SUFFICIENT CONDITIONS FOR UNIVALENCE OF INTEGRAL OPERATOR DEFINED BY HADAMARD PRODUCT

B.A. FRASIN

ABSTRACT. In this paper, we obtain new sufficient conditions for the univalence of general integral operator defined by

$$I_{\beta}(f_1, ..., f_n; g_1, ..., g_n)(z) = \left\{ \int_0^z \beta t^{\beta - 1} \left(\frac{(f_1 * g_1)(t)}{t} \right)^{\alpha_1} \cdots \left(\frac{(f_n * g_n)(t)}{t} \right)^{\alpha_n} dt \right\}^{\frac{1}{\beta}}.$$

Several corollaries and consequences of the main results are also considered.

2000 Mathematics Subject Classification: 30C45.

1. INTRODUCTION AND DEFINITIONS

Let \mathcal{A} denote the class of functions of the form :

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disc $\mathcal{U} = \{z : |z| < 1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U} . For two functions $f(z) \in \mathcal{A}$ and g(z) given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n \tag{1}$$

their Hadamard product (or convolution) is defined by

$$(f * g)(z) := z + \sum_{n=2}^{\infty} a_n b_n z^n.$$
 (2)

For a function $g \in \mathcal{A}$ defined by (1), where $b_n \geq 0$ $(n \geq 2)$, we define the family $\mathcal{S}(g,\gamma)$ so that it consists of functions $f \in \mathcal{A}$ satisfying the condition

$$\left|\frac{z(f*g)'(z)}{(f*g)(z)} - 1\right| < 1 - \gamma \qquad (z \in \mathcal{U}; \ 0 \le \gamma < 1),\tag{3}$$

provided that $(f * g)(z) \neq 0$.

Also, for a function $g \in \mathcal{A}$ defined by (1), where $b_n \geq 0$ $(n \geq 2)$, we define the family $\mathcal{B}(g,\mu)$ so that it consists of functions $f \in \mathcal{A}$ satisfying the condition

$$\left|\frac{z^2(f*g)'(z)}{[(f*g)(z)]^2} - 1\right| < 1 - \mu \qquad (z \in \mathcal{U}; \ 0 \le \mu < 1),\tag{4}$$

provided that $(f * g)(z) \neq 0$.

Note that $\mathcal{B}(\frac{z}{1-z},\mu) = \mathcal{B}(\mu)$, where the class $\mathcal{B}(\mu)$ of analytic and univalent functions was introduced and studied by Frasin and Darus [11](see also [10]).

Using the Hadamard product defined by (2), we introduce the following general integral operator:

Definition 1. Given $f_i, g_i \in \mathcal{A}, \alpha_i \in \mathbb{C}$ for all $i = 1, ..., n, n \in \mathbb{N}, \beta \in \mathbb{C}$ with $\operatorname{Re}(\beta) > 0$. We let $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n) : \mathcal{A}^n \to \mathcal{A}$ be the integral operator defined by

$$I_{\beta}(f_1, ..., f_n; g_1, ..., g_n)(z) = \left\{ \int_0^z \beta t^{\beta - 1} \left(\frac{(f_1 * g_1)(t)}{t} \right)^{\alpha_1} \cdots \left(\frac{(f_n * g_n)(t)}{t} \right)^{\alpha_n} dt \right\}_{(5)}^{\frac{1}{\beta}}$$

where $(f * g)(z)/z \neq 0$, $z \in \mathcal{U}$.

Here and throughout in the sequel every many-valued function is taken with the principal branch.

Remark 1. Note that the integral operator $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n)(z)$ generalizes many operators introduced and studied by several authors, for example:

(1) For $\beta = 1$, we obtain the integral operator

$$I(f_1, ..., f_n; g_1, ..., g_n)(z) = \int_0^z \left(\frac{(f_1 * g_1)(t)}{t}\right)^{\alpha_1} \cdots \left(\frac{(f_n * g_n)(t)}{t}\right)^{\alpha_n} dt \qquad (6)$$

introduced and studied by Frasin [9].

