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SUFFICIENT CONDITIONS FOR UNIVALENCE OF INTEGRAL
OPERATOR DEFINED BY HADAMARD PRODUCT

B.A. Frasin

Abstract. In this paper, we obtain new sufficient conditions for the univalence
of general integral operator defined by

Iβ(f1, ..., fn; g1, ..., gn)(z) =


z∫

0

βtβ−1

(
(f1 ∗ g1)(t)

t

)α1

· · ·
(

(fn ∗ gn)(t)
t

)αn

dt


1
β

.

Several corollaries and consequences of the main results are also considered.

2000 Mathematics Subject Classification: 30C45.

1. Introduction and definitions

Let A denote the class of functions of the form :

f(z) = z +
∞∑

n=2

anzn

which are analytic in the open unit disc U = {z : |z| < 1} . Further, by S we shall
denote the class of all functions in A which are univalent in U . For two functions
f(z) ∈ A and g(z) given by

g(z) = z +
∞∑

n=2

bnzn (1)

their Hadamard product (or convolution) is defined by

(f ∗ g)(z) := z +
∞∑

n=2

anbnzn. (2)
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For a function g ∈ A defined by (1), where bn ≥ 0 (n ≥ 2),we define the family
S(g, γ) so that it consists of functions f ∈ A satisfying the condition∣∣∣∣z(f ∗ g)′(z)

(f ∗ g)(z)
− 1

∣∣∣∣ < 1− γ (z ∈ U ; 0 ≤ γ < 1), (3)

provided that (f ∗ g)(z) 6= 0.
Also, for a function g ∈ A defined by (1), where bn ≥ 0 (n ≥ 2),we define the

family B(g, µ) so that it consists of functions f ∈ A satisfying the condition∣∣∣∣z2(f ∗ g)′(z)
[(f ∗ g)(z)]2

− 1
∣∣∣∣ < 1− µ (z ∈ U ; 0 ≤ µ < 1), (4)

provided that (f ∗ g)(z) 6= 0.
Note that B( z

1−z , µ) = B(µ), where the class B(µ) of analytic and univalent
functions was introduced and studied by Frasin and Darus [11](see also [10]).

Using the Hadamard product defined by (2), we introduce the following general
integral operator:

Definition 1. Given fi , gi ∈ A, αi ∈ C for all i = 1, . . . , n, n ∈ N, β ∈ C with
Re(β) > 0. We let Iβ(f1, ..., fn; g1, ..., gn) : An → A be the integral operator defined
by

Iβ(f1, ..., fn; g1, ..., gn)(z) =


z∫

0

βtβ−1

(
(f1 ∗ g1)(t)

t

)α1

· · ·
(

(fn ∗ gn)(t)
t

)αn

dt


1
β

(5)
where (f ∗ g)(z)/z 6= 0, z ∈ U .

Here and throughout in the sequel every many-valued function is taken with the
principal branch.

Remark 1. Note that the integral operator Iβ(f1, ..., fn; g1, ..., gn)(z) generalizes
many operators introduced and studied by several authors, for example:

(1) For β = 1,we obtain the integral operator

I(f1, ..., fn; g1, ..., gn)(z) =

z∫
0

(
(f1 ∗ g1)(t)

t

)α1

· · ·
(

(fn ∗ gn)(t)
t

)αn

dt (6)

introduced and studied by Frasin [9].
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(2) For g1 = · · · = gn = z +
∞∑

n=2

(
Γ(n+1)Γ(2−η)

Γ(n+1−η) (1 + (n− 1))λ
)m

zn, we obtain the

following integral operator introduced and studied by Bulut [7]

Im,η
β (f1, ..., fn)(z) =


z∫

0

βtβ−1

(
Dm,η

λ f1(t)
t

)α1

. . .

(
Dm,η

λ fn(t)
t

)αn

dt


1
β

(7)

where Dm,η
λ f( z) = z+

∞∑
n=2

(
Γ(n+1)Γ(2−η)

Γ(n+1−η) (1 + (n− 1))λ
)m

anzn , m ∈ N0 = N∪{0} is

the generalized Al-Oboudi operator [2].
(3) For g1 = · · · = gn = z

1−z , we obtain the integral operator

Iβ(f1, ..., fn)(z) =


z∫

0

βtβ−1

(
f1(t)

t

)α1

. . .

