APPLICATIONS OF THE ROPER-SUFFRIDGE EXTENSION OPERATOR TO ALMOST STARLIKE MAPPINGS OF COMPLEX ORDER λ

Camelia Mădălina Bălăeţi and Veronica Oana Nechita

Abstract. The Roper-Suffridge extension operator provides a way of extending a (locally) univalent function $f \in H(U)$ to a (locally) biholomorphic mapping $F \in$ $H\left(B^{n}\right)$. In this paper we consider certain generalizations of the operator and we show that if f is an almost starlike function of complex order λ then F is an almost starlike mapping of complex order λ. Various particular cases will be also considered.

2000 Mathematics Subject Classification: 32H02, 30C45.

1. Introduction and preliminaries

Let \mathbf{C}^{n} denote the space of n-complex variables $z=\left(z_{1}, \cdots, z_{n}\right)$ with respect to the Euclidean inner product $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ and the norm $\|z\|=\langle z, z\rangle^{1 / 2}$.

For $n \geq 2$, let $\widetilde{z}=\left(z_{2}, \cdots, z_{n}\right) \in \mathbf{C}^{n-1}$ such that $z=\left(z_{1}, \widetilde{z}\right) \in \mathbf{C}^{n}$. The open ball $\left\{z \in \mathbf{C}^{n}:\|z\|<r\right\}$ is denoted by B_{r}^{n} and the unit ball B_{1}^{n} by B^{n}. In the case of one complex variable, let $U_{r}:=B_{r}^{n}$ and $U:=U_{1}$. If G is an open set in \mathbf{C}^{n}, let $H(G)$ be the set of holomorphic maps from G into \mathbf{C}^{n}. If $f \in H\left(B^{n}\right)$, we say that f is normalized if $f(0)=0$ and $D f(0)=I_{n}$.

Let $S\left(B^{n}\right)$ be the set of normalized biholomorphic mappings on B^{n}. We denote the classes of normalized convex and starlike mappings on B^{n} by $K\left(B^{n}\right)$ and $S^{*}\left(B^{n}\right)$ respectively. In one variable, we write $S(U)=S, K(U)=K$ and $S^{*}(U)=S^{*}$.

Definition 1.1 Let $f: B^{n} \rightarrow \mathbf{C}^{n}$ be a normalized locally biholomorphic mapping and let $A: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be a linear operator such that $\operatorname{Re}\langle A(z), z\rangle>0$ for $z \in \mathbf{C}^{n} \backslash\{0\}$. We say that f is spirallike with respect to A if

$$
\operatorname{Re}\left\langle[D f(z)]^{-1} A f(z), z\right\rangle>0, \quad z \in B^{n} \backslash\{0\} .
$$

In the case that $A=e^{i \delta} I_{n}$, where $|\delta|<\frac{\pi}{2}$, we say that f is spirallike of type δ.

Note that any spirallike mapping with respect to a linear operator A such that $\operatorname{Re}\langle A(z), z\rangle>0$ for $z \in \mathbf{C}^{n} \backslash\{0\}$ is biholomorphic (see [11]). We denote by \widehat{S}_{δ}, the class of spirallike mappings of type $\delta,|\delta|<\frac{\pi}{2}$. Further details about spirallike mappings with respect to linear operators may be found in [11] and [4].

We introduced in [1] a new class of normalized locally biholomorphic mappings as it follows.

Definition 1.2 Let f be a normalized locally biholomorphic mapping on B^{n}, and let $\lambda \in \mathbf{C}$, with $\operatorname{Re} \lambda \leq 0$. The function f is said to be an almost starlike mapping of complex order λ if

$$
\operatorname{Re}\left\{(1-\lambda)\left\langle[D f(z)]^{-1} f(z), z\right\rangle\right\}>-\operatorname{Re} \lambda\|z\|^{2}, z \in B^{n} \backslash\{0\} .
$$

It is easy to see that in the case of one variable, the above inequality reduces to the following

$$
\operatorname{Re}\left[(1-\lambda) \frac{f(z)}{z f^{\prime}(z)}\right] \geq-\operatorname{Re} \lambda, z \in U
$$

The interest of the study of almost starlikeness of complex order λ arises from the fact that every almost starlike mapping f of complex order λ is also spirallike with respect to the operator $A=(1-\lambda) I_{n}$, and hence f is biholomorphic on B^{n} (see [1]).