(2) For $g_1 = \cdots = g_n = z + \sum_{n=2}^{\infty} \left(\frac{\Gamma(n+1)\Gamma(2-\eta)}{\Gamma(n+1-\eta)} (1+(n-1))\lambda \right)^m z^n$, we obtain the following integral operator introduced and studied by Bulut [7]

$$I_{\beta}^{m,\eta}(f_1,...,f_n)(z) = \left\{ \int_0^z \beta t^{\beta-1} \left(\frac{D_{\lambda}^{m,\eta} f_1(t)}{t} \right)^{\alpha_1} \dots \left(\frac{D_{\lambda}^{m,\eta} f_n(t)}{t} \right)^{\alpha_n} dt \right\}^{\frac{1}{\beta}}$$
(7)

where $D_{\lambda}^{m,\eta}f(z) = z + \sum_{n=2}^{\infty} \left(\frac{\Gamma(n+1)\Gamma(2-\eta)}{\Gamma(n+1-\eta)}(1+(n-1))\lambda\right)^m a_n z^n$, $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ is the generalized Al-Oboudi operator [2].

(3) For $g_1 = \cdots = g_n = \frac{z}{1-z}$, we obtain the integral operator

$$I_{\beta}(f_1, \dots, f_n)(z) = \left\{ \int_0^z \beta t^{\beta-1} \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{f_n(t)}{t}\right)^{\alpha_n} dt \right\}^{\frac{1}{\beta}}$$
(8)

introduced and studied by Breaz and Breaz [3].

(4) For $g_1 = \cdots = g_n = \frac{z}{1-z}$ and $\beta = 1$, we obtain the integral operator

$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{f_n(t)}{t}\right)^{\alpha_n} dt$$
(9)

introduced and studied by Breaz and Breaz [3].

(5) For $g_1 = \cdots = g_n = \frac{z}{(1-z)^2}$ and $\beta = 1$, we obtain the integral operator

$$F_{\alpha_1,\dots,\alpha_n}(z) = \int_0^z \left(f_1'(t)\right)^{\alpha_1}\dots\left(f_n'(t)\right)^{\alpha_n} dt \tag{10}$$

introduced and studied by Breaz et al. [5].

(6) For $g_1 = \cdots = g_n = z + \sum_{n=2}^{\infty} C_{k+n-1}^k z^n$ and $\beta = 1$, we obtain the following integral operator introduced in [12]

$$I(f_1, ..., f_n)(z) = \int_0^z \left(\frac{R^k f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{R^k f_n(t)}{t}\right)^{\alpha_n} dt$$
(11)

where $R^k f(z) = z + \sum_{n=2}^{\infty} C_{k+n-1}^k a_n z^n$, $k \in \mathbb{N}_0$ is Ruscheweyh differential operator [18].

(7) For $g_1 = \cdots = g_n = z + \sum_{n=2}^{\infty} n^k z^n$ and $\beta = 1$, we obtain the following integral operator introduced and studied by Breaz et al. [4]

$$D^k F(z) = \int_0^z \left(\frac{D^k f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{D^k f_n(t)}{t}\right)^{\alpha_n} dt$$
(12)

where $D^k f(z) = z + \sum_{n=2}^{\infty} n^k a_n z^n$, $k \in \mathbb{N}_0$ is Sãlãgean differential operator [19].

(8) $g_1 = \cdots = g_n = z + \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^k z^n$ and $\beta = 1$, we obtain the following integral operator introduced and studied by Bulut [6]

$$I_n(f_1, \dots, f_n)(z) = \int_0^z \left(\frac{D_\lambda^k f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{D_\lambda^k f_n(t)}{t}\right)^{\alpha_n} dt$$
(13)

where $D_{\lambda}^{k}f(z) = z + \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^{k} a_{n} z^{n}, 0 \le \lambda \le 1$, is Al-Oboudi differential operator [2].