(
fn(t)

t

)αn

dt


1
β

(8)

introduced and studied by Breaz and Breaz [3].
(4) For g1 = · · · = gn = z

1−z and β = 1,we obtain the integral operator

Fn(z) =

z∫
0

(
f1(t)

t

)α1

. . .

(
fn(t)

t

)αn

dt (9)

introduced and studied by Breaz and Breaz [3].
(5) For g1 = · · · = gn = z

(1−z)2
and β = 1,we obtain the integral operator

Fα1,...,αn(z) =

z∫
0

(
f ′1(t)

)α1 . . .
(
f ′n(t)

)αn dt (10)

introduced and studied by Breaz et al. [5].

(6) For g1 = · · · = gn = z +
∞∑

n=2
Ck

k+n−1z
n and β = 1,we obtain the following

integral operator introduced in [12]

I(f1, ..., fn)(z) =

z∫
0

(
Rkf1(t)

t

)α1

. . .

(
Rkfn(t)

t

)αn

dt (11)

where Rkf(z) = z +
∞∑

n=2
Ck

k+n−1anzn, k ∈ N0 is Ruscheweyh differential operator

[18].
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(7) For g1 = · · · = gn = z +
∞∑

n=2
nkzn and β = 1,we obtain the following integral

operator introduced and studied by Breaz et al. [4]

DkF (z) =

z∫
0

(
Dkf1(t)

t

)α1

. . .

(
Dkfn(t)

t

)αn

dt (12)

where Dkf(z) = z +
∞∑

n=2
nkanzn, k ∈ N0 is Sãlãgean differential operator [19].

(8) g1 = · · · = gn = z +
∞∑

n=2
[1 + (n− 1)λ]kzn and β = 1,we obtain the following

integral operator introduced and studied by Bulut [6]

In(f1, ..., fn)(z) =

z∫
0

(
Dk

λf1(t)
t

)α1

. . .

(
Dk

λfn(t)
t

)αn

dt (13)

where Dk
λf(z) = z +

∞∑
n=2

[1 + (n − 1)λ]kanzn , 0 ≤ λ ≤ 1, is Al-Oboudi differential

operator [2].

(9) For g1 = · · · = gn = z +
∞∑

n=2

(a)n−1

(c)n−1
zn and β = 1,we obtain the integral

operator introduced and studied by Selvaraj and Karthikeyan [20]

Fα(a, c; z) =

z∫
0

(
L(a, c)f1(t)

t

)α1

. . .

(
L(a, c)fn(t)

t

)αn

dt (14)

where L(a, c)f(z) := z +
∞∑

n=2

(a)n−1

(c)n−1
anzn is the Carlson-Shaffer linear operator [8].

(10) For g1 = z
1−z and α1 = β = 1,we obtain Alexander integral operator

introduced in [1]

I(z) =

z∫
0

f1(t)
t

dt (15)

(11) For g1 = z
1−z , α1 = α, and β = 1,we obtain the integral operator

Fα(z) =

z∫
0

(
f(t)

t

)α

dt (16)

studied in [13].
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In order to derive our main results, we have to recall here the following univalence
criteria.

Lemma 1. ([15]) Let α be a complex number with Re(α) > 0. If f ∈ A satisfies

1− |z|2Re(α)

Re(α)

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U , then the integral operator

Fα(z) =

α

z∫
0

tα−1f ′(t)dt


1
α

is in the class S.

Lemma 2. ([16]) Let α ∈ C with Re(α) > 0. If f ∈ A satisfies

1− |z|2Re(α)

Re(α)

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U , then, for any complex number β with Re(β) ≥ Re(α), the integral
operator

Fβ(z) =

β

z∫
0

tβ−1f ′(t)dt


1
β

is in the class S.

Lemma 3. ([17]) Let β ∈ C with Re(β) > 0, c ∈ C with |c| ≤ 1, c 6= −1. If
f ∈ A satisfies ∣∣∣∣c |z|2β + (1− |z|2β)

zf ′′(z)
βf ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U , then the integral operator

Fβ(z) =

β

z∫
0

tβ−1f ′(t)dt


1
β

is in the class S.