Remark 1.3 If $\lambda=\frac{\alpha}{\alpha-1}$ in Definition 1.1, where $\alpha \in[0,1)$, we obtain the notion of almost starlikeness of order α (see [12]). On the other hand, if $\lambda=i \tan \delta$, $\delta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ we obtain the usual notion of spirallikeness of type δ and when $\lambda=0$, we obtain the usual notion of starlikeness.

In 1995, K.A. Roper and T.J. Suffridge [10] introduced an extension operator. This operator is defined for normalized locally univalent functions f on the unit disc U in \mathbf{C} by

$$
\Phi_{n}(f)(z)=\left(f\left(z_{1}\right), \sqrt{f^{\prime}\left(z_{1}\right)} \widetilde{z}\right)
$$

where $z=\left(z_{1}, \widetilde{z}\right)$ belongs to the unit ball B^{n} in $\mathbf{C}^{n}, z_{1} \in U, \widetilde{z}=\left(z_{2}, \cdots, z_{n}\right) \in \mathbf{C}^{n-1}$ and the branch of the square root is chosen such that $\sqrt{f^{\prime}(0)}=1$.

The Roper-Suffridge extension operator has remarkable properties.

1. If f is a normalized convex function on U, then $\Phi_{n}(f)$ is a normalized convex mapping on B^{n}.
2. If f is a normalized starlike function on U, then $\Phi_{n}(f)$ is a normalized starlike mapping on B^{n}.
3. If f is a normalized Bloch function on U, then $\Phi_{n}(f)$ is a normalized Bloch mapping on B^{n}.

These results were proved by K.A. Roper and T.J. Suffridge [10] and I. Graham and G. Kohr [5].

In [6], I. Graham, G. Kohr and M. Kohr generalized the operator Φ_{n}, by

$$
\Phi_{n, \gamma}(f)(z)=\left(f\left(z_{1}\right),\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma} \widetilde{z}\right),
$$

where $\gamma \in\left[0, \frac{1}{2}\right], f, z, z_{1}$ and \widetilde{z} are defined as above and the branch of the power function is chosen such that $\left.\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}\right|_{z_{1}=0}=1$. They proved that, if f is a normalized starlike function on U, then $\Phi_{n, \gamma}(f)$ is a normalized starlike mapping on B^{n}, if f is a normalized Bloch function on U, then $\Phi_{n, \gamma}(f)$ is a normalized Bloch mapping on B^{n} and the convexity is not preserved on B^{n} for $\gamma \in\left[0, \frac{1}{2}\right)$.

Other results about the operator $\Phi_{n, \gamma}$ were obtained by using Loewner chains. In [12], the authors showed that if f is an almost starlike function of order α on U, then $\Phi_{n, \gamma}(f)$ is an almost starlike mapping of order α on B^{n}. We proved in [1] that if f is an almost starlike function of complex order λ on U, then $\Phi_{n, \gamma}(f)$ is an almost starlike mapping of complex order λ on B^{n}.
I. Graham and G. Kohr introduced a new extension operator in [5], by modifying the coefficient of \widetilde{z}. They defined

$$
\Phi_{n, \beta}(f)(z)=\left(f\left(z_{1}\right),\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta} \widetilde{z}\right)
$$

where $\beta \in[0,1], f, z, z_{1}$ and \widetilde{z} are given as above and the branch of the power function is chosen such that $\left.\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\right|_{z_{1}=0}=1$. They proved that the operator $\Phi_{n, \beta}$ is preserving starlikeness and spirallikeness of type δ and also that it maps a Bloch function f to a Bloch mapping on B^{n}. Convexity is preserved only for $\beta=\frac{1}{2}$. The case $\beta=1$ was previously considered and discussed by J.A. Pfaltzgraff and T.J. Suffridge [9].