(9) For $g_1 = \cdots = g_n = z + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} z^n$ and $\beta = 1$, we obtain the integral operator introduced and studied by Selvaraj and Karthikevan [20]

$$F_{\alpha}(a,c;z) = \int_{0}^{z} \left(\frac{L(a,c)f_{1}(t)}{t}\right)^{\alpha_{1}} \dots \left(\frac{L(a,c)f_{n}(t)}{t}\right)^{\alpha_{n}} dt$$
(14)

where $L(a,c)f(z) := z + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} a_n z^n$ is the Carlson-Shaffer linear operator [8]. (10) For $g_1 = \frac{z}{1-z}$ and $\alpha_1 = \beta = 1$, we obtain Alexander integral operator

introduced in [1]

$$I(z) = \int_{0}^{z} \frac{f_{1}(t)}{t} dt$$
(15)

(11) For $g_1 = \frac{z}{1-z}$, $\alpha_1 = \alpha$, and $\beta = 1$, we obtain the integral operator

$$F_{\alpha}(z) = \int_{0}^{z} \left(\frac{f(t)}{t}\right)^{\alpha} dt$$
(16)

studied in [13].

In order to derive our main results, we have to recall here the following univalence criteria.

Lemma 1. ([15]) Let α be a complex number with $\operatorname{Re}(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$\frac{1-|z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)}\left|\frac{zf''(z)}{f'(z)}\right| \leq 1,$$

for all $z \in \mathcal{U}$, then the integral operator

$$F_{\alpha}(z) = \left\{ \alpha \int_{0}^{z} t^{\alpha - 1} f'(t) dt \right\}^{\frac{1}{\alpha}}$$

is in the class S.

Lemma 2. ([16]) Let $\alpha \in \mathbb{C}$ with $\operatorname{Re}(\alpha) > 0$. If $f \in \mathcal{A}$ satisfies

$$\frac{1-|z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)}\left|\frac{zf''(z)}{f'(z)}\right| \le 1,$$

for all $z \in \mathcal{U}$, then, for any complex number β with $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$, the integral operator

$$F_{\beta}(z) = \left\{ \beta \int_{0}^{z} t^{\beta-1} f'(t) dt \right\}^{\frac{1}{\beta}}$$

is in the class S.

Lemma 3. ([17]) Let $\beta \in \mathbb{C}$ with $\operatorname{Re}(\beta) > 0, c \in \mathbb{C}$ with $|c| \leq 1, c \neq -1$. If $f \in \mathcal{A}$ satisfies

$$\left| c |z|^{2\beta} + (1 - |z|^{2\beta}) \frac{zf''(z)}{\beta f'(z)} \right| \le 1,$$

for all $z \in \mathcal{U}$, then the integral operator

$$F_{\beta}(z) = \left\{ \beta \int_{0}^{z} t^{\beta-1} f'(t) dt \right\}^{\frac{1}{\beta}}$$

-

is in the class S.

Also, we need the following general Schwarz Lemma

Lemma 4.([14]) Let the function f be regular in the disk $\mathcal{U}_R = \{z : |z| < R\}$, with |f(z)| < M for fixed M. If f(z) has one zero with multiplicity order bigger than m for z = 0, then

$$|f(z)| \le \frac{M}{R^m} |z|^m \qquad (z \in \mathcal{U}_R).$$

The equality can hold only if

$$f(z) = e^{i\theta} \left(M/R^m \right) z^m$$

where θ is constant.

In this paper, we obtain new sufficient conditions for the univalence of the general integral operator $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n)(z)$ defined by (2). Several corollaries and consequences of the main results are also considered.

2. Univalence conditions for $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n)$

We first prove the following theorem.

Theorem 1. Let $\alpha_i \in \mathbb{C}$ for all $i = 1, \ldots, n$ and $\beta \in \mathbb{C}$ with

$$\operatorname{Re}(\beta) \ge \sum_{i=1}^{n} |\alpha_i| (1 - \gamma_i) > 0.$$
(17)

If $f_i \in \mathcal{S}(g_i, \gamma_i), 0 \leq \gamma_i < 1$ for all i = 1, ..., n, then the integral operator $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n)$ defined by (5) is analytic and univalent in \mathcal{U} .