Also, we need the following general Schwarz Lemma
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Lemma 4.([14]) Let the function f be regular in the disk UR = {z : |z| < R} ,with
|f(z)| < M for fixed M. If f(z) has one zero with multiplicity order bigger than m
for z = 0, then

|f(z)| ≤ M

Rm
|z|m (z ∈ UR).

The equality can hold only if

f(z) = eiθ (M/Rm) zm

where θ is constant.

In this paper, we obtain new sufficient conditions for the univalence of the general
integral operator Iβ(f1, ..., fn; g1, ..., gn)(z) defined by (2). Several corollaries and
consequences of the main results are also considered.

2. Univalence conditions for Iβ(f1, ..., fn; g1, ..., gn)

We first prove the following theorem.

Theorem 1. Let αi ∈ C for all i = 1, . . . , n and β ∈ C with

Re(β) ≥
n∑

i=1

|αi| (1− γi) > 0. (17)

If fi ∈ S(gi, γi), 0 ≤ γi < 1 for all i = 1, . . . , n , then the integral operator
Iβ(f1, ..., fn; g1, ..., gn) defined by (5) is analytic and univalent in U .

Proof. Define

h(z) =

z∫
0

n∏
i=1

(
(fi ∗ gi)(t)

t

)αi

dt,

thus we have

h′(z) =
n∏

i=1

(
(fi ∗ gi)(z)

z

)αi

. (18)

Differentiating both sides of (18) with respect to z logarithmically, we obtain

zh′′(z)
h′(z)

=
n∑

i=1

αi

(
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
)

thus we have ∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ n∑
i=1

|αi|
∣∣∣∣z(fi ∗ gi)′(z)

(fi ∗ gi)(z)
− 1

∣∣∣∣ . (19)
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Since fi ∈ S(gi, γi) for all i = 1, . . . , n, from (3), (17) and (19), we obtain

1− |z|2Re(β)

Re(β)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1− |z|2Re(β)

Re(β)

n∑
i=1

|αi|
∣∣∣∣z(fi ∗ gi)′(z)

(fi ∗ gi)(z)
− 1

∣∣∣∣
≤ 1

Re(β)

n∑
i=1

|αi| (1− γi)

≤ 1.

Applying Lemma 1 for the function h(z), we prove that Iβ(f1, ..., fn; g1, ..., gn) ∈ S.

Letting g1 = · · · = gn = z +
∞∑

n=2

(
Γ(n+1)Γ(2−η)

Γ(n+1−η) (1 + (n− 1))λ
)m

zn and γi = 0, for

all i = 1, . . . , n, in Theorem 1, we have:

Corollary 1. ([7])Let αi ∈ C for all i = 1, . . . , n and β ∈ C with

Re(β) ≥
n∑

i=1

|αi| > 0.

If ∣∣∣∣z(Dm,η
λ fi(z))′

Dm,η
λ fi(z)

− 1
∣∣∣∣ < 1 (z ∈ U ,m ∈ N0)

then the integral operator Im,η
β (f1, ..., fn)(z) defined by (7) is analytic and univalent

in U .

Making use of Lemma 2, we prove the following theorem.

Theorem 2. Let αi ∈ C , Mi ≥ 1 for all i = 1, . . . , n and β ∈ C with

Re(β) ≥
n∑

i=1

|αi| ((2− µi)Mi + 1) > 0. (20)

If fi ∈ B(gi, µi), 0 ≤ µi < 1 for all i = 1, . . . , n , and

|(fi ∗ gi)(z)| ≤ Mi (z ∈ U , i = 1, . . . , n),

then for any complex number β with Re(β) ≥ Re(α), the integral operator
Iβ(f1, ..., fn; g1, ..., gn) defined by (5) is analytic and univalent in U .

