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NEW TRENDS IN LATTICE-BASED CRYPTOGRAPHY

Adela Mihăţă and Emil Simion

Abstract. Lattice-based cryptography has undergone rapid development in re-
cent years and is very attractive due to the low asymptotic complexity and potential
resistence to quantum computing attacks. This paper is intended to be a survey of
the lattice problems which underlay many recent cryptographic schems, offering also
some information on the computational complexity aspects of lattice problems and
their use in cryptography.
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1. Introduction

A lattice is the set of integer linear combinations of n linearly independent vec-
tors b1, . . . ,bn. Despite their aprarent simplicity, lattices hide a rich combinatorial
structure which has attracted the attention of great mathematicians over the last
two centuries. As a result, lattices have found many applications in mathematics
and computer science, ranging from number theory to combinatorial optimization
and cryptography.

A lattice may have several bases, some of which are better than the others.
The goal of lattice reduction algorithms is to find good bases, i.e bases which short
enough vectors which are almost orthogonal.

Traditionally, in cryptography, lattices have been used mostly as an algorithmic
tool for cryptanalysis. Since the development of the LLL basis reduction algorithm
of Lenstra, Lenstra and Lovász [11] in the early 80’s, lattices have been used to
attack a wide range of public key cryptosystems (knapsack based cryptographic sys-
tems and special cases of RSA). It seems [17] that the basis reduction algorithms
which were used succesfully in breaking various cryptographic schems, have trans-
formed the lattice reduction tehniques in one of the most popular tools in public-key
cryptanalysis.

In the late 90’s, the computational complexity of lattice problems attracted re-
newed attention, stimulated by Ajtai’s surprising discovery [1] of a connection be-
tween the worst-case and average case complexity of certain lattice approximation
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problems. He suggested a completely different way of using lattices in cryptography
by showing how to use computationally intractable lattice problems to build cryp-
tosystems which are impossible to break. Namely, design cryptographic functions
that are as hard to break as it is to solve a computationally hard lattice problem.
Cryptography requires problems that are hard to solve on the average, so that when
a cryptographic key is chosen at random, the corresponding function is hard to
break with high probability. Ajtai’s discovery shows that hard-on-average problems
can be obtained from the waeker assumption that lattice problems are intractable
in the worst case. To date, all known cryptographis functions rely on average-case
complexity assumptions. This is why lattice problems are exceptional: they provide
provably secure cryptographic functions from worst-case complexity assumptions.

The discovery of Ajtai attracted interest within the theoretical cryptography and
computational complexity and stimulated substantial research efforts in this area.
Following the discovery of Ajtai, research has progressed in the folowing directions:

• Determining weaker and weaker worst-case assumptions on the complexity of
lattice problems that still allow to construct average-case hardness;

• Improving the efficiency of lattice based functions both in terms of key size
and computation time;

• Building more complex cryptographic primitives than simple one-way func-
tions, like public key encryption schemes.

Besides Ajtai’s discovery, the highly importance use of lattices in cryptography
also relays in some other non-negligeable reasons:

• Lattice related constructions and cryptographic functions are efficient and easy
to implement, typically involving only simple arithmetic operations on small
numbers; this can be advantageous in certain practical scenarios when encryp-
tion is performed by a low-cost device;

• Currently, we do not have too many alternatives to traditional number-theoretic
based cryptography such as RSA. Such alternatives will be needed in case an
efficient algorithm for factoring integers is ever found. Efficient quantum algo-
rithms for factoring integers and computing discrete logarithms already exist
[21]. Although large-scale quantum computers are not expected to exist for at
least a decade, this fact should already be regarded as a warning.
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2. Mathematical background on lattices

Definition 1. Let B = {b1, . . . , bn} be linearly independent vector in Rm. The
lattice generated by B is the set

L(B) = {
n∑

i=1

xi · bi|xi ∈ Z}.

The set of vectors B is called a basis for the lattice. All the bases have the same
number dim(L) of elements, called the dimension of the lattice. Any lattice admits
multiple bases, and this fact is at the heart of many cryptographic applications.
Some of the bases are ”better” than the others. Usually, we are interested in bases
with shorter vectors which are almost ortogonal. In the lattice from the below
picture, there is a lattice with two bases, one of which is better than the other. In

this paper, we will use the Euclidean norm ||x|| =
√∑

i x
2
i , but all problems can be

defined with respect to any norm.
The definition of lattice can be also stated another way: a lattice is a discrete

additive subgroup of Rm. Therefore, not every subgroup of Rm is a lattice. The
simplest example of lattice is the set of all n-dimensional vectors with integer entries.