Moreover, this operator preserves almost starlikeness of order α (see [3]) and almost starlikeness of complex order λ (see [1]).

In 2002, I. Graham, H. Hamada, G. Kohr and T.J. Suffridge [7] generalized the Roper-Suffridge extension operator follows

$$
\Phi_{n, \beta, \gamma}(f)(z)=\left(f\left(z_{1}\right),\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma} \widetilde{z}\right)
$$

where $\beta \geq 0$ and $\gamma \geq 0, f, z, z_{1}$ and \widetilde{z} are given as above and the branches of the power functions are chosen such that $\left.\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\right|_{z_{1}=0}=1$ and $\left.\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}\right|_{z_{1}=0}=1$. They proved the next result (see [7]).

Theorem 1.4 Assume $\beta \in[0,1]$ and $\gamma \in\left[0, \frac{1}{2}\right]$ such that $\beta+\gamma \leq 1$. Let f be a locally univalent function on U. If $f \in S^{*}$ then $\Phi_{n, \beta, \gamma}(f) \in S^{*}\left(B^{n}\right)$.

The proof uses the characterisation of starlikeness in terms of Loewner chains. However, only for $\beta=0$ and $\gamma=1 / 2$, that is only when the extension operator is the original Roper-Suffridge operator, convexity is preserved. It was shown in [3] that the operator preserves almost starlikeness of order α and in [1] we proved, by using the theory of Loewner chains, that the operator maps an almost starlike function of complex order λ to an almost starlike mapping of complex order λ on B^{n}.

We next give the following two lemmas. Lemma 1.5 gives the well-known Herglotz representation and Lemma 1.6 can be obtained easily.

Lemma 1.5[2] Let f be a holomorphic function on the unit disc U. Then $\operatorname{Re} f(z) \geq 0, \forall z \in U$, if and only if there exists an increasing function, μ, on $[0,2 \pi]$, which satisfies $\mu(2 \pi)-\mu(0)=\operatorname{Re} f(0)$, such that

$$
f(z)=\int_{0}^{2 \pi} \frac{1+z e^{-i \theta}}{1-z e^{-i \theta}} d \mu(\theta)+i \operatorname{Im} f(0), z \in U
$$

Lemma 1.6 Suppose $w \in \mathbf{C}$, then we have

1. $\operatorname{Re}\left(1-w^{2}\right)(1-\bar{w})^{2}=\left(1-|w|^{2}\right)|1-w|^{2}$;
2. $\operatorname{Re}\left(1+2 w-w^{2}\right)(1-\bar{w})^{2}=\left(1-|w|^{2}\right)^{2}-2|w|^{2}|1-w|^{2}$.

The aim of the present paper is to show that the operator $\Phi_{n, \beta, \gamma}$ preserves the notion of almost starlikeness of complex order λ from dimension one into the n dimensional case. This provides a way to obtain concrete examples of almost starlike mappings of complex order on the unit ball B^{n}. Various particular cases will be also considered.

2.MAIN RESULTS

We begin this section with the main result of this paper.
Theorem 2.1 Let $\lambda \in \mathbf{C}$ with $\operatorname{Re} \lambda \leq 0$ and let f be an almost starlike function of complex order λ on the unit disc U. Then F is an almost starlike mapping of complex order λ on B^{n}, where

$$
F(z)=\Phi_{n, \beta, \gamma}(f)(z)=\left(f\left(z_{1}\right),\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma} \widetilde{z}\right)
$$

$z=\left(z_{1}, \widetilde{z}\right) \in B^{n}, z_{1} \in U, \widetilde{z}=\left(z_{2}, \cdots, z_{n}\right) \in \mathbf{C}^{n-1}, \beta \in[0,1], \gamma \in\left[0, \frac{1}{2}\right]$ such that $\beta+\gamma \leq 1, f\left(z_{1}\right) \neq 0$ for $z_{1} \in U \backslash\{0\}$ and the branches of the power functions $\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta},\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}$ are chosen to satisfy the conditions $\left.\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\right|_{z_{1}=0}=1$ and $\left.\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}\right|_{z_{1}=0}=1$ respectively.