Proof. From the proof of Theorem 1, we have∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ n∑
i=1

|αi|
∣∣∣∣z(fi ∗ gi)′(z)

(fi ∗ gi)(z)
− 1

∣∣∣∣
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which readily shows that

1− |z|2Re(α)

Re(α)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1− |z|2Re(α)

Re(α)

n∑
i=1

|αi|
(∣∣∣∣z(fi ∗ gi)′(z)

(fi ∗ gi)(z)

∣∣∣∣ + 1
)

≤ 1− |z|2Re(α)

Re(α)

n∑
i=1

|αi|
(∣∣∣∣z2(fi ∗ gi)′(z)

[(fi ∗ gi)(z)]2

∣∣∣∣ ∣∣∣∣(fi ∗ gi)(z)
z

∣∣∣∣ + 1
)

.

Since |(fi ∗ gi)(z)| ≤ Mi (z ∈ U , i = 1, . . . , n), and fi ∈ B(gi, µi) for all i = 1, . . . , n,
we obtain

1− |z|2Re(α)

Re(α)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1− |z|2Re(α)

Re(α)

n∑
i=1

|αi|
(∣∣∣∣z2(fi ∗ gi)′(z)

[(fi ∗ gi)(z)]2
− 1

∣∣∣∣ Mi + Mi + 1
)

≤ 1
Re(α)

n∑
i=1

|αi| ((2− µi)Mi + 1) (z ∈ U),

which, in the light of the hypothesis (20), yields

1− |z|2Re(α)

Re(α)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1 (z ∈ U).

Applying Lemma 2 for the function h(z), we prove that Iβ(f1, ..., fn; g1, ..., gn) ∈ S.

Letting g1 = · · · = gn = z+
∞∑

n=2

(
Γ(n+1)Γ(2−η)

Γ(n+1−η) (1 + (n− 1))λ
)m

zn and µi = 0, for

all i = 1, . . . , n, in Theorem 2, we have:

Corollary 2. ([7])Let αi ∈ C , Mi ≥ 1 for all i = 1, . . . , n and β ∈ C with

Re(β) ≥
n∑

i=1

|αi| (2Mi + 1) > 0.

If ∣∣∣∣z2(Dm,η
λ fi(z))′

(Dm,η
λ fi(z))2

− 1
∣∣∣∣ < 1 (z ∈ U ,m ∈ N0)

and ∣∣Dm,η
λ fi(z)

∣∣ ≤ Mi (z ∈ U , i = 1, . . . , n),

then for any complex number β with Re(β) ≥ Re(α), the integral operator
Im,η
β (f1, ..., fn)(z) defined by (7) is analytic and univalent in U .

Next, we prove
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Theorem 3. Let αi ∈ C for all i = 1, . . . , n and β ∈ C with

Re(β) ≥
n∑

i=1

|αi| (1− γi) > 0

and let c ∈ C be such that

|c| ≤ 1− 1
Re(β)

n∑
i=1

|αi| (1− γi).

If fi ∈ S(gi, γi), 0 ≤ γi < 1 for all i = 1, . . . , n , then the integral operator
Iβ(f1, ..., fn; g1, ..., gn) defined by (5) is analytic and univalent in U .

Proof. From the proof of Theorem 1, we have

zh′′(z)
h′(z)

=
n∑

i=1

αi

[
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
]

. (21)

Thus, we have∣∣∣∣c |z|2β + (1− |z|2β)
zh′′(z)
βh′(z)

∣∣∣∣ =

∣∣∣∣∣c |z|2β + (
1− |z|2β

β
)

n∑
i=1

αi

[
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
]∣∣∣∣∣

≤ |c|+

∣∣∣∣∣1− |z|2β

β

∣∣∣∣∣
n∑

i=1

|αi|
∣∣∣∣z(fi ∗ gi)′(z)

(fi ∗ gi)(z)
− 1

∣∣∣∣
≤ |c|+ 1

|β|

n∑
i=1

|αi| (1− γi)

≤ |c|+ 1
Re(β)

n∑
i=1

|αi| (1− γi)

≤ 1.

Finally, by applying Lemma 3, we conclude that Iβ(f1, ..., fn; g1, ..., gn) ∈ S.