The minimum distance of a lattice L denoted λ1, is the minimum distance be-
tween any two distinct lattice points, and equals the length of the shortest nonzero
lattice vector:

λ1 = min{||x− y|| : x 6= y ∈ L} = min{||x|| : x ∈ L\{0}}.

The main computational problems associated with lattices are:

• Shortest Vector Problem (SVP): Find the shortest nonzero vector in L, i.e.
find 0 6= v ∈ L such that ||v|| is minimized;

• Closest Vector Problem (CVP): Given a vector w which is not in L, find the
vector v ∈ L closest to w, i.e., find v ∈ L such that ||v − w|| is minimized;

• Shortest Independent Vector Problem (SIVP): Find n linearly independent
vectors with maximum length smaller than the maximum length of any base
of the lattice, i.e. find v1, · · · , vn so that max||vi|| ≤ maxB||bi|| for any base
B = {b1, · · · , bn} of the lattice.

In lattice-based cryptography, one usually considers the approximation variant
of these problems, which are denoted by an additional subscript γ indicating the
approximation factor. For instance, in SV Pγ the goal is to find a vector whose
norm is at most γ times larger than that of the shortest nonzero vector.
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These problems appear to be very difficult as the dimension n becomes large.
Solutions, or even partial solutions to these problems also turn out to have surpris-
ingly many applications in a number of different fields. The CVP is known to be
NP-hard and SVP is NP-hard under a certain ”randomized reduction” hypothesis.

Also, SVP is NP-hard when the norm or distance used is the l∞ norm. In
practice, a CVP can often be reduced to a SVP and is thought of as being ”a little
bit harder” than SVP. Reduction of CVP to SVP is used in [9] to prove that SVP is
hard in Ajtai’s probabilistic sense. In a real world scenario, a cryptosystem based on
an NP-hard or NP-complete problem may use a particular subclass of that problem
to achieve efficiency. It is possible that this subclass of problems could be easier to
solve than the general problem.

3. Special classes of lattices and problems

Part of the difficulty of SVP comes from the fact that a lattice has many different
bases and that usually, the given lattice basis contains very long vectors, much longer
than the shortest nonzero vector. The well-known polynomial time algorithm of
Lenstra, Lenstra, and Lovász (LLL) from 1982 achieves an approximation factor
of 2O(n) where n is the dimension of the lattice, while running in polynomial time.
The algorithm works by applying succesive elementary transformations to the input
basis in order to make its vectors shorter and more orthogonal. Currently, the best
polynomial algorithm for lattice reduction achieves only a small improvement of the
approximation factor to 2O(n log log n/ log n). We should also mention that for an exact
solution to SVP (or even just an approximation to within poly(n) factors), the best
algorithm has a running time of 2O(n).

In fact, there are two main techniques for lattice problems. The first, known as
lattice reduction, started with the LLL algorithm mentioned above. A second tech-
nique is the enumeration technique which, in its simplest form, implies exhausitve
search for the best integer combination of the basis vectors. The running time of
this algorithm highly depends on the quality of the input basis. That’s why this
algorithm is applied to a basis only after it has been reduced, but not directly on
the given basis. In a very recent work [4] the fundamental enumeration algorithms
are exponentially speeded up, both in theory and practice, using a method called
extreme pruning.

The complexity of lattice problems in the range of polynomial approximation
factors is of particular interest. For example, the seminal work of Ajtai is based on
the hardness of approximation in this region.
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3.1. Lattices with special algebraic structure

The work of Micciancio [15] opened the door to the use of cyclic lattices as a
new source of hardness assumptions, and motivates their study from a computational
perspective.

Definition 2. For any vector x = {x1, · · · ,xn} define the cyclic rotation rot(x) =
{xn, x1, · · · , xn−1}. A lattice L(B) is cyclic if it is closed under the rotation opera-
tion, i.e. if x ∈ L(B) implies rot(x) ∈ L(B).

Very little is known about the computational complexity of lattice problems on
cyclic lattices. From an algorithmic point of view, it is not clear how to exploit the
cyclic structure of the lattice in lattice basis reduction algorithms. There are some
papers [14] that show how the solution of certain lattice problems can be speeded
up by a factor n when the lattice is cyclic of dimension n.

It is conjectured that approximation problems on cyclic lattices are computa-
tionally hard, at least in the worst case and for small polynomial approximation
factors. The definition above of cyclic lattices is analogous to the definition of cyclic
codes, one of the most useful and widely studied classes of codes in coding theory.
Still, no polynomial time algorithm is known for many computational problems on
cyclic codes (or lattices).

