ON $|(N, p, q)(E, 1)|_k$ **SUMMABILITY OF ORTHOGONAL SERIES**

Xhevat Z. Krasniqi

ABSTRACT. In this paper we obtain some sufficient conditions on $|(N, p, q)(E, 1)|_k$, $(1 \le k \le 2)$, summability of an orthogonal series. These conditions are expressed in terms of the coefficients of the orthogonal series. Several important results are also deduced as corollaries.

2000 Mathematics Subject Classification: 42C15, 40F05, 40G05.

Keywords and phrases: Orthogonal series, generalized Nörlund summability.

1. INTRODUCTION

Let $\{p_n\}$ and $\{p_n\}$ be two sequences of constants, real or complex, such that

$$P_n = p_0 + p_1 + p_2 + \dots + p_n = \sum_{v=0}^n p_v,$$

$$Q_n = q_0 + q_1 + q_2 + \dots + q_n = \sum_{v=0}^n q_v,$$

$$R_n = p_0 q_n + p_1 q_{n-1} + \dots + p_n q_0 = \sum_{v=0}^n p_v q_{n-v}$$

For two given sequences $\{p_n\}$ and $\{p_n\}$ the convolution $(p * q)_n$ is defined by

$$R_n := (p * q)_n := \sum_{v=0}^n p_{n-v} q_v.$$

Let $\sum_{n=0}^{\infty} a_n$ be a given infinite series with the sequence of its *n*-th partial sums $\{s_n\}$. We write

$$t_n^{p,q} = \frac{1}{R_n} \sum_{v=0}^n p_{n-v} q_v s_v.$$

If $R_n \neq 0$ for all *n*, the generalized Nörlund transform of the sequence $\{s_n\}$ is the sequence $\{t_n^{p,q}\}$.

If $t_n^{p,q} \to s$, as $n \to \infty$, then the series $\sum_{n=0}^{\infty} a_n$ is summable to s by generalized Nörlund method [1] and is denoted by

$$s_n \to s(N, p, q).$$

The necessary and sufficient conditions for (N, p, q) method of summability to be regular are

$$\sum_{v=0}^{n} |p_{n-v}q_v| = O(|R_n|),$$

and $p_{n-v} = o(|R_n|)$, as $n \to \infty$, for every fixed $v \ge 0$, for which $q_v \ne 0$.

The infinite series $\sum_{n=0}^{\infty} a_n$ is said to be absolutely summable (N, p, q) if the series

$$\sum_{n=1}^\infty |t_n^{p,q}-t_{n-1}^{p,q}|$$

converges, and we write in brief

$$\sum_{n=0}^{\infty} a_n \in |N, p, q|.$$

The |N, p, q| method of summability was introduced by Tanaka [5].

Let $\{\varphi_n(x)\}\$ be an orthonormal system defined in the interval (a, b). We assume that f(x) belongs to $L^2(a, b)$ and

$$f(x) \sim \sum_{n=0}^{\infty} c_n \varphi_n(x), \tag{1}$$

where $c_n = \int_a^b f(x)\varphi_n(x)dx$, (n = 0, 1, 2, ...). We write

$$R_n^j := \sum_{v=j}^n p_{n-v} q_v, \quad R_n^{n+1} = 0, \ R_n^0 = R_n.$$

Regarding to the series (1) Okuyama [6] has proved the following two theorems. **Theorem 1.1.** If the series

$$\sum_{n=1}^{\infty} \left\{ \sum_{j=1}^{n} \left(\frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}} \right)^2 |c_j|^2 \right\}^{\frac{1}{2}}$$

converges, then the orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x)$$

is summable |N, p, q| almost everywhere.

Theorem 1.2. Let $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n)/n\}$ is a nonincreasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n\Omega(n)}$ converges. Let $\{p_n\}$ and $\{q_n\}$ be non-negative. If the series $\sum_{n=1}^{\infty} |c_n|^2 \Omega(n) w(n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} c_n \varphi_n(x) \in |N, p, q|$ almost everywhere, where w(n) is defined by

$$w(j) := j^{-1} \sum_{n=j}^{\infty} n^2 \left(\frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}} \right)^2$$

Further, we denote by

$$E_n^1 = \frac{1}{2^n} \sum_{v=0}^n \binom{n}{v} s_v$$

the Euler transform of the sequence $\{s_n\}$.

