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ON SOME STRONG ZWEIER CONVERGENT SEQUENCE SPACES
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Abstract. In this paper we define three classes of new sequence spaces. We
give some relations related to these sequence spaces. We also introduce the concept
of Sλ

Z−statistically convergence and obtain some inclusion relations related to these
new sequence spaces.
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1. Introduction

Let l∞, c and co be the linear spaces of bounded, convergent and null sequences
with complex terms, respectively. Note that l∞, c and co are Banach spaces with
the sup-norm

‖x‖∞ = sup
k
|xk| .

A sequence space X with a linear topology is called a K-space if each of maps
pi : X → C defined by pi (x) = xi is continuous for all i ∈ N. A K-space is called
FK-space if X is a complete linear metric space and a BK-space is a normed FK-
space.

Let Λ denote the set of all non-decreasing sequences λ = (λn) of positive numbers
tending to infinity and λn+1 ≤ λn + 1, λ1 = 1. The generalized de Vallee-Pousin
mean is defined by

tn (x) =
1
λn

∑
k∈In

xk

where In = [n− λn + 1, n] . A sequence x = (xk) is said to be (V, λ)-summable to a
number l [1] if tn (x) → l as n →∞.

[V, λ]o =

x = (xk) : lim
n

1
λn

∑
k∈In

|xk| = 0
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[V, λ] =

x = (xk) : lim
n

1
λn

∑
k∈In

|xk − l| = 0, for some l


[V, λ]∞ =

x = (xk) : sup
n

1
λn

∑
k∈In

|xk| < ∞

 .

The space [V, λ] is a BK-space with the norm

‖x‖[V,λ] = sup
n

1
λn

∑
k∈In

|xk| . (1.1)

The space [V, λ]o is also BK-space with the same norm.
If λn = n, then (V, λ)-summability and strongly (V, λ)-summability reduce to

(C, 1)−summability and [C, 1]−summability, respectively.
In [2] , Şengönül introduced sequence spaces Z and Zo as the set of all sequences

such that Z-transforms of them are in the spaces c and co, respectively, i.e.,

Z = {x = (xk) : Zx ∈ c} and Zo = {x = (xk) : Zx ∈ co}

where Z = (znk)
∞
n,k=0 denotes by the matrix

znk =
{

1
2 , k ≤ n ≤ k + 1
0, otherwise

(n, k ∈ N).

This matrix is called Zweier matrix. The Z = (znk)
∞
n,k=0 matrix is well-known as a

regular matrix [3] .
The purpose of this paper is to introduce and study the concept of λ−strong

Zweier convergence and λ−statistical Zweier convergence.

2. λ−strong Zweier convergence

We introduce the sequence spaces [VZ , λ]o , [VZ , λ] and [VZ , λ]∞ as the set of all
sequences such that Z-transforms are in [V, λ]o , [V, λ] and [V, λ]∞ , respectively, that
is

[V, λ]oZ =

x = (xk) : lim
n

1
λn

∑
k∈In

∣∣∣∣12 (xk + xk−1)
∣∣∣∣ = 0

 ,
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[V, λ]Z =

x = (xk) : lim
n

1
λn

∑
k∈In

∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ = 0, for some l


and

[V, λ]∞Z =

x = (xk) : sup
n

1
λn

∑
k∈In

∣∣∣∣12 (xk + xk−1)
∣∣∣∣ < ∞


Define the sequence y = (yk) which will be frequently used throughout the paper,

as Z-transform of a sequence x = (xk) , i.e.,

yk =
1
2

(xk + xk−1) (k ∈ N) . (2.1)

Theorem 2.1. The sequence spaces [VZ , λ]o , [VZ , λ] and [VZ , λ]∞ are linear
spaces over the complex field C which are the BK-spaces with the norm

‖x‖[V,λ]oZ
= ‖x‖[V,λ]Z

= ‖x‖[V,λ]∞Z
= ‖Zx‖[V,λ] .

