PERMUTATIONS OF RATIONAL RESIDUES

MARK BUDDEN, SEAN EASTMAN, SCOTT KING, AND ALEXANDER MOISANT

ABSTRACT. In 1872, Zolotarev gave a new proof of the law of quadratic reciprocity by equating the value of the Legendre symbol $\left(\frac{a}{p}\right)$ with the signature of the permutation

$$i \pmod{p} \mapsto ia \pmod{p}$$

on $(\mathbb{Z}/p\mathbb{Z})^{\times}$. In this paper, we show how Zolotarev's approach may be extended to proving higher powered rational reciprocity laws.

2000 Mathematics Subject Classification: Primary 11A15, 11R18; Secondary 11R32.

1. Introduction

Recent estimates (eg., see [6]) claim that there are about 224 different proofs of the law of quadratic reciprocity. One of the gems on the list includes a proof that follows from Zolotarev's 1872 observation that the permutation

$$i \pmod{p} \mapsto ia \pmod{p}$$

on the nonzero congruence class representatives of $\mathbb{Z}/p\mathbb{Z}$ is even if and only if a is a quadratic residue modulo p. Duke and Hopkins [3] recently revived Zolotarev's work, extending it to define a quadratic symbol for all finite groups and proving a corresponding quadratic reciprocity law.

In this paper, we extend Zolotarev's equivalent description of the Legendre symbol to 2^t th rational residues modulo a prime $p \equiv 1 \pmod{2^t}$. Our extension is not new as it is a special case of Theorem 6 of Lehmer's paper [4]. However, the proof we give is self-contained and does not make use of Lehmer's generalization of Gauss' Lemma (Theorem 3 of [4]). Using this extension, we then provide a new proof of the recent 2nth reciprocity law proved by Budden, Collins, Lea, and Savioli [1], in the special case where n is a power of 2. Many of the known rational reciprocity laws follow from this result by choosing appropriate primitive elements for the subfields of $\mathbb{Q}(\zeta_n)$.

2. Rational Residues Modulo p

In this section, we prove an analogue of Zolotarev's description of the Legendre symbol for the 2^t th rational residue symbol. First, we establish the main definitions and notations. Letting p be an odd prime, we will be working in the finite field $\mathbb{Z}/p\mathbb{Z}$, and by abuse of notation, we will frequently write the least residue a in place of the left coset $a+p\mathbb{Z}$. The notation ($\frac{\cdot}{\cdot}$) will be used to denote the Legendre symbol. We can generalize the Legendre symbol to higher power residues in two ways: the power residue symbol and the rational residue symbol.

To define the power residue symbol, let k be an algebraic number field and $n \geq 1$ an integer. If \mathfrak{p} is an ideal in the ring of integers \mathcal{O}_k that is relatively prime to n, then for every $\alpha \in \mathcal{O}_k - \mathfrak{p}$, define the nth power residue symbol by

$$\left(\frac{\alpha}{\mathfrak{p}}\right)_n \equiv \alpha^{(N\mathfrak{p}-1)/n} \pmod{\mathfrak{p}}.$$

We will only define the rational residue symbol in the case of even powers. If we assume that $p \equiv 1 \pmod{2n}$, $a \in \mathbb{Z}$ is relatively prime to p, and

$$a^{(p-1)/n} \equiv 1 \pmod{p},$$

then the 2nth rational residue symbol is given by

$$\left(\frac{a}{p}\right)_{2n} \equiv a^{(p-1)/2n} \pmod{p}.$$

This symbol agrees with the power residue symbol $\left(\frac{a}{\mathfrak{p}}\right)_{2n}$, where \mathfrak{p} is any prime ideal above $p\mathbb{Z}$ in $\mathcal{O}_{\mathbb{Q}(\zeta_{2n})} = \mathbb{Z}[\zeta_{2n}]$. We denote the subgroup of 2nth rational residues in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ by $(\mathbb{Z}/p\mathbb{Z})^{\times 2n}$. The following theorem describes the relationship between the 2^t th rational residue symbol and the corresponding permutation on $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