If $E_n^1 \to s$, as $n \to \infty$, then the series $\sum_{n=0}^{\infty} a_n$ is said to be (E, 1) summable to s [2].

The composition of the $t_n^{p,q}$ mean with E_n^1 mean is defined by equality

$$\begin{aligned} t_n^{p,q;E} &= \frac{1}{R_n} \sum_{v=0}^n p_{n-v} q_v E_v^1 \\ &= \frac{1}{R_n} \sum_{v=0}^n \frac{p_{n-v} q_v}{2^v} \sum_{j=0}^v \binom{v}{j} s_j. \end{aligned}$$

If $t_n^{p,q;E} \to s$, as $n \to \infty$, then the series $\sum_{n=0}^{\infty} a_n$ is said to be (N, p, q)(E, 1) summable to s [3].

We introduce the concept of the absolute (N, p, q)(E, 1) summability of order k, (k = 1, 2, ...), with the following definition.

The infinite series $\sum_{n=0}^{\infty} a_n$ is said to be absolutely summable $|(N, p, q)(E, 1)|_k$ if for $k \ge 1$ the series

$$\sum_{n=1}^{\infty} n^{k-1} |t_n^{p,q;E} - t_{n-1}^{p,q;E}|^k$$

converges, and we write

$$\sum_{n=0}^{\infty} a_n \in |(N, p, q)(E, 1)|_k.$$

The main purpose of the present paper is to study the $|(N, p, q)(E, 1)|_k$ summability of the orthogonal series (1) for $1 \le k \le 2$.

Throughout K denotes a positive constant that it may depends only on k, and be different in different relations.

The following lemma due to Beppo Levi (see, for example [4]) is often used in the theory of functions. It will need us to prove main results.

Lemma 1.3. If $f_n(t) \in L(E)$ are non-negative functions and

$$\sum_{n=1}^{\infty} \int_{E} f_n(t) dt < \infty, \tag{2}$$

then the series

$$\sum_{n=1}^{\infty} f_n(t)$$

converges almost everywhere on E to a function $f(t) \in L(E)$. Moreover, the series (2) is also convergent to f in the norm of L(E).

2. Main Results

First we put

$$H_v^{\mu} := rac{1}{2^v} \sum_{j=\mu}^v inom{v}{j}$$
 and $\overline{R}_v^{\mu} := H_v^{\mu} R_v^{\mu}.$

We prove the following theorem.

Theorem 2.1. If the series

$$\sum_{n=1}^{\infty} \left\{ n^{k-1} \sum_{\mu=1}^{n} \left(\frac{\overline{R}_{n}^{\mu}}{\overline{R}_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{\overline{R}_{n-1}} \right)^{2} |c_{\mu}|^{2} \right\}^{\frac{k}{2}}$$

converges for $1 \le k \le 2$, then the orthogonal series

$$\sum_{n=0}^{\infty} a_n \varphi_n(x)$$

is summable $|(N, p, q)(E, 1)|_k$ almost everywhere.

Proof. Let 1 < k < 2. For the $t_n^{p,q;E}(x)$ transform of the partial sums $s_j = \sum_{\mu=0}^{j} c_{\mu}\varphi_{\mu}(x)$ of the orthogonal series $\sum_{\mu=0}^{\infty} c_{\mu}\varphi_{\mu}(x)$ we have that