Proof. The first part of the theorem is a routine verification and so we omit it.
Since the sequence spaces [V, λ]o and [V, λ] are BK-spaces with respect to the norm
defined (1.1) and the matrix Z = (znk)

∞
n,k=0 is normal, i.e., znk 6= 0 for 0 ≤ k ≤ n

and znk = 0 for k > n for all n, k ∈ N and also from Theorem 4.3.2 of Wilansky [4]
gives the fact that [VZ , λ]o , [VZ , λ] and [VZ , λ]∞ are the BK-spaces.

Theorem 2.2. The sequence spaces [VZ , λ]o , [VZ , λ] and [VZ , λ]∞ are linearly
isomorphic to the sequence spaces [V, λ]o , [V, λ] and [V, λ]∞ , respectively, i.e., [V, λ]o ∼=
[VZ , λ]o , [V, λ] ∼= [VZ , λ] and [V, λ]∞ ∼= [VZ , λ]∞ .

Proof. We consider only the case [V, λ]o ∼= [VZ , λ]o . We should show the ex-
istence of a linear bijection between the spaces [V, λ]o and [VZ , λ]o . Consider the
transformation Z define, with the notation (2.1), from [VZ , λ]o to [V, λ]o by

Z : [VZ , λ]o → [V, λ]o
x → Zx = y

where the sequence y = (yk) is given by (1.1). The linearity of transformation Z is
clear. Further, it is trivial that x = 0 whenever Zx = 0 and hence Z is injective.
Let y = (yk) ∈ [V, λ]o and the sequence x = (xk) by

xk = 2
k∑

i=0

(−1)i−k yi (i ∈ N) .
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Then

‖x‖[V,λ]oZ
=

1
λn

∑
k∈In

∣∣∣∣12 (xk + xk−1)
∣∣∣∣

=
1
λn

∑
k∈In

∣∣∣∣∣12
(

2
k∑

i=0

(−1)i−k yi + 2
k−1∑
i=0

(−1)(i−1)−k yi

)∣∣∣∣∣
=

1
λn

∑
k∈In

|yk|

which says us that x = (xk) ∈ [VZ , λ]o . Additionally, we observe that

‖x‖[VZ ,λ]o
= sup

n

1
λn

∑
k∈In

∣∣∣∣12 (xk + xk−1)
∣∣∣∣

= sup
n

1
λn

∑
k∈In

∣∣∣∣∣12
(

2
k∑

i=0

(−1)i−k yi + 2
k∑

i=0

(−1)(i−1)−k yi

)∣∣∣∣∣
= sup

n

1
λn

∑
k∈In

|yk| = ‖y‖[V,λ]o
.

Thus, we have x = (xk) ∈ [VZ , λ]o and consequently Z is surjective. Hence, Z is
linear bijection which therefore says us that the sequence spaces [VZ , λ]o , [VZ , λ] and
[VZ , λ]∞ are linearly isomorphic to the sequence spaces [V, λ]o , [V, λ] and [V, λ]∞ ,
respectively. This completes the proof.

There is a relation between the sequence space [V, λ] and the sequence space |σ1|
of strong Cesaro summable sequences defined by

|σ1| =

{
x = (xk) : lim

n

1
n

n∑
k=1

|xk − l| = 0, for some l

}
.

Clearly, in the special case λn = n for all n ∈ N, we have [V, λ] = |σ1| .
Also, we see that, there are strong connection between the sequence space [VZ , λ]

and the sequence space [wZ , λ] , which is defined by

[wZ , λ] =

{
x = (xk) : lim

n

1
n

n∑
k=1

∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ = 0, for some l

}
.

Clearly, in the special case λn = n for all n ∈ N, we have [VZ , λ] = [wZ , λ] .

12



Y.F. Karababa and A. Esi - On some strong Zweier convergent sequence spaces

3. λ-statistical Zweier convergence

In this section we introduce the concept of Sλ
Z-statistical convergence and give

some inclusion relations related to this sequence space.
The notion on statistical convergence was introduced by Fast [5] and studied by

various authors (see [6] , [7] , [8] , [9] , [10− 11]) .