Letting g1 = · · · = gn = z +
∞∑

n=2

(
Γ(n+1)Γ(2−η)

Γ(n+1−η) (1 + (n− 1))λ
)m

zn and γi = 0, for

all i = 1, . . . , n, in Theorem 3, we have

Corollary 3. ([7])Let αi ∈ C for all i = 1, . . . , n and β ∈ C with

Re(β) ≥
n∑

i=1

|αi| > 0
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and let c ∈ C be such that

|c| ≤ 1− 1
Re(β)

n∑
i=1

|αi| .

If ∣∣∣∣z(Dm,η
λ fi(z))′

Dm,η
λ fi(z)

− 1
∣∣∣∣ < 1 (z ∈ U ,m ∈ N0)

then the integral operator Im,η
β (f1, ..., fn)(z) defined by (7) is analytic and univalent

in U .

Finally, we prove the following theorem.

Theorem 4. Let αi ∈ C , Mi ≥ 1 for all i = 1, . . . , n and β ∈ C with

Re(β) ≥
n∑

i=1

|αi| ((2− µi)Mi + 1) > 0. (22)

and let c ∈ C be such that

|c| ≤ 1− 1
Re(β)

n∑
i=1

|αi| ((2− µi)Mi + 1) .

If fi ∈ B(gi, µi), 0 ≤ µi < 1 for all i = 1, . . . , n , and

|(fi ∗ gi)(z)| ≤ Mi (z ∈ U , i = 1, . . . , n),

then the integral operator Iβ(f1, ..., fn; g1, ..., gn) defined by (5) is analytic and uni-
valent in U .

Proof. From (21), it follows that

zh′′(z)
h′(z)

=
n∑

i=1

αi

[
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
]

.
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Thus, we have∣∣∣∣c |z|2β + (1− |z|2β)
zh′′(z)
βh′(z)

∣∣∣∣ =

∣∣∣∣∣c |z|2β + (
1− |z|2β

β
)

n∑
i=1

αi

[
z(fi ∗ gi)′(z)
(fi ∗ gi)(z)

− 1
]∣∣∣∣∣

≤ |c|+

∣∣∣∣∣1− |z|2β

β

∣∣∣∣∣
n∑

i=1

|αi|
(∣∣∣∣z(fi ∗ gi)′(z)

(fi ∗ gi)(z)

∣∣∣∣ + 1
)

≤ |c|+ 1
|β|

n∑
i=1

|αi|
(∣∣∣∣z2(fi ∗ gi)′(z)

[(fi ∗ gi)(z)]2

∣∣∣∣ ∣∣∣∣(fi ∗ gi)(z)
z

∣∣∣∣ + 1
)

≤ |c|+ 1
|β|

n∑
i=1

|αi|
(∣∣∣∣z2(fi ∗ gi)′(z)

[(fi ∗ gi)(z)]2
− 1

∣∣∣∣ Mi + Mi + 1
)

≤ |c|+ 1
Re(β)

n∑
i=1

|αi| ((2− µi)Mi + 1) ≤ 1.

Applying Lemma 3 for the function h(z), we prove that Iβ(f1, ..., fn; g1, ..., gn) ∈ S.

Letting g1 = · · · = gn = z+
∞∑

n=2

(
Γ(n+1)Γ(2−η)

Γ(n+1−η) (1 + (n− 1))λ
)m

zn and µi = 0, for

all i = 1, . . . , n, in Theorem 4, we have:

Corollary 4.([7])Let αi ∈ C , Mi ≥ 1 for all i = 1, . . . , n and β ∈ C with

Re(β) ≥
n∑

i=1

|αi| (2Mi + 1) > 0.

and let c ∈ C be such that

|c| ≤ 1− 1
Re(β)

n∑
i=1

|αi| (2Mi + 1) .

If ∣∣∣∣z2(Dm,η
λ fi(z))′

(Dm,η
λ fi(z))2

− 1
∣∣∣∣ < 1 (z ∈ U ,m ∈ N0)

and ∣∣Dm,η
λ fi(z)

∣∣ ≤ Mi (z ∈ U , i = 1, . . . , n),

then the integral operator Im,η
β (f1, ..., fn)(z) defined by (7) is analytic and univalent

in U .

Remark 2. Taking different choices of g1, · · · , gn as stated in Section 1, the
above theorems lead to new sufficient conditions for univalency for the integral op-
erators defined in Remark 1.
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