No. 30/2012 pp. 325-336

CERTAIN STRONG DIFFERENTIAL SUPERORDINATIONS USING SĂLĂGEAN AND RUSCHEWEYH OPERATORS

ALB LUPAŞ ALINA

ABSTRACT. In the present paper we establish several strong differential superordinations regardind the new operator SR^m defined by convolution product of the extended Sălăgean operator and Ruscheweyh derivative, $SR^m: \mathcal{A}^*_{\zeta} \to \mathcal{A}^*_{\zeta}$, $SR^m f(z,\zeta) = (S^m*R^m) f(z,\zeta)$, $z \in U$, $\zeta \in \overline{U}$, where $R^m f(z,\zeta)$ denote the extended Ruscheweyh derivative, $S^m f(z,\zeta)$ is the extended Sălăgean operator and $\mathcal{A}^*_{n\zeta} = \{f \in \mathcal{H}(U \times \overline{U}), f(z,\zeta) = z + a_{n+1}(\zeta) z^{n+1} + \dots, z \in U, \zeta \in \overline{U}\}$, with $\mathcal{A}^*_{1\zeta} = \mathcal{A}^*_{\zeta}$, is the class of normalized analytic functions.

2000 Mathematics Subject Classification: 30C45, 30A20, 34A40.

Keywords: strong differential superordination, convex function, best subordinant, extended differential operator.

1. Introduction

Denote by U the unit disc of the complex plane $U=\{z\in\mathbb{C}: |z|<1\}$, $\overline{U}=\{z\in\mathbb{C}: |z|\leq 1\}$ the closed unit disc of the complex plane and $\mathcal{H}(U\times\overline{U})$ the class of analytic functions in $U\times\overline{U}$.

Let

$$\mathcal{A}_{n\zeta}^* = \{ f \in \mathcal{H}(U \times \overline{U}), \ f(z,\zeta) = z + a_{n+1}(\zeta) z^{n+1} + \dots, \ z \in U, \ \zeta \in \overline{U} \},$$

with $\mathcal{A}_{1\zeta}^{*}=\mathcal{A}_{\zeta}^{*}$, where $a_{k}\left(\zeta\right)$ are holomorphic functions in \overline{U} for $k\geq2$, and

$$\mathcal{H}^{*}[a,n,\zeta] = \{ f \in \mathcal{H}(U \times \overline{U}), \ f(z,\zeta) = a + a_{n}(\zeta) z^{n} + a_{n+1}(\zeta) z^{n+1} + \dots, \ z \in U, \ \zeta \in \overline{U} \},$$

for $a \in \mathbb{C}$, $n \in \mathbb{N}$, $a_k(\zeta)$ are holomorphic functions in \overline{U} for $k \geq n$.

Denote by

$$K_{n\zeta} = \{ f \in \mathcal{H}(U \times \overline{U}) : \operatorname{Re} \frac{zf_z''(z,\zeta)}{f_z'(z,\zeta)} + 1 > 0 \}$$

the class of convex function in $U \times \overline{U}$.

We also extend the known differential operators to the new class of analytic functions \mathcal{A}_{ζ}^{*} introduced in [5].

Definition No. 1 [1] For $f \in \mathcal{A}^*_{\zeta}$, $m \in \mathbb{N}$, the extended operator S^m is defined by $S^m: \mathcal{A}^*_{\zeta} \to \mathcal{A}^*_{\zeta}$,

$$S^{0}f(z,\zeta) = f(z,\zeta),$$

$$S^{1}f(z,\zeta) = zf'_{z}(z,\zeta),...,$$

$$S^{m+1}f(z,\zeta) = z(S^{m}f(z,\zeta))'_{z}, \quad z \in U, \zeta \in \overline{U}.$$

Remark No. 1 [1] If $f \in \mathcal{A}_{\zeta}^{*}$, $f(z,\zeta) = z + \sum_{j=2}^{\infty} a_{j}(\zeta) z^{j}$, then $S^{m} f(z,\zeta) = \sum_{j=2}^{\infty} a_{j}(\zeta) z^{j}$