Proof. By the definition of almost starlike mapping of complex order λ, we need to prove that the following inequality holds,

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda)\left\langle[D F(z)]^{-1} F(z), z\right\rangle\right\} \geq-\operatorname{Re} \lambda\|z\|^{2} \tag{1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\operatorname{Re}(1-\lambda) \bar{z}[D F(z)]^{-1} F(z) \geq-\operatorname{Re} \lambda\|z\|^{2} \tag{2}
\end{equation*}
$$

for all $z \in B^{n}$.
For $z=\left(z_{1}, \widetilde{z}\right)$ we have two cases.
Case I: If $\widetilde{z}=0$, then we can get the conclusion easily.
Case II: Suppose $\widetilde{z} \neq 0$.
Obviously, the mapping F is holomorphic at every point $z=\left(z_{1}, \widetilde{z}\right) \in \bar{B}^{n}$ with $\widetilde{z} \neq 0$. Let $z=\zeta u, u \in \mathbf{C}^{n},\|u\|=1$, and $\zeta \in \bar{U} \backslash\{0\}$, then we have

$$
\begin{gathered}
\operatorname{Re}(1-\lambda) \bar{z}[D F(z)]^{-1} F(z) \geq-\operatorname{Re} \lambda\|z\|^{2} \Leftrightarrow \\
\frac{\operatorname{Re}(1-\lambda) \bar{z}[D F(z)]^{-1} F(z)+\operatorname{Re} \lambda\|z\|^{2}}{\|z\|^{2}} \geq 0 \Leftrightarrow \\
\frac{\operatorname{Re}(1-\lambda) \bar{\zeta} \bar{u}[D F(\zeta u)]^{-1} F(\zeta u)+\operatorname{Re} \lambda|\zeta|^{2}}{|\zeta|^{2}} \geq 0 \Leftrightarrow \\
\operatorname{Re} \frac{(1-\lambda) \bar{u}[D F(\zeta u)]^{-1} F(\zeta u)}{\zeta}+\operatorname{Re} \lambda \geq 0
\end{gathered}
$$

Since the expression

$$
\operatorname{Re} \frac{(1-\lambda) \bar{u}[D F(\zeta u)]^{-1} F(\zeta u)}{\zeta}+\operatorname{Re} \lambda
$$

is the real part of a holomorphic function with respect to ζ, it is a harmonic function. By the minimum principle for harmonic functions, we know that it attains its minimum on $|\zeta|=1$, so we only need to prove (1) for all $z=\left(z_{1}, \widetilde{z}\right) \in \partial B^{n}, \widetilde{z} \neq 0$.

From

$$
F(z)=\binom{f\left(z_{1}\right)}{\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma} \widetilde{z}}
$$

we get

$$
D F(z)=\left(\begin{array}{cc}
f^{\prime}\left(z_{1}\right) & 0 \\
\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\left(f^{\prime}\left(z_{1}\right)^{\gamma}\left[\beta\left(\frac{f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}-\frac{1}{z_{1}}\right)+\gamma \frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\right]\right. \\
\widetilde{z} & \left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma} I_{n-1}
\end{array}\right)
$$

and

$$
[D F(z)]^{-1}=\left(\begin{array}{cc}
\frac{1}{f^{\prime}\left(z_{1}\right)} & 0 \\
{\left[\beta\left(\frac{1}{z_{1} f^{\prime}\left(z_{1}\right)}-\frac{1}{f\left(z_{1}\right)}\right)-\gamma \frac{f^{\prime \prime}\left(z_{1}\right)}{\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right] \widetilde{z}\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{-\beta}\left(f^{\prime}\left(z_{1}\right)\right)^{-\gamma} I_{n-1}}
\end{array}\right) .
$$