Proof. Define

$$h(z) = \int_{0}^{z} \prod_{i=1}^{n} \left(\frac{(f_i * g_i)(t)}{t} \right)^{\alpha_i} dt,$$

thus we have

$$h'(z) = \prod_{i=1}^{n} \left(\frac{(f_i * g_i)(z)}{z} \right)^{\alpha_i}.$$
 (18)

Differentiating both sides of (18) with respect to z logarithmically, we obtain

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \alpha_i \left(\frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} - 1 \right)$$

thus we have

$$\left|\frac{zh''(z)}{h'(z)}\right| \le \sum_{i=1}^{n} |\alpha_i| \left|\frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} - 1\right|.$$
(19)

Since $f_i \in \mathcal{S}(g_i, \gamma_i)$ for all i = 1, ..., n, from (3), (17) and (19), we obtain

$$\frac{1-|z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1-|z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| \left| \frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} - 1 \right|$$
$$\leq \frac{1}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| (1-\gamma_i)$$
$$\leq 1.$$

Applying Lemma 1 for the function h(z), we prove that $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n) \in \mathcal{S}$.

Letting $g_1 = \dots = g_n = z + \sum_{n=2}^{\infty} \left(\frac{\Gamma(n+1)\Gamma(2-\eta)}{\Gamma(n+1-\eta)} (1 + (n-1))\lambda \right)^m z^n$ and $\gamma_i = 0$, for all $i = 1, \dots, n$, in Theorem 1, we have:

Corollary 1. ([7])Let $\alpha_i \in \mathbb{C}$ for all i = 1, ..., n and $\beta \in \mathbb{C}$ with

$$\operatorname{Re}(\beta) \ge \sum_{i=1}^{n} |\alpha_i| > 0.$$

If

$$\frac{z(D_{\lambda}^{m,\eta}f_i(z))'}{D_{\lambda}^{m,\eta}f_i(z)} - 1 \bigg| < 1 \qquad (z \in \mathcal{U}, m \in \mathbb{N}_0)$$

then the integral operator $I_{\beta}^{m,\eta}(f_1,...,f_n)(z)$ defined by (7) is analytic and univalent in \mathcal{U} .

Making use of Lemma 2, we prove the following theorem.

Theorem 2. Let $\alpha_i \in \mathbb{C}$, $M_i \geq 1$ for all i = 1, ..., n and $\beta \in \mathbb{C}$ with

$$\operatorname{Re}(\beta) \ge \sum_{i=1}^{n} |\alpha_i| \left((2 - \mu_i) M_i + 1 \right) > 0.$$
(20)

If $f_i \in \mathcal{B}(g_i, \mu_i), 0 \leq \mu_i < 1$ for all $i = 1, \ldots, n$, and

$$|(f_i * g_i)(z)| \le M_i \ (z \in \mathcal{U}, i = 1, \dots, n),$$

then for any complex number β with $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$, the integral operator $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n)$ defined by (5) is analytic and univalent in \mathcal{U} .

Proof. From the proof of Theorem 1, we have

$$\left|\frac{zh''(z)}{h'(z)}\right| \le \sum_{i=1}^{n} |\alpha_i| \left|\frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} - 1\right|$$

which readily shows that

$$\frac{1 - |z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1 - |z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \sum_{i=1}^{n} |\alpha_i| \left(\left| \frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} \right| + 1 \right) \\ \leq \frac{1 - |z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \sum_{i=1}^{n} |\alpha_i| \left(\left| \frac{z^2(f_i * g_i)'(z)}{[(f_i * g_i)(z)]^2} \right| \left| \frac{(f_i * g_i)(z)}{z} \right| + 1 \right).$$

