xn}∞n=0 defined by (1) be the Kirk’s iterative
process. Suppose that T has a fixed point p. Let ψ : R+ → R+ be a continuous
sublinear comparison function and ϕ : R+ → R+ a sublinear monotone increasing
function such that ϕ(0) = 0 and ψs(ϕr(x)) ≤ ϕr(ψs(x)), ∀ x ∈ R+, r, s ∈ N. Then,
the Kirk iteration process is T -stable.

Proof. Let {yn}∞n=0 ⊂ E and εn = ||yn+1 −
∑k

i=0 αiT
iyn||. Let lim

n→∞
εn = 0.

Then, we shall prove that lim
n→∞

yn = p. By using both Lemma 1.4 and the triangle
inequality we have that:

||yn+1 − p|| ≤ ||yn+1 −
∑k

i=0 αiT
iyn||+ ||

∑k
i=0 αiT

iyn − p||
= εn + ||

∑k
i=0 αiT

iyn −
∑k

i=0 αiT
ip||

= εn + ||
∑k

i=0 αi(T iyn − T ip)||
≤

∑k
i=0 αi||T ip− T iyn||+ εn

= α0||p− yn||+
∑k

i=1 αi||T ip− T iyn||+ εn
≤

∑k
i=0 αiψ

i(||yn − p||) + εn, (18)

where ψi−j(0) = ψ(0) = 0 and ϕj(0) = ϕ(0) = 0.
We have by Lemma 1.2 that

∑k
i=0 αiψ

i(||yn − p||) is a comparison function.
Therefore, using Lemma 1.3 in (18) yields lim

n→∞
||yn − p|| = 0, that is, lim

n→∞
yn = p.

Conversely, let lim
n→∞

yn = p. Then, by Lemma 1.4 and the triangle inequality, we
have

εn = ||yn+1 −
∑k

i=0 αiT
iyn||

≤ ||yn+1 − p||+ ||p−
∑k

i=0 αiT
iyn||

= ||yn+1 − p||+ ||
∑k

i=0 αiT
ip−

∑k
i=0 αiT

iyn||
= ||yn+1 − p||+ ||

∑k
i=0 αi(T ip− T iyn)||

≤ ||yn+1 − p||+
∑k

i=0 αi||T ip− T iyn||
= ||yn+1 − p||+ α0||p− yn||+

∑k
i=1 αi||T ip− T iyn||

≤ ||yn+1 − p||+
∑k

i=0 αiψ
i(||yn − p||) → 0 as n →∞.

Theorem 2.5.Let (E, ||.||) is a normed linear space and T : E → E a selfmap
of E satisfying (10). Let x0 ∈ E and {xn}∞n=0 defined by (1) be the Kirk’s iterative
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process. Suppose that T has a fixed point p. Let ψ : R+ → R+ be a continuous
sublinear comparison function and ϕ : R+ → R+ a sublinear monotone increasing
function such that ϕ(0) = 0. Then, the Kirk iteration process is T -stable.

Proof. The proof of this result is similar to that of Theorem 2.4 except for the
application of Lemma 1.2, Lemma 1.3 and Lemma 1.5.

Remark 2.3. Our stability results generalize some of the results of Rhoades
[20, 21]. In particular, both Theorem 2.4 and Theorem 2.5 are generalizations of
the results of Olatinwo [12].
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