$$\begin{split} t_n^{p,q;E}(x) &= \frac{1}{R_n} \sum_{v=0}^n \frac{p_{n-v}q_v}{2^v} \sum_{j=0}^v \binom{v}{j} \sum_{\mu=0}^j c_\mu \varphi_\mu(x) \\ &= \frac{1}{R_n} \sum_{v=0}^n p_{n-v}q_v \sum_{\mu=0}^v c_\mu \varphi_\mu(x) \frac{1}{2^v} \sum_{j=\mu}^v \binom{v}{j} \\ &= \frac{1}{R_n} \sum_{v=0}^n p_{n-v}q_v \sum_{\mu=0}^v H_v^\mu c_\mu \varphi_\mu(x) \\ &= \frac{1}{R_n} \sum_{\mu=0}^n H_n^\mu c_\mu \varphi_\mu(x) \sum_{v=\mu}^n p_{n-v}q_v \\ &= \frac{1}{R_n} \sum_{\mu=0}^n H_n^\mu R_n^\mu c_\mu \varphi_\mu(x) \\ &= \frac{1}{R_n} \sum_{\mu=0}^n \overline{R}_n^\mu c_\mu \varphi_\mu(x). \end{split}$$

Since

$$\frac{\overline{R}_{n}^{0}}{R_{n}} - \frac{\overline{R}_{n-1}^{0}}{R_{n-1}} = \frac{\overline{H}_{n}^{0} R_{n}^{0}}{R_{n}} - \frac{\overline{H}_{n-1}^{0} R_{n-1}^{0}}{R_{n-1}} = \frac{1}{2^{n}} \sum_{j=0}^{n} \binom{n}{j} - \frac{1}{2^{n-1}} \sum_{j=0}^{n-1} \binom{n-1}{j} = 0,$$

then

$$\begin{split} \bar{\Delta}t_{n}^{p,q;E}(x) &:= t_{n}^{p,q;E}(x) - t_{n-1}^{p,q;E}(x) \\ &= \frac{1}{R_{n}} \sum_{\mu=0}^{n} \overline{R}_{n}^{\mu} c_{\mu} \varphi_{\mu}(x) - \frac{1}{R_{n-1}} \sum_{\mu=0}^{n-1} \overline{R}_{n-1}^{\mu} c_{\mu} \varphi_{\mu}(x) \\ &= \frac{1}{R_{n}} \sum_{\mu=0}^{n} \overline{R}_{n}^{\mu} c_{\mu} \varphi_{\mu}(x) - \frac{1}{R_{n-1}} \sum_{\mu=0}^{n} \overline{R}_{n-1}^{\mu} c_{\mu} \varphi_{\mu}(x) \\ &= \sum_{\mu=1}^{n} \left(\frac{\overline{R}_{n}^{\mu}}{R_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{R_{n-1}} \right) c_{\mu} \varphi_{\mu}(x). \end{split}$$

Using the orthogonality, and Hölder's inequality with $p = \frac{2}{k} > 1$ and q such that

p+q=pq, we obtain

$$\int_{a}^{b} |\bar{\Delta}t_{n}^{p,q;E}(x)|^{k} dx \leq (b-a)^{1-\frac{k}{2}} \left(\int_{a}^{b} |t_{n}^{p,q;E}(x) - t_{n-1}^{p,q;E}(x)|^{2} dx \right)^{\frac{k}{2}} \\ = (b-a)^{1-\frac{k}{2}} \left[\sum_{\mu=1}^{n} \left(\frac{\overline{R}_{n}^{\mu}}{R_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{R_{n-1}} \right)^{2} |c_{\mu}|^{2} \right]^{\frac{k}{2}}.$$

Whence, the series

$$\sum_{n=1}^{\infty} n^{k-1} \int_{a}^{b} |\bar{\bigtriangleup}t_{n}^{p,q;E}(x)|^{k} dx \le K \sum_{n=1}^{\infty} n^{k-1} \left[\sum_{\mu=1}^{n} \left(\frac{\overline{R}_{n}^{\mu}}{R_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{R_{n-1}} \right)^{2} |c_{\mu}|^{2} \right]^{\frac{k}{2}}$$
(3)

converges since the last does by the assumption. From this fact and since the functions $|\bar{\Delta}t_n^{p,q;E}(x)|$ are non-negative, then by the Lemma 1.3 the series

$$\sum_{n=1}^{\infty} n^{k-1} |\bar{\bigtriangleup} t_n^{p,q;E}(x)|^k$$

converges almost everywhere. The theorem for k = 1, 2 can be proved in a same way. Namely, for k = 2 we apply only the orthogonality, until for k = 1 we apply Schwarz's inequality. This completes the proof of the theorem.