Since $|(f_i * g_i)(z)| \leq M_i$ $(z \in \mathcal{U}, i = 1, ..., n)$, and $f_i \in \mathcal{B}(g_i, \mu_i)$ for all i = 1, ..., n, we obtain

$$\frac{1 - |z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1 - |z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \sum_{i=1}^{n} |\alpha_i| \left(\left| \frac{z^2(f_i * g_i)'(z)}{[(f_i * g_i)(z)]^2} - 1 \right| M_i + M_i + 1 \right) \\ \leq \frac{1}{\operatorname{Re}(\alpha)} \sum_{i=1}^{n} |\alpha_i| \left((2 - \mu_i) M_i + 1 \right) \quad (z \in \mathcal{U}),$$

which, in the light of the hypothesis (20), yields

$$\frac{1-|z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \left| \frac{zh''(z)}{h'(z)} \right| \le 1 \quad (z \in \mathcal{U}).$$

Applying Lemma 2 for the function h(z), we prove that $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n) \in \mathcal{S}$.

Letting $g_1 = \dots = g_n = z + \sum_{n=2}^{\infty} \left(\frac{\Gamma(n+1)\Gamma(2-\eta)}{\Gamma(n+1-\eta)} (1+(n-1))\lambda \right)^m z^n$ and $\mu_i = 0$, for all $i = 1, \dots, n$, in Theorem 2, we have:

Corollary 2. ([7])Let $\alpha_i \in \mathbb{C}$, $M_i \geq 1$ for all i = 1, ..., n and $\beta \in \mathbb{C}$ with

$$\operatorname{Re}(\beta) \ge \sum_{i=1}^{n} |\alpha_i| \left(2M_i + 1\right) > 0.$$

If

$$\left|\frac{z^2 (D_{\lambda}^{m,\eta} f_i(z))'}{(D_{\lambda}^{m,\eta} f_i(z))^2} - 1\right| < 1 \qquad (z \in U, m \in N_0)$$

and

$$\left|D_{\lambda}^{m,\eta}f_{i}(z)\right| \leq M_{i} \ (z \in \mathcal{U}, i = 1, \dots, n)$$

then for any complex number β with $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$, the integral operator $I_{\beta}^{m,\eta}(f_1,...,f_n)(z)$ defined by (7) is analytic and univalent in \mathcal{U} .

Next, we prove

Theorem 3. Let $\alpha_i \in \mathbb{C}$ for all i = 1, ..., n and $\beta \in \mathbb{C}$ with

$$\operatorname{Re}(\beta) \ge \sum_{i=1}^{n} |\alpha_i| (1 - \gamma_i) > 0$$

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| (1 - \gamma_i).$$

If $f_i \in \mathcal{S}(g_i, \gamma_i), 0 \leq \gamma_i < 1$ for all i = 1, ..., n, then the integral operator $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n)$ defined by (5) is analytic and univalent in \mathcal{U} .

Proof. From the proof of Theorem 1, we have

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \alpha_i \left[\frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} - 1 \right].$$
(21)

Thus, we have

$$\begin{aligned} \left| c \, |z|^{2\beta} + (1 - |z|^{2\beta}) \frac{zh''(z)}{\beta h'(z)} \right| &= \left| c \, |z|^{2\beta} + (\frac{1 - |z|^{2\beta}}{\beta}) \sum_{i=1}^{n} \alpha_i \left[\frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} - 1 \right] \right| \\ &\leq |c| + \left| \frac{1 - |z|^{2\beta}}{\beta} \right| \sum_{i=1}^{n} |\alpha_i| \left| \frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} - 1 \right| \\ &\leq |c| + \frac{1}{|\beta|} \sum_{i=1}^{n} |\alpha_i| (1 - \gamma_i) \\ &\leq |c| + \frac{1}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| (1 - \gamma_i) \\ &\leq 1. \end{aligned}$$

Finally, by applying Lemma 3, we conclude that $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n) \in \mathcal{S}$.