Therefore

$$
\begin{gathered}
(1-\lambda)[D F(z)]^{-1} F(z)+\operatorname{Re} \lambda z= \\
=\binom{(1-\lambda) \frac{f\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}+\operatorname{Re} \lambda z_{1}}{(1-\lambda)\left[\beta\left(\frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}-1\right)-\gamma \frac{f^{\prime \prime}\left(z_{1}\right) f\left(z_{1}\right)}{\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right] \widetilde{z}+(1-\lambda+\operatorname{Re} \lambda) \widetilde{z}}
\end{gathered}
$$

and hence

$$
\begin{gather*}
\operatorname{Re}\left\{(1-\lambda) \bar{z}[D F(z)]^{-1} F(z)+\operatorname{Re} \lambda\|z\|^{2}\right\}=\operatorname{Re}\left\{(1-\lambda)\left|z_{1}\right|^{2} \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}+\operatorname{Re} \lambda\left|z_{1}\right|^{2}+\right. \\
\left.(1-\lambda)\|\widetilde{z}\|^{2}\left[\beta\left(\frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}-1\right)-\gamma \frac{f^{\prime \prime}\left(z_{1}\right) f\left(z_{1}\right)}{\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right]+(1-\lambda+\operatorname{Re} \lambda)\|\widetilde{z}\|^{2}\right\} \\
=\operatorname{Re}\left\{\left[(1-\lambda)\left|z_{1}\right|^{2}+(1-\lambda)\|\widetilde{z}\|^{2} \beta\right] \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}+\operatorname{Re} \lambda\left|z_{1}\right|^{2}+\right. \tag{3}\\
\left.[1-\lambda+\operatorname{Re} \lambda-\beta(1-\lambda)]\|\widetilde{z}\|^{2}-\gamma\|\widetilde{z}\|^{2}(1-\lambda) \frac{f^{\prime \prime}\left(z_{1}\right) f\left(z_{1}\right)}{\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right\} \\
=\operatorname{Re}\left\{\left[\left|z_{1}\right|^{2}+\left(1-\left|z_{1}\right|\right)^{2} \beta\right](1-\lambda) \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}+\operatorname{Re} \lambda\left|z_{1}\right|^{2}+\right. \\
\left.[1-\lambda+\operatorname{Re} \lambda-\beta(1-\lambda)]\left(1-\left|z_{1}\right|^{2}\right)-\gamma\left(1-\left|z_{1}\right|^{2}\right)(1-\lambda) \frac{f^{\prime \prime}\left(z_{1}\right) f\left(z_{1}\right)}{\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right\}
\end{gather*}
$$

Let

$$
p\left(z_{1}\right)=(1-\lambda) \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}+\operatorname{Re} \lambda
$$

then

$$
\begin{aligned}
p^{\prime}\left(z_{1}\right) & =(1-\lambda) \frac{\left(f^{\prime}\left(z_{1}\right)\right)^{2} z_{1}-f\left(z_{1}\right) f^{\prime}\left(z_{1}\right)-f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right) z_{1}}{\left(z_{1} f^{\prime}\left(z_{1}\right)\right)^{2}} \\
& =(1-\lambda)\left[\frac{1}{z_{1}}-\frac{f\left(z_{1}\right)}{z_{1}^{2} f^{\prime}\left(z_{1}\right)}-\frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{z_{1}\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right]
\end{aligned}
$$

thus we have

$$
\begin{equation*}
(1-\lambda) \frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{\left(f^{\prime}\left(z_{1}\right)\right)^{2}}=1-\lambda+\operatorname{Re} \lambda-p\left(z_{1}\right)-z_{1} p^{\prime}\left(z_{1}\right) \tag{4}
\end{equation*}
$$

In addition, we know that $p \in H(U)$ and $\operatorname{Re} p\left(z_{1}\right) \geq 0, \forall z_{1} \in U$, then, by Lemma 1.5 , there exists an increasing function μ, on $[0,2 \pi]$, which satisfies $\mu(2 \pi)-\mu(0)=$ $\operatorname{Re} p(0)=p(0)=1-\lambda+\operatorname{Re} \lambda$, such that

$$
\begin{equation*}
p\left(z_{1}\right)=\int_{0}^{2 \pi} \frac{1+z_{1} e^{-i \theta}}{1-z_{1} e^{-i \theta}} d \mu(\theta), \quad z_{1} \in U \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{\prime}\left(z_{1}\right)=\int_{0}^{2 \pi} \frac{2 e^{-i \theta}}{\left(1-z_{1} e^{-i \theta}\right)^{2}} d \mu(\theta) \tag{6}
\end{equation*}
$$