The first result which implies the use of cyclic lattices is proved by Micciancio
[15], by showing that solving the generalized compact knapsack problem on the
average is as hard as solving certain worst-case problems for cyclic lattices. This
result yielded very efficient one-way functions whose security was based on worst-
case hardness assumptions, functions that later were modified to be collision resistant
under mostly the same assumptions but not only on cyclic lattices, but also on ideal
lattices, a class of lattices that includes cyclic lattices as a special case.

Definition 3. An ideal lattice is an integer lattice L(B) ⊆ Zn such that L(B)) =
{g mod f |g ∈ I} for some monic polynomial f of degree n and ideal I ⊆ Z[x]/f .

It turns out that f should be irreducible. In other words, a lattice corresponding
to an ideal means that the vector (a0, ..., an−1) is in the lattice, if and only if the
polynomial a0 + a1x + ... + an−1x

n−1 is in the ideal. Despite the added structure of
these algebraic lattices, the best algorithms to solve the shortest vector problem are
the same ones as for arbitrary lattices.

In 2008, Lyubashevski and Micciancio [12] give a direct construction of digital
signatures based on the complexity of approximating the shortest vector in ideal
lattices. The construction is provably secure based on the worst-case hardness of
approximating the shortest vector in such lattices within a polynomial factor, and
it is also efficient: the time complexity of the signing and verification algorithms,
as well as key and signature size is almost linear (up to poly-logarithmic factors)
in the dimension n of the underlying lattice. It seems that their construction is
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optimal performance/security trade-off since there is no sub-exponential (in n) time
algorithm to solve lattice problems in the worst case, even when restricted to ideal
lattices.

In 2009, Gentry [5] describes his innovative method for constructing fully homo-
morphic encryption schemes, the first credible solution to a very long-standing (30
years) major problem in cryptography and theoretical computer science at large. It
is interesting that he uses ideal lattices which seem to be very well suited for the
construction of his public key decryption scheme.

Another class of lattices with special algebraic structure is the class of convolution
modular lattices. The ring-based cryptosystem NTRU [10] uses lattices that are
similar to ideal lattices. Its security rests on the difficulty of solving CVP in these
lattices. Even if the cryptosystem has no known security proof, it has resisted
attacks. This is perhaps due to the inherent hardness of ring-based cryptographic
constructions.

The convolution modular lattice Lh associated to the vector h and modulus q is
the 2N dimensional lattice with basis given by the rows of the matrix:

1 0 · · · 0 h0 h1 · · · hN−1

0 1 · · · 0 hN−1 h0 · · · hN−2
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 h1 h2 · · · h0

0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q


.

Another way to describe Lh is the set of vectors:

Lh = {(a,b) ∈ Z2N |a ∗ h ≡ b mod q}.

3.2. Learning With Errors problem

In recent years, the Learning with Errors (LWE) problem, introduced in [?],
has turned out to be an a amazingly flexible basis for cryptographic constructions.
It is very famous because of being as hard as worst-case lattice problems, hence
rendering all cryptographic constructions based on it secure under the assumption
that worst-case lattice problems are hard.

LWE. The LWE problem asks to recover a secret s ∈ Zn
q , given a sequence

of ”approximate” random linear equations on s. For instance, the input might be
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similar to [?]: 

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 (mod17)
13s1 + 14s2 + 14s3 + 6s4 ≈ 16 (mod17)
6s1 + 10s2 + 13s3 + 1s4 ≈ 3 (mod17)
10s1 + 4s2 + 12s3 + 16s4 ≈ 12 (mod17)
9s1 + 5s2 + 9s3 + 6s4 ≈ 9 (mod17)
3s1 + 6s2 + 4s3 + 5s4 ≈ 16 (mod17)
6s1 + 7s2 + 16s3 + 2s4 ≈ 3 (mod17)

where each equation is correct up to some small additive error, our goal being to
recover s.

It can be easly seen that without the error, the problem of finding s would be
easy: using about n equations, we can recover s in polynomial time with the Gauss
elimination algorithm. The introduction of the error makes the problem significantly
more difficult. The Gaussian elimination algorithm takes linear combination of n
equations, amplifying the error to unmanageable levels.

Formally, the problem can be defined in the following manner: Fix a size pa-
rameter n ≥ 1, a modulus q ≥ 2, and an ”error” probability distribution χ on Zq.
Let As,χ on Zn

q × Zq be the probability distribution obtained by choosing a vector
a uniformly at random, choosing e ∈ Zq according to χ and outputting (a,a ∗ s+ e)
where additions are made in Zq.We say that an algorithm solves LWE with modulus
q and error distribution χif, for any s ∈ Zn

q , given an arbitrary number of indepen-
dent samples from As,χ it outputs s (with high probability). The special case q = 2
corresponds to the well-known learning parity with noise (LPN) problem.