Letting $g_1 = \dots = g_n = z + \sum_{n=2}^{\infty} \left(\frac{\Gamma(n+1)\Gamma(2-\eta)}{\Gamma(n+1-\eta)} (1+(n-1))\lambda \right)^m z^n$ and $\gamma_i = 0$, for all $i = 1, \dots, n$, in Theorem 3, we have

Corollary 3. ([7])Let $\alpha_i \in \mathbb{C}$ for all $i = 1, \ldots, n$ and $\beta \in \mathbb{C}$ with

$$\operatorname{Re}(\beta) \ge \sum_{i=1}^{n} |\alpha_i| > 0$$

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i|.$$

If

$$\frac{z(D_{\lambda}^{m,\eta}f_i(z))'}{D_{\lambda}^{m,\eta}f_i(z)} - 1 \bigg| < 1 \qquad (z \in \mathcal{U}, m \in \mathbb{N}_0)$$

then the integral operator $I_{\beta}^{m,\eta}(f_1,...,f_n)(z)$ defined by (7) is analytic and univalent in \mathcal{U} .

Finally, we prove the following theorem.

Theorem 4. Let $\alpha_i \in \mathbb{C}$, $M_i \geq 1$ for all i = 1, ..., n and $\beta \in \mathbb{C}$ with

$$\operatorname{Re}(\beta) \ge \sum_{i=1}^{n} |\alpha_i| \left((2 - \mu_i) M_i + 1 \right) > 0.$$
(22)

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| \left((2 - \mu_i) M_i + 1 \right).$$

If $f_i \in \mathcal{B}(g_i, \mu_i), 0 \leq \mu_i < 1$ for all $i = 1, \ldots, n$, and

$$|(f_i * g_i)(z)| \le M_i \ (z \in \mathcal{U}, i = 1, \dots, n),$$

then the integral operator $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n)$ defined by (5) is analytic and univalent in \mathcal{U} .

Proof. From (21), it follows that

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \alpha_i \left[\frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} - 1 \right].$$

Thus, we have

$$\begin{aligned} \left| c \, |z|^{2\beta} + (1 - |z|^{2\beta}) \frac{zh''(z)}{\beta h'(z)} \right| &= \left| c \, |z|^{2\beta} + (\frac{1 - |z|^{2\beta}}{\beta}) \sum_{i=1}^{n} \alpha_i \left[\frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} - 1 \right] \right| \\ &\leq |c| + \left| \frac{1 - |z|^{2\beta}}{\beta} \right| \sum_{i=1}^{n} |\alpha_i| \left(\left| \frac{z(f_i * g_i)'(z)}{(f_i * g_i)(z)} \right| + 1 \right) \right) \\ &\leq |c| + \frac{1}{|\beta|} \sum_{i=1}^{n} |\alpha_i| \left(\left| \frac{z^2(f_i * g_i)'(z)}{[(f_i * g_i)(z)]^2} \right| \left| \frac{(f_i * g_i)(z)}{z} \right| + 1 \right) \\ &\leq |c| + \frac{1}{|\beta|} \sum_{i=1}^{n} |\alpha_i| \left(\left| \frac{z^2(f_i * g_i)'(z)}{[(f_i * g_i)(z)]^2} - 1 \right| M_i + M_i + 1 \right) \\ &\leq |c| + \frac{1}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| \left((2 - \mu_i)M_i + 1 \right) \leq 1. \end{aligned}$$

Applying Lemma 3 for the function h(z), we prove that $I_{\beta}(f_1, ..., f_n; g_1, ..., g_n) \in S$.

Letting $g_1 = \dots = g_n = z + \sum_{n=2}^{\infty} \left(\frac{\Gamma(n+1)\Gamma(2-\eta)}{\Gamma(n+1-\eta)} (1+(n-1))\lambda \right)^m z^n$ and $\mu_i = 0$, for all $i = 1, \dots, n$, in Theorem 4, we have:

Corollary 4.([7])Let $\alpha_i \in \mathbb{C}$, $M_i \geq 1$ for all i = 1, ..., n and $\beta \in \mathbb{C}$ with

$$\operatorname{Re}(\beta) \ge \sum_{i=1}^{n} |\alpha_i| \left(2M_i + 1\right) > 0.$$

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| (2M_i + 1).$$

If

$$\left|\frac{z^2(D_{\lambda}^{m,\eta}f_i(z))'}{(D_{\lambda}^{m,\eta}f_i(z))^2} - 1\right| < 1 \qquad (z \in \mathcal{U}, m \in \mathbb{N}_0)$$

and

$$\left|D_{\lambda}^{m,\eta}f_i(z)\right| \le M_i \ (z \in \mathcal{U}, i = 1, \dots, n),$$

then the integral operator $I_{\beta}^{m,\eta}(f_1,...,f_n)(z)$ defined by (7) is analytic and univalent in \mathcal{U} .