Theorem 1. Let $p \equiv 1 \pmod{2^t}$ be a prime for $t \geq 1$ and assume that $\left(\frac{a}{p}\right)_{2^{t-1}} = 1$ for $a \in \mathbb{Z}$ relatively prime to p. Then

$$\left(\frac{a}{p}\right)_{2^t} = 1 \iff \phi_a|_{(\mathbb{Z}/p\mathbb{Z})^{\times 2^{t-1}}} \text{ is even,}$$

where ϕ_a is the permutation on $(\mathbb{Z}/p\mathbb{Z})^{\times}$ given by

$$i \pmod{p} \mapsto ia \pmod{p}$$
.

Proof. In the case t=1, we set $\left(\frac{a}{p}\right)_1=1$ by convention (since every element in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a first power). Then Zolotarev [7] proved

$$\left(\frac{a}{p}\right) = 1 \iff \phi_a \text{ is even.}$$

We proceed by induction on t. Suppose the theorem holds for the (t-1)th case and that $\left(\frac{a}{p}\right)_{2^{t-1}} = 1$. Let f denote the order of a in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ and write $g = \frac{p-1}{f}$. If \mathfrak{p} is any prime ideal above $p\mathbb{Z}$ in $\mathcal{O}_{\mathbb{Q}(\zeta_{2^{t-1}})}$, then the sets

$$B_i := \left\{ b \in (\mathbb{Z}/p\mathbb{Z})^{\times} \; \left| \; \left(\frac{b}{\mathfrak{p}} \right)_{2^{t-1}} = \zeta_{2^{t-1}}^i \right. \right\}$$

each have cardinality $\frac{p-1}{2t-1}$ and

$$\left(\frac{\phi_a(b)}{\mathfrak{p}}\right)_{2^{t-1}} = \left(\frac{ba}{\mathfrak{p}}\right)_{2^{t-1}} = \left(\frac{b}{\mathfrak{p}}\right)_{2^{t-1}} \left(\frac{a}{\mathfrak{p}}\right)_{2^{t-1}} = \left(\frac{b}{\mathfrak{p}}\right)_{2^{t-1}}$$

implies that ϕ_a preserves the 2^{t-1} th rational residue classes modulo p. We also note that

$$\phi_a^f(b) \equiv ba^f \equiv b \pmod{p},$$

with f minimal, shows that ϕ_a is a product of g cycles of length f and that ϕ_a affects each B_i in exactly the same way. It follows that

$$\left(\frac{a}{p}\right)_{2^t} \equiv a^{(p-1)/2^t} \equiv 1 \pmod{p} \iff f \text{ divides } \frac{p-1}{2^t} = \frac{fg}{2^t}$$

$$\iff g \equiv 0 \pmod{2^t}$$

$$\iff \phi_a|_{(\mathbb{Z}/p\mathbb{Z})^{\times 2^{t-1}}} \text{ is even,}$$

completing the proof of Theorem 1.

3. Reciprocity Laws

Utilizing our new description of the rational residue symbol, we provide a new proof of the 2nth reciprocity law of Budden, Collins, Lea, and Savioli [1] in the special case where n is a power of 2. From this result, all of the known rational quartic reciprocity laws follow (cf. [5]) by choosing appropriate primitive elements for K_4 , the unique quartic subfield of $\mathbb{Q}(\zeta_p)$ (assuming $p \equiv 1 \pmod{4}$). When $p \equiv 1 \pmod{2^t}$, the 2^t th generalization of Scholz's Reciprocity Law proved in [2]

also follows from the following theorem by choosing an appropriate primitive element for K_{2^t} , the unique subfield of $\mathbb{Q}(\zeta_p)$ of dimension 2^t over \mathbb{Q} .