Choosing parameters. In all applications, the error distribution χ is chosen
to be a normal distribution rounded to the nearest integer (and reduced modulo
q) of standard deviation αq where α > 0 is typically taken to be 1/poly(n). The
modulus q is typically taken to be polynomial in n. The number of equations seems
to be, for most purposes, insignificant. For instance, the known hardness results are
essentially independent of it. This can be partly explained by the fact that from a
given fixed polynomial number of equations, one can generate an arbitrary number
of additional equations that are almost as good as new, with only a slight worsening
in the error distribution, property which was shown in [?].

Blum, Kalai, and Wasserman [?] provided the first subexponential algorithm
for this problem. Their algorithm requires only 2O(n/ log n) equations/time and is
currently the best known algorithm for the problem. It is based on a clever idea that
allows to find a small set S of equations (say, O(

√
n)) among 2O(n/ log n) equations,

such that
∑

S ai is, say, (1, 0, · · · , 0) which gives a guess for the first bit of s that is
correct with probability that can be improved to a higher probability by repeating
the whole procedure only 2O(

√
n) times. Their idea was later shown to have other
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important applications, such as the first 2O(n)- time algorithm for solving the shortest
vector problem.

There are several reasons to believe the LWE problem is hard:

1. The first reason is that best known algorithms for LWE run in exponential
time (and even quantum algorithms don’t seem to do better);

2. The second reason is that LWE is a generalization of LPN, which, is an ex-
tensively studied problem in learning theory and widely believed to be hard
(it is worth noting that LPN can be seen as a decoding from random linear
bynary codes hence, any progress concerning LPN would be important also in
the area of coding theory);

3. Third, because LWE is known to be hard based on certain assumptions re-
garding the worst-case quantum hardness of standard lattice problems such as
GAPSVP (the decision version of the shortest vector problem) and SIVP (the
shortest independent vectors problem) [?].

The LWE problem can be reduced to many, apparently easier, problems. These
reductions are one of the main reason the LWE problem finds so many applications
in cryptography. Among these reductions, a very famous one is a search to deci-
sion reduction, which tries to distinguish random linear equations, which have been
perturbed by a small amount of noise, from truly uniform ones.

The LWE problem has a ”dual” problem known as the SIS problem (which stands
for Small Integer Solution). The SIS problem may be seen as a variant of subset-sum
over a particular additive group. In more detail, let n ≥ 1 be an integer dimension
and q ≥ 2 be an integer modulus; the problem is, given polynomially many random
and independent ai ∈ Zn

q ,to find a ”small” integer combination of them that sums
to 0 ∈ Zn

q .
In recent years, a multitude of cryptographic schemes have been proposed around

the SIS and LWE problems. As a search problem (without unique solution), SIS has
been the foundation for one-way [?] and collision-resistant hash functions [?], digital
signatures [?]. The LWE problem has proved to be amazingly good for encryption
schemes, serving as the basis for secure public-key encryption under both chosen-
plaintext and chosen-ciphertext attacks, identity-based encryption and many other
applications.

One real problem of schemes based on the SIS and LWE problems is that they
tend not to be efficient enough for practical applications. Even the simplest prim-
itives, such as one-way functions, have key sizes at least quadratic in the primary
security parameter, which needs to be quite high (several hundreds) for sufficient
security against the best known attacks.
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An important approach for avoiding the lack of efficiency is to use lattices that
have some special algebraic structure. That’s what Lyubashevsky, Peikert and Regev
[?] did when adapted the LWE problem in the ring setting, called Ring-LWE. In
LWE, getting just one extra random-looking number requires n random numbers.
It is wishful to get n random numbers and produce O(n) pseudo-random numbers
in ”one shot”. This can be done by defining the multiplication in a polynomial ring
Zq[x]/(xn+1). Mathematically speaking, the Ring-LWE replaces the group Zn

q with
the ring Zq[x]/xn + 1.

The SIS problem can also be defined in a polynomial ring. Just like the hardness
results for standard SIS, the result for Ring-SIS concerning hardness shows that
solving the Ring-SIS problem implies a solution to worst-case instances of lattice
problems. However, the worst-case lattice problems are restricted to the family of
ideal lattices.

Obtaining analogous hardness results for Ring-LWE turned out to be quite non-
trivial, and was only achieved very recently. There is a first result [?] which is based
on a quantum reduction from Ring-SIS to Ring-LWE. The second one [?], follows the
outline of the original LWE hardness proof of [?] and is independent of the number
of samples.