Substituting (4), (5), and (6) into (3), we have

$$
\begin{gathered}
\operatorname{Re}\left\{(1-\lambda) \bar{z}[D F(z)]^{-1} F(z)+\operatorname{Re} \lambda\|z\|^{2}\right\} \\
=\operatorname{Re}\left\{\left[\left|z_{1}\right|^{2}+\beta\left(1-\left|z_{1}\right|^{2}\right)\right]\left(p\left(z_{1}\right)-\operatorname{Re} \lambda\right)+\operatorname{Re} \lambda\left|z_{1}\right|^{2}+\right. \\
\left.[1-\lambda+\operatorname{Re} \lambda-\beta(1-\lambda)]\left(1-\left|z_{1}\right|^{2}\right)-\gamma\left(1-\left|z_{1}\right|^{2}\right)\left[1-\lambda+\operatorname{Re} \lambda-p\left(z_{1}\right)-z_{1} p^{\prime}\left(z_{1}\right)\right]\right\} \\
=\operatorname{Re}\left\{p\left(z_{1}\right)\left[\left|z_{1}\right|^{2}+\beta\left(1-\left|z_{1}\right|^{2}\right)+\gamma\left(1-\left|z_{1}\right|^{2}\right)\right]+z_{1} p^{\prime}\left(z_{1}\right) \gamma\left(1-\left|z_{1}\right|^{2}\right)+\right. \\
\left.\left(1-\left|z_{1}\right|^{2}\right)(1-\lambda+\operatorname{Re} \lambda)(1-\beta-\gamma)\right\} \\
\geq \operatorname{Re}\left\{\left[\left|z_{1}\right|^{2}+(\beta+\gamma)\left(1-\left|z_{1}\right|^{2}\right)\right] p\left(z_{1}\right)+\gamma\left(1-\left|z_{1}\right|^{2}\right) z_{1} p^{\prime}\left(z_{1}\right)\right\} \\
=\operatorname{Re} \int_{0}^{2 \pi}\left\{\left[\left|z_{1}\right|^{2}+(\beta+\gamma)\left(1-\left|z_{1}\right|^{2}\right)\right] \frac{1+z_{1} e^{-i \theta}}{1-z_{1} e^{-i \theta}}+2 \gamma\left(1-\left|z_{1}\right|^{2}\right) \frac{z_{1} e^{-i \theta}}{\left(1-z_{1} e^{-i \theta}\right)^{2}}\right\} d \mu(\theta) \\
=\operatorname{Re} \int_{0}^{2 \pi} \frac{1}{\left(1-z_{1} e^{-i \theta}\right)^{2}}\left\{\left[\left|z_{1}\right|^{2}+(\beta+\gamma)\left(1-\left|z_{1}\right|^{2}\right)\right]\left(1-z_{1}^{2} e^{-2 i \theta}\right)+\right. \\
\left.2 \gamma\left(1-\left|z_{1}\right|^{2}\right) z_{1} e^{-i \theta}\right\} d \mu(\theta) .
\end{gathered}
$$

If we take $w=z_{1} e^{-i \theta}$ in the above equality, then we have $w \in U$. Considering that μ is an increasing function, we need only to prove that

$$
\operatorname{Re} \frac{1}{(1-w)^{2}}\left\{\left[|w|^{2}+(\beta+\gamma)\left(1-|w|^{2}\right)\right]\left(1-w^{2}\right)+2 \gamma\left(1-|w|^{2}\right) w\right\} \geq 0, w \in U
$$