Our setup is similar to that of Duke and Hopkins [3] and may shed some light on the potential formulation of a rational 2^t th reciprocity law in any finite group. The additive group $\mathbb{Z}/p\mathbb{Z}$ is abelian, and thus has p irreducible characters

$$\chi_i: \mathbb{Z}/p\mathbb{Z} \longrightarrow \mathbb{C}^{\times}$$

given by $\chi_i(a) = \zeta_p^{ia}$, for $0 \le i < p$. The Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is given by

$$\left\{\sigma_k: \mathbb{Q}(\zeta_p) \longrightarrow \mathbb{Q}(\zeta_p) \mid \sigma_k(\zeta_p) = \zeta_p^k\right\} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}.$$

Assuming that $p \equiv 1 \pmod{2^t}$, the fundamental theorem of Galois theory implies that

$$\operatorname{Gal}(\mathbb{Q}(\zeta_p)/K_{2^t}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times 2^t}$$
.

The action of any automorphism σ_k may be identified with the permutation ϕ_k via

$$\sigma_k(\chi_i(a)) = \sigma_k(\zeta_p^{ia}) = \zeta_p^{iak} = \chi_i(\phi_k(a)).$$

Theorem 2. Let $p \equiv q \equiv 1 \pmod{2^t}$ be distinct primes such that

$$\left(\frac{p}{q}\right)_{2^{t-1}} = \left(\frac{q}{p}\right)_{2^{t-1}} = 1.$$

If $\beta \in \mathcal{O}_{K_{2^{t-1}}}$ such that $K_{2^t} = \mathbb{Q}(\sqrt{\beta})$, then

$$\left(\frac{q}{p}\right)_{2^t} = \left(\frac{\beta}{\mathfrak{q}}\right)_2,$$

where \mathfrak{q} is any prime ideal above $q\mathbb{Z}$ in $\mathcal{O}_{K_{2t-1}}$.

Proof. Let a_1, a_2, \ldots, a_k denote the 2^{t-1} th residues of p, with $k = \frac{p-1}{2^{t-1}}$, and consider the matrix

$$R = \begin{pmatrix} \chi_1(a_1) & \cdots & \chi_1(a_k) \\ \vdots & \ddots & \vdots \\ \chi_k(a_1) & \cdots & \chi_k(a_k) \end{pmatrix}.$$

For any $a \in (\mathbb{Z}/p\mathbb{Z})^{\times 2^{t-1}}$, the automorphism σ_a maps $\chi_i(a_j) \mapsto \chi_i(\phi_a(a_j))$ and hence, permutes the columns of R. From Theorem 1 and the basic properties of determinants, it follows that

$$\sigma_a(det(R)) = \left(\frac{a}{p}\right)_{2^t} det(R).$$

When the automorphism $\sigma_a \in \operatorname{Gal}(\mathbb{Q}(\zeta_p)/K_{2^{t-1}})$ is restricted to K_{2^t} , it agrees with either the identity or conjugation $\sqrt{\beta} \mapsto -\sqrt{\beta}$, depending on whether or not a is a 2^t th residue of p. Hence, it follows that

$$\sigma_a \left(\sqrt{\beta} \ det(R) \right) = \sqrt{\beta} \ det(R),$$
 (1)

so that $\sqrt{\beta} \ det(R) \in K_{2^{t-1}}$. Now suppose that \mathfrak{q} is any prime ideal above $q\mathbb{Z}$ in $K_{2^{t-1}}$ and consider the congruence

$$\sigma_{q}\left(\sqrt{\beta} \ det(R)\right) \equiv \left(\sqrt{\beta}\right)^{q} \left(\frac{q}{p}\right)_{2^{t}} det(R) \pmod{\mathfrak{q}}$$

$$\equiv \beta^{(q-1)/2} \left(\frac{q}{p}\right)_{2^{t}} \sqrt{\beta} \ det(R) \pmod{\mathfrak{q}}$$

$$\equiv \left(\frac{\beta}{\mathfrak{q}}\right)_{2} \left(\frac{q}{p}\right)_{2^{t}} \sqrt{\beta} \ det(R) \pmod{\mathfrak{q}}. \tag{2}$$