The range of cryptographic applications of the LWE problem has by now become
very wide. The security of these constructions is based on the difficulty of the LWE
problem and the others derived from it, like Ring-LWE, SIS, Ring-SIS. While in
LWE, the dimensions of the keys were quadratic in the primary security parameter,
in Ring-LWE, the dimensions decrease to linear size.

The cryptography system introduced by Regev [?] is perhaps the most efficient
lattice-based cryptosystem to date supported by a theoretical proof of security. Some
very significant improvements to the cryptosystem in efficiency were given by Peikert
et al. [?]

4. Lattice based cryptographic constructions

In 1996 - 1997, several cryptosystems were introduced, having as underlying hard
problem was SVP or CVP in a lattice L of dimension n. This were: Ajtai-Dwork
(ECCC report 1997), GGH presented at Crypto 1997 and NTRU, presented at the
rump session of Crypto 1996.

The public key sizes associated to these cryptosystems were: O(n4) for Ajtai-
Dwork, O(n2) for GGH, and O(n log n)for NTRU.

The system proposed by Ajtai and Dwork was particularly interesting because it
was provably secure unless a worst case lattice problem could be solved in polynomial
time. Anyway, large key size was an impediment for practice. Subsequently, Nguyen
and Stern showed, in fact, that any efficient implementation of the Ajtai-Dwork
system was insecure.
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The GGH cryptosystem, proposed by Goldreich, Goldwasser, and Halevi in [?]
is essentially a lattice analogue of the McEliece cryptosystem proposed twenty years
earlier based on the hardness of decoding linear codes over finite fields. The basic
idea is very simple and appealing. At a high level, the GGH cryptosystem works as
follows: the private key is a ”good” lattice basis B (a good basis is a basis consisting
of short, almost orthogonal vectors); the public key H is a ”bad” basis for the same
lattice. The encryption process consists of adding a short noise vector r (somehow
encoding the message to be encrypted) to a properly chosen lattice point v. The
decryption problem corresponds to finding the lattice point v closest to the target
ciphertext c = (r mod H) = v + r, and the associated error vector r = c− v.

The security relies on the assumption that without knowledge of a special basis
(that is, given only the worst possible basis H), solving the instances of the closest
vector problem in L(B) = L(H) is computationally hard. There are known attacks
that break the cryptosystem in practice for moderately large values of the security
parameter, and that can be avoided by making the security parameter bigger but
this makes the cryptosystem impractical.

The NTRU cryptosystem, which was already mentioned above, was described
at the rump session of Crypto ’96 as a ring based public key system that could be
translated into an SVP problem in a special class of lattices. The hard problem
underlying the NTRU public key cryptosystem is that of finding a very short vector
in a lattice of very high dimension.

The National Institute of Standards & Technology (NIST) accredited NTRU
with being the most practical lattice-based cryptographic solution that can resist
a quantum computing attack. As usually happens with many cryptographic algo-
rithms , a simply modification allows both encryption system (NTRUEncrypt) and
digital signatures (NTRUSign). NTRUEncrypt is standardized since 2009 by IEEE
as IEEE Std 1363.1-2008.

In 2010, a very appreciated paper [?] introduces a new lattice-based crypto-
graphic structure called a a bonsai tree which has applications in some important
open problems in the area. The first regards an efficient ”hash-and sign” signature
scheme in the standard model (without use of random oracles, and this is to be appe-
ciated because the problem of random oracles is very controversial in cryptography),
which has as underlying hard problem the aboved mentioed SIS problem. The sec-
ond application is the first hierarchial identity-based encryption(HIBE) scheme that
does not rely on bilinear pairings, with the hard underlying problem, the LWE.

5. Conclusions and open problems

There is still a lot of work to do in lattice-based cryptography and more work is
still needed to increase confidence and understanding in this area, and in order to
support widespread use of lattice-based cryptography.
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The LWE-based cryptosystem proposed by Regev is reasonably efficient and
has a security proof based on a worst-case connection. Still, one might hope to
considerably improve the efficiency, and in particular the public key size, by using
structured lattices such as cyclic lattices.

The lattices with special algebraic structure, as cyclic and ideal lattices need to
be studied in more detail. It seems that they may offer good support for efficiency,
but too much is not known until now about them.

Can one factor integers or compute discrete logarithms using an oracle that
solves, say,

√
n-approximate SVP? Such a result would be useful to prove that the

security of lattice-based cryptosystems is superior to that of traditional number-
theoretic-based cryptosystems.
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