By Lemma 1.6, we have

$$
\begin{gathered}
\operatorname{Re} \frac{1}{(1-w)^{2}}\left\{\left[|w|^{2}+(\beta+\gamma)\left(1-|w|^{2}\right)\right]\left(1-w^{2}\right)+2 \gamma\left(1-|w|^{2}\right) w\right\}= \\
=\operatorname{Re} \frac{1}{(1-w)^{2}}\left\{|w|^{2}\left(1-w^{2}\right)+\beta\left(1-|w|^{2}\right)\left(1-w^{2}\right)+\gamma\left(1-|w|^{2}\right)\left(1-2 w-w^{2}\right)\right\} \\
=\frac{1}{|1-w|^{4}} \operatorname{Re}\left\{|w|^{2}\left(1-w^{2}\right)(1-\bar{w})^{2}+\beta\left(1-|w|^{2}\right)\left(1-w^{2}\right)(1-\bar{w})^{2}+\right. \\
\left.\gamma\left(1-|w|^{2}\right)\left(1+2 w-w^{2}\right)(1-\bar{w})^{2}\right\} \\
=\frac{1}{|1-w|^{4}}\left\{|w|^{2}\left(1-|w|^{2}\right)|1-w|^{2}+\beta\left(1-|w|^{2}\right)^{2}|1-w|^{2}+\right. \\
\left.\gamma\left(1-|w|^{2}\right)\left[\left(1-|w|^{2}\right)^{2}-2|w|^{2}|1-w|^{2}\right]\right\} \\
=\frac{1-|w|^{2}}{|1-w|^{4}}\left\{(1-2 \gamma)|w|^{2}|1-w|^{2}+\beta\left(1-|w|^{2}\right)|1-w|^{2}+\gamma\left(1-|w|^{2}\right)^{2}\right\} \geq 0
\end{gathered}
$$

We can now conclude that F is an almost starlike mapping of complex order λ on B^{n}.

Remark 2.2 We mention that if $\lambda=\alpha /(1-\alpha)$, where $\alpha \in[0,1)$, in Theorem 2.1, we deduce that the operator $\Phi_{n, \beta, \gamma}$ preserves the usual notion of almost starlikeness of order α (see [3]).

We next present certain particular cases of Theorem 2.1.
If we take $\lambda=i \tan \delta$, with $|\delta|<\frac{\pi}{2}$ in Theorem 2.1, we obtain:
Corollary 2.3 Let f be a spirallike function of type δ on the unit disc U, then

$$
F(z)=\Phi_{n, \beta, \gamma}(f)(z)=\left(f\left(z_{1}\right),\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma} \widetilde{z}\right)
$$

is a spirallike mapping of type δ on B^{n}, where $z=\left(z_{1}, \widetilde{z}\right) \in B^{n}, z_{1} \in U, \widetilde{z}=$ $\left(z_{2}, \cdots, z_{n}\right) \in \mathbf{C}^{n-1}, \beta \in[0,1], \gamma \in\left[0, \frac{1}{2}\right]$ such that $\beta+\gamma \leq 1, f\left(z_{1}\right) \neq 0$ when $z_{1} \in U \backslash\{0\}$ and the branches of the power functions $\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta},\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}$ are chosen to satisfy $\left.\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\right|_{z_{1}=0}=1$ and $\left.\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}\right|_{z_{1}=0}=1$ respectively.

Taking $\lambda=0$ in Theorem 2.1, we obtain the following result due to Graham, Hamada, Kohr, and Suffridge.

Corollary 2.4 [7] Let f be a starlike function on the unit disc U, then

$$
F(z)=\Phi_{n, \beta, \gamma}(f)(z)=\left(f\left(z_{1}\right),\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma} \widetilde{z}\right)
$$

is a starlike mapping on B^{n}, where $z=\left(z_{1}, \widetilde{z}\right) \in B^{n}, z_{1} \in U, \widetilde{z}=\left(z_{2}, \cdots, z_{n}\right) \in$ $\mathbf{C}^{n-1}, \beta \in[0,1], \gamma \in\left[0, \frac{1}{2}\right]$ such that $\beta+\gamma \leq 1, f\left(z_{1}\right) \neq 0$ when $z_{1} \in U \backslash\{0\}$ and the branches of the power functions $\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta},\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}$ are chosen to satisfy $\left.\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\right|_{z_{1}=0}=1$ and $\left.\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}\right|_{z_{1}=0}=1$ respectively.