Definition 3.1.[7] A sequence x = (xk) is said to be λ-statistically convergent
to the number l if for ε > 0,

lim
n

1
λn
|{k ∈ In : |xk − l| ≥ ε}| = 0.

In this case we write Sλ − lim x = l or xk → l
(
Sλ
)

and
Sλ =

{
x = (xk) : for some l, Sλ − lim x = l

}
.

Definition 3.2. A sequence x = (xk) is said to be Sλ
Z-statistically convergent to

the number l if for ε > 0,

lim
n

1
λn

∣∣∣∣{k ∈ In :
∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0.

In this case we write Sλ
Z − lim x = l or xk → l

(
Sλ

Z

)
and

Sλ
Z =

{
x = (xk) : for some l, Sλ

Z − lim x = l
}

.

In the case λn = n we shall write SZ instead of Sλ
Z .

Theorem 3.1. Let λ = (λn) ∈ Λ. xk → l ([VZ , λ]) then xk → l
(
Sλ

Z

)
.

Proof. Let x = (xk) ∈ [VZ , λ] . Then

1
λn

∑
k∈In

∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ =
1
λn

∑
k∈In

| 12 (xk+xk−1)−l|≥ε

∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣+ 1
λn

∑
k∈In

| 12 (xk+xk−1)−l|<ε

∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣
≥ 1

λn

∑
k∈In

| 12 (xk+xk−1)−l|≥ε

∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣
≥ 1

λn

∑
k∈In

ε ≥ ε

λn

∣∣∣∣{k ∈ In :
∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ ≥ ε

}∣∣∣∣ .
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It follows that xk → l
(
Sλ

Z

)
. This completes the proof.

Theorem 3.2. Let λ = (λn) ∈ Λ. If x = (xk) ∈ l∞ and xk → l
(
Sλ

Z

)
, then

xk → l ([VZ , λ]) .

Proof. Suppose that x = (xk) ∈ l∞ and xk → l
(
Sλ

Z

)
. Since sup

∣∣1
2 (xk + xk−1)

∣∣ <
∞, there is a constant A > 0 such that

∣∣1
2 (xk + xk−1)

∣∣ < A for all k ∈ N. Therefore
we have, for ε > 0

1
λn

∑
k∈In

∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣
=

1
λn

∑
k∈In

| 12 (xk+xk−1)−l|≥ε

∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣+ 1
λn

∑
k∈In

| 12 (xk+xk−1)−l|<ε

∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣
≤ A

λn

∣∣∣∣{k ∈ In :
∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ ≥ ε

}∣∣∣∣+ 1
λn

∑
k∈In

ε

=
A

λn

∣∣∣∣{k ∈ In :
∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ ≥ ε

}∣∣∣∣+ ε.

Taking limit as ε → 0, the desired result follows.

Corollary 3.3. Let λ = (λn) ∈ Λ. Then l∞ ∩ [VZ , λ] = l∞ ∩ Sλ
Z .

Proof. It follows from Theorem 3.1. and Theorem 3.2.
Theorem 3.4. Let λ = (λn) ∈ Λ. If limn inf λn

n > 0, then xk → l (SZ) implies
xk → l

(
Sλ

Z

)
.

Proof. Given ε > 0, we have∣∣∣∣{k ≤ n :
∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ ≥ ε

}∣∣∣∣ ⊃ ∣∣∣∣{k ∈ In :
∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ ≥ ε

}∣∣∣∣ .
Therefore

1
n

∣∣∣∣{k ≤ n :
∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ 1
n

∣∣∣∣{k ∈ In :
∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ ≥ ε

}∣∣∣∣
≥ λn

n
.

1
λn

∣∣∣∣{k ∈ In :
∣∣∣∣12 (xk + xk−1)− l

∣∣∣∣ ≥ ε

}∣∣∣∣ .
Taking limit as n → ∞ and using limn inf λn

n > 0, we get that xk → l
(
Sλ

Z

)
. This

completes the proof.
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