Remark 2. Taking different choices of g_1, \dots, g_n as stated in Section 1, the above theorems lead to new sufficient conditions for univalency for the integral operators defined in Remark 1.

References

[1] W. Alexander, Functions which map the interior of the unit circle upon simple regions, Anna. Math., Vol. 17, No. 1, (1915), 12-22.

[2] F. M. Al-Oboudi, On univalent functions defined by a generalized Sãlãgean operator, Int. J. Math. Math. Sci. 27, (2004), 1429-1436.

[3] D. Breaz and N. Breaz, *Two integral operators*, Studia Universitatis Babes-Bolyai, Mathematica, Cluj-Napoca, 3 (2002), 13-21.

[4] D. Breaz, H. Güney and G. Sãlãgean, A new integral operator, 7th Joint Conference on Mathematics and Computer Science, July 36, 2008, Cluj, Romania.

[5] D. Breaz, S.Owa and N. Breaz, A new integral univalent operator, Acta Univ. Apul. 16 (2008), 11-16.

[6] S. Bulut, Some properties for an integral operator defined by Al-Oboudi differential operator, JIPAM, Vol. 9 (2008), Issue 4, Atr. 115, 5 pp.

[7] S. Bulut, Univalence preserving integral operators defined by generalized Al-Oboudi differential operators, An. St. Univ. Ovidius Constata, Vol. 17 (2009), 37-50.

[8] B.C. Carlson, D.B. Shaffer, *Starlike and prestarlike hypergeometric functions*, SIAM J. Math. Anal. 15 (4) (1984) 737-745.

[9] B. A. Frasin, General integral operator defined by Hadamard product, Mat.Vesnik
 62, 2 (2010), 127–136

[10] B. A. Frasin, A note on certain analytic and univalent functions, Southeast Asian J. Math. 28(2004), 829-836.

[11] B. A. Frasin and M.Darus, *On certain analytic univalent functions*, Internat. J. Math. and Math. Sci.25 (5), (2001), 305-310.

[12] G.I. Oros, G. Oros and D. Breaz, *Sufficient conditions for univalence of an integral operator*, J. Ineq. Appl., Vol. 2008, Article ID 127645, 7 pages.

[13] S. S. Miller, P. T. Mocanu, and M. O. Reade, *Starlike integral operators*, Pacific J. Math., Vol. 79, No. 1(1978), 157-168.

[14] Z. Nehari, *Conformal Mapping*, McGraw-Hill Book Comp., New York, 1952(Dover. Publ. Inc., 1975)

[15] N. Pascu, On a univalence criterion, II, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1985), Preprint, Vol. 85, Universitatea "Babes-Bolyai", Cluj-Napoca, 1985, 153-154.

[16] N. Pascu, An improvement of Backer's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-48.

[17] V. Pescar, A new generalization of Ahlfor's and Becker's criterion of univalence, Bull. Malaysian Math. Soc. (Second Series) 19 (1996), 53-54.

[18] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer.Math. Soc., Vol.49, No.1,(1975), 109-115.

[19] G. Sălăgean, *Subclasses of univalent functions*. Lecture Notes in Math. (Springer-Verlag) 1013 (1983), 362-372.

[20] C. Selvaraj and K. R. Karthikeyan, Sufficient conditions for univalence of a general integral operator, Bull. Korean Math. Soc. 46 (2) (2009),367-372.

B.A. FrasinFaculty of ScienceDepartment of MathematicsAl al-Bayt UniversityP.O. Box: 130095 Mafraq, Jordanemail: *bafrasin@yahoo.com*