We can specialize the sequences $\{p_n\}$ and $\{q_n\}$ so that $|(N, p, q)(E, 1)|_k$ summability method reduces to some particular methods of the absolute summability. Most important particular cases of the $|(N, p, q)(E, 1)|_k$ summability method are:

- 1) If $q_n = 1$ for all n, then $|(N, p, q)(E, 1)|_k$ summability reduces to $|(N, p_n)(E, 1)|_k$ summability;
- 2) If $p_n = 1/(n+1)$ and $q_n = 1$ for all n, then $|(N, p, q)(E, 1)|_k$ summability reduces to $|(N, 1/(n+1))(E, 1)|_k$ summability;
- 3) If $p_n = 1$ for all n, then $|(N, p, q)(E, 1)|_k$ summability reduces to $|(\overline{N}, q_n)(E, 1)|_k$ summability;
- 4) If $p_n = \binom{n+\alpha-1}{\alpha-1}$, $\alpha > 0$, and $q_n = 1$ for all n, then $|(N, p, q)(E, 1)|_k$ summability reduces to $|(C, \alpha)(E, 1)|_k$ summability.

From theorem 2.1, for three of the above cases, we have the following corollaries (the fourth one can be discussed in a similar way).

Corollary 2.2. If the series

$$\sum_{n=1}^{\infty} \left\{ n^{k-1} \sum_{\mu=1}^{n} \left(\frac{H_n^{\mu} P_{n-\mu}}{P_n} - \frac{H_{n-1}^{\mu} P_{n-1-\mu}}{P_{n-1}} \right)^2 |c_{\mu}|^2 \right\}^{\frac{k}{2}}$$

converges for $1 \le k \le 2$, then the orthogonal series

$$\sum_{n=0}^{\infty} a_n \varphi_n(x)$$

is summable $|(N, p_n)(E, 1)|_k$ almost everywhere.

Corollary 2.3. If the series

$$\sum_{n=1}^{\infty} \left\{ n^{k-1} \sum_{\mu=1}^{n} \left[H_n^{\mu} \left(1 - \frac{\mu}{n+1} \right) - H_{n-1}^{\mu} \left(1 - \frac{\mu}{n} \right) \right]^2 |c_{\mu}|^2 \right\}^{\frac{k}{2}}$$

converges for $1 \le k \le 2$, then the orthogonal series

$$\sum_{n=0}^{\infty} a_n \varphi_n(x)$$

is summable $|(N, 1/(n+1))(E, 1)|_k$ almost everywhere.

Corollary 2.4. If the series

$$\sum_{n=1}^{\infty} \left\{ n^{k-1} \sum_{\mu=1}^{n} \left[H_n^{\mu} \left(1 - \frac{Q_{\mu-1}}{Q_n} \right) - H_{n-1}^{\mu} \left(1 - \frac{Q_{\mu-1}}{Q_{n-1}} \right) \right]^2 |c_{\mu}|^2 \right\}^{\frac{k}{2}}$$

converges for $1 \le k \le 2$, then the orthogonal series

$$\sum_{n=0}^{\infty} a_n \varphi_n(x)$$

is summable $|(\overline{N}, q_n)(E, 1)|_k$ almost everywhere.

Now we shall prove a general theorem concerning to $|(N, p, q)(E, 1)|_k$ summability of an orthogonal series which involves a positive sequence with some additional conditions.

To do this first we put

$$\mathcal{Q}^{(k)}(\mu) := \frac{1}{\mu^{\frac{2}{k}-1}} \sum_{n=\mu}^{\infty} n^{\frac{2}{k}} \left(\frac{\overline{R}_{n}^{\mu}}{\overline{R}_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{\overline{R}_{n-1}} \right)^{2}$$
(4)

then the following theorem holds true.

Theorem 2.5. Let $1 \leq k \leq 2$ and $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n)/n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n\Omega(n)}$ converges. Let $\{p_n\}$ and $\{q_n\}$ be non-negative. If the series $\sum_{n=1}^{\infty} |a_n|^2 \Omega^{\frac{2}{k}-1}(n) \mathcal{Q}^{(k)}(n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} a_n \varphi_n(x) \in |(N, p, q)(E, 1)|_k$ almost everywhere, where $\mathcal{Q}^{(k)}(n)$ is defined by (4).