For $\beta=0$ in Theorem 2.1, we get the following result:
Corollary 2.5 Let $\lambda \in \mathbf{C}$ with $\operatorname{Re} \lambda \leq 0$ and let f be an almost starlike function of complex order λ on the unit disc U, then

$$
F(z)=\Phi_{n, \gamma}(f)(z)=\left(f\left(z_{1}\right),\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma} \widetilde{z}\right)
$$

is an almost starlike mapping of complex order λ on B^{n}, where $\gamma \in\left[0, \frac{1}{2}\right]$, and the branch of the power function $\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}$ is chosen to satisfy $\left.\left(f^{\prime}\left(z_{1}\right)\right)^{\gamma}\right|_{z_{1}=0}=1$.

If we take $\gamma=0$ in Theorem 2.1, we obtain the next particular case.
Corollary 2.6 Let $\lambda \in \mathbf{C}, \operatorname{Re} \lambda \leq 0$ and let f be an almost starlike function of complex order λ, on the unit disc U, then

$$
F(z)=\Phi_{n, \beta}(f)(z)=\left(f\left(z_{1}\right),\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta} \widetilde{z}\right)
$$

is an almost starlike mapping of complex order λ on B^{n}, where $\beta \in[0,1]$ and the branch of the power function is chosen such that $\left.\left(\frac{f\left(z_{1}\right)}{z_{1}}\right)^{\beta}\right|_{z_{1}=0}=1$.

Acknowledgements. This work is supported by the Romanian Ministry of Education and Research, UEFISCSU-CNCSIS Grant PN-II-ID 524/2007.

References

[1] C.M. Bălăeţi, V.O. Nechita, Loewner chains and almost starlike mappings of complex order λ, Carpathian J.Math. 26 (2010), no.2, 146-157.
[2] P.L. Duren, Univalent Functions, Springer-Verlag, New-York, 1983.
[3] S. Feng, T. Liu, The generalized Roper-Suffridge extension operator, Acta Mathematica Scientia 2008, 28B (1), 63-80.
[4] I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions Marcel Dekker Inc., New York, 2003.
[5] I. Graham, G. Kohr, Univalent mappings associated with the Roper-Suffridge extension operator, J. Anal. Math. 81 (2000), 331-342.
[6] I. Graham, G. Kohr, M. Kohr, Loewner chains and the Roper-Suffridge extension operator J. Math. Anal. Appl. 247 (2000), 448-465.
[7] I. Graham, H. Hamada, G. Kohr, T.J. Suffridge, Extension operators for locally univalent mappings, Michigan Math. J. 50 (2002), 37-55.
[8] T.S. Liu, Q.H. Xu, Loewner chains associated with the generalized RoperSuffridge extension operator, J. Math. Anal. Appl. 322 (2006), 107-120.
[9] J.A. Pfaltzgraff, T.J. Suffridge, An extension theorem and linear invariant families generated by starlike maps, Ann. Univ. Marie Curie-Skłodowska Sect A, 53 (1999), 193-207.
[10] K.A. Roper, T.J. Suffridge, Convex mappings on the unit ball of \mathbf{C}^{n}, J. Anal. Math. 65 (1995), 333-347.
[11] T.J.Suffridge, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Lecture Notes in Math. 599, Springer-Verlag, New York, 1976, 146-159.
[12] Q.H. Xu, T.S. Liu, Loewner chains and a subclass of biholomorphic mappings, J. Math. Anal. Appl. 334 (2007), 1096-1105.

Camelia Mădălina Bălăeţi
Department of Mathematics
University of Petroşani
20 University Str., 332006, Petroşani, Romania
email: madalina@upet.ro
Veronica Oana Nechita
Department of Mathematics
Babes-Bolyai University
1 M. Kogălniceanu Str., 400084, Cluj-Napoca, Romania
email: vnechita@math.ubbcluj.ro