Comparing (1) and (2) when a = q, we obtain

$$\sqrt{\beta} \ det(R) \equiv \left(\frac{\beta}{\mathfrak{q}}\right)_2 \left(\frac{q}{p}\right)_{2^t} \sqrt{\beta} \ det(R) \pmod{\mathfrak{q}}. \tag{3}$$

Since the matrix R is of Vandermonde-type, its determinant is given by

$$\begin{split} \det(R) &= \prod_{1 \leq m \leq k} \zeta_p^{a_m} \cdot \prod_{1 \leq i < j \leq k} (\zeta_p^{a_j} - \zeta_p^{a_i}) \\ &= \prod_{1 \leq m \leq k} \zeta_p^{a_m} \cdot \prod_{1 \leq i < j \leq k} \zeta_p^{a_j} (1 - \zeta_p^{a_i - a_j}), \end{split}$$

which is a product of units and factors that divide p in $\mathbb{Q}(\zeta_p)$. Also, the principal ideal generated by β in $\mathcal{O}_{K_2^{t-1}}$ becomes a square when lifted to K_{2^t} , so β must be relatively prime to q. Thus, $\sqrt{\beta} \det(R)$ is not in the ideal \mathfrak{q} and can be canceled from both sides of the congruence (3). Since the residue symbols in (3) only take on the values ± 1 , we may drop the congruence to obtain the desired result.

Note that Theorem 2 is independent of the choice of prime ideal \mathfrak{q} . Since we assume $\left(\frac{p}{q}\right)_{2^{t-1}}=1,\,q\mathbb{Z}$ splits completely in $K_{2^{t-1}}$ giving the isomorphism

$$\mathcal{O}_{K_{2^{t-1}}}/\mathfrak{q}\cong \mathbb{Z}/q\mathbb{Z}.$$

Thus, we can identify $\left(\frac{\beta}{\mathfrak{q}}\right)_2$ with a Legendre symbol $\left(\frac{b}{q}\right)$ via

$$b \equiv \beta \pmod{\mathfrak{q}}$$
,

with $b \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.

Our approach to proving this theorem using a partial character table (matrix) is similar to the method employed by Duke and Hopkins [3] in the proof of their quadratic reciprocity law in finite groups. This demonstrates the potential for extending their results to 2^t th rational residues.

REFERENCES

- [1] M. Budden, A. Collins, K. Lea, and S. Savioli, *Rational Residuacity of Primes*, Involve, 3, (2010), 249-257.
- [2] M. Budden, R.J Eisenmenger, and J. Kish, A Generalization of Scholz's Reciprocity Law, J. Théor. Nombres Bordeaux, 19, (2007), 583-594.
- [3] W. Duke and K. Hopkins, *Quadratic Reciprocity in a Finite Group*, Amer. Math. Monthly, 112, (2005), 251-256.
- [4] E. Lehmer, *Generalizations of Gauss' Lemma*, Number Theory and Algebra, Academic Press, New York, (1977), 187-194.
- [5] F. Lemmermeyer, Rational Quartic Reciprocity, Acta Arith., 67, (1994), 387-390.
- [6] F. Lemmermeyer, *Reciprocity Laws*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.
- [7] G. Zolotarev, Nouvelle démonstration de la loi de réciprocité de Legendre, Nouvelle Ann. Math., 11, No. 2, (1872), 354-362.

Mark Budden

Mathematics and Computer Science Department Western Carolina University Cullowhee, NC 28723 email: mrbudden@email.wcu.edu

Sean Eastman
Department of Mathematics

Armstrong Atlantic State University 11935 Abercorn St. Savannah, GA 31419 email: Sean. Eastman@armstrong.edu

Scott King 4345 Driggers Road Waycross, GA 31503 email:scottjacksonking@gmail.com

Alexander Moisant Department of Mathematics Armstrong Atlantic State University 11935 Abercorn St. Savannah, GA 31419 email: am1677@students.armstrong.edu