Proof. Applying Hölder's inequality to the inequality (3) we get that

$$\begin{split} &\sum_{n=1}^{\infty} n^{k-1} \int_{a}^{b} |\bar{\Delta}t_{n}^{p,q;E}(x)|^{k} dx \leq \\ &\leq K \sum_{n=1}^{\infty} n^{k-1} \left[\sum_{\mu=1}^{n} \left(\frac{\overline{R}_{n}^{\mu}}{R_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{R_{n-1}} \right)^{2} |c_{\mu}|^{2} \right]^{\frac{k}{2}} \\ &= K \sum_{n=1}^{\infty} \frac{1}{(n\Omega(n))^{\frac{2-k}{2}}} \left[n\left(\Omega(n)\right)^{\frac{2}{k}-1} \sum_{\mu=1}^{n} \left(\frac{\overline{R}_{n}^{\mu}}{R_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{R_{n-1}} \right)^{2} |c_{\mu}|^{2} \right]^{\frac{k}{2}} \\ &\leq K \left(\sum_{n=1}^{\infty} \frac{1}{(n\Omega(n))} \right)^{\frac{2-k}{2}} \left[\sum_{n=1}^{\infty} n\left(\Omega(n)\right)^{\frac{2}{k}-1} \sum_{\mu=1}^{n} \left(\frac{\overline{R}_{n}^{\mu}}{R_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{R_{n-1}} \right)^{2} |c_{\mu}|^{2} \right]^{\frac{k}{2}} \\ &\leq K \left\{ \sum_{\mu=1}^{\infty} |c_{\mu}|^{2} \sum_{n=\mu}^{\infty} n\left(\Omega(n)\right)^{\frac{2}{k}-1} \left(\frac{\overline{R}_{n}^{\mu}}{R_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{R_{n-1}} \right)^{2} \right\}^{\frac{k}{2}} \\ &\leq K \left\{ \sum_{\mu=1}^{\infty} |c_{\mu}|^{2} \left(\frac{\Omega(\mu)}{\mu} \right)^{\frac{2}{k}-1} \sum_{n=\mu}^{\infty} n^{\frac{2}{k}} \left(\frac{\overline{R}_{n}^{\mu}}{R_{n}} - \frac{\overline{R}_{n-1}^{\mu}}{R_{n-1}} \right)^{2} \right\}^{\frac{k}{2}} \\ &= K \left\{ \sum_{\mu=1}^{\infty} |c_{\mu}|^{2} \Omega^{\frac{2}{k}-1}(\mu) \mathcal{Q}^{(k)}(\mu) \right\}^{\frac{k}{2}}, \end{split}$$

which is finite by assumption. Using again the Lemma 1.3 we obtain the proof of the theorem.

Remark 2.6. It should be noted that from Theorem 2.5 one also can obtain the versions of the corollaries 2.2–2.4.

References

[1] D. Borwein, On product of sequences, J. London Math. Soc., Vol. 33, (1958), 352–357.

[2] G. H. Hardy, *Divergent series*, Vol. I, Cambridge University Press, Cambridge, UK, 2nd edition, 1959.

[3] H. K. Nigam, A. Sharma, On(N, p, q)(E, 1) summability of Fourier series, Inter. J. Math. and Math. Sci., Vol. 2009, 8 pages.

[4] I. P. Natanson, Theory of functions of a real variable (2 vols), Frederick Ungar, New York 1955, 1961. MR 16-804, 26 # 6309.

 [5] M. Tanaka, On generalized Nörlund methods of summability, Bull. Austral. Math. Soc. 19, (1978), 381-402.

[6] Y. Okuyama, On the absolute generalized Nörlund summability of orthogonal series, Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165.

Xhevat Z. Krasniqi

Department of Mathematics and Computer Sciences University of Prishtina

Avenue "Mother Theresa " 5, Prishtinë 10000, KOSOVË

email: xheki00@hotmail.com