 $z + \sum_{j=2}^{\infty} j^m a_j(\zeta) z^j, z \in U, \zeta \in \overline{U}.$ **Definition No. 2** [1] For $f \in \mathcal{A}_{\zeta}^*$, $m \in \mathbb{N}$, the extended operator R^m is defined by $R^m: \mathcal{A}^*_{\zeta} \to \mathcal{A}^*_{\zeta}$,

$$\begin{split} R^0f\left(z,\zeta\right) &= f\left(z,\zeta\right), \\ R^1f\left(z,\zeta\right) &= zf_z'\left(z,\zeta\right), ..., \\ \left(m+1\right)R^{m+1}f\left(z,\zeta\right) &= z\left(R^mf\left(z,\zeta\right)\right)_z' + mR^mf\left(z,\zeta\right), \quad z \in U, \ \zeta \in \overline{U}. \end{split}$$

Remark No. 2 [1] If $f \in \mathcal{A}_{\zeta}^{*}$, $f(z,\zeta) = z + \sum_{j=2}^{\infty} a_{j}(\zeta) z^{j}$, then $R^{m} f(z,\zeta) = \sum_{j=2}^{\infty} a_{j}(\zeta) z^{j}$ $z + \sum_{j=2}^{\infty} C_{m+j-1}^{m} a_{j}(\zeta) z^{j}, z \in U, \zeta \in \overline{U}.$

As a dual notion of strong differential subordination G.I. Oros has introduced and developed the notion of strong differential superordinations in [4].

Definition No. 3 [4] Let $f(z,\zeta)$, $H(z,\zeta)$ analytic in $U \times \overline{U}$. The function $f(z,\zeta)$ is said to be strongly superordinate to $H(z,\zeta)$ if there exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1, such that $H(z, \zeta) = f(w(z), \zeta)$, for all $\zeta \in \overline{U}$. In such a case we write $H(z,\zeta) \prec \prec f(z,\zeta)$, $z \in U$, $\zeta \in \overline{U}$.

Remark No. 3 [4] (i) Since $f(z,\zeta)$ is analytic in $U \times \overline{U}$, for all $\zeta \in \overline{U}$, and univalent in U, for all $\zeta \in \overline{U}$, Definition 3 is equivalent to $H(0,\zeta) = f(0,\zeta)$, for all $\zeta \in \overline{U}$, and $H(U \times \overline{U}) \subset f(U \times \overline{U})$.

(ii) If $H(z,\zeta) \equiv H(z)$ and $f(z,\zeta) \equiv f(z)$, the strong superordination becomes the usual notion of superordination.

Definition No. 4 [3] We denote by Q^* the set of functions that are analytic and injective on $\overline{U} \times \overline{U} \setminus E(f,\zeta)$, where $E(f,\zeta) = \{y \in \partial U : \lim_{z \to y} f(z,\zeta) = \infty\}$, and are such that $f'_z(y,\zeta) \neq 0$ for $y \in \partial U \times \overline{U} \setminus E(f,\zeta)$. The subclass of Q^* for which $f(0,\zeta) = a$ is denoted by $Q^*(a)$.

We have need the following lemmas to study the strong differential superordinations.

Lemma No. 1 [3] Let $h(z,\zeta)$ be a convex function with $h(0,\zeta)=a$ and let $\gamma \in \mathbb{C}^*$ be a complex number with $Re \ \gamma \geq 0$. If $p \in \mathcal{H}^*[a, n, \zeta] \cap Q^*$, $p(z, \zeta) + \frac{1}{\gamma} z p_z'(z, \zeta)$

is univalent in $U \times \overline{U}$ and

$$h(z,\zeta) \prec \prec p(z,\zeta) + \frac{1}{\gamma} z p_z'(z,\zeta), \quad z \in U, \ \zeta \in \overline{U},$$

then

$$q(z,\zeta) \prec \prec p(z,\zeta), \qquad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{\gamma}{nz^{\frac{\gamma}{n}}} \int_0^z h(t,\zeta) t^{\frac{\gamma}{n}-1} dt$, $z \in U$, $\zeta \in \overline{U}$. The function q is convex and is the best subordinant.

Lemma No. 2 [3] Let $q(z,\zeta)$ be a convex function in $U \times \overline{U}$ and let $h(z,\zeta) = q(z,\zeta) + \frac{1}{\gamma} z q_z'(z,\zeta)$, $z \in U$, $\zeta \in \overline{U}$, where $Re \ \gamma \geq 0$.

If $p \in \mathcal{H}^*[a, n, \zeta] \cap Q^*$, $p(z, \zeta) + \frac{1}{\gamma} z p'_z(z, \zeta)$ is univalent in $U \times \overline{U}$ and

$$q(z,\zeta)+\frac{1}{\gamma}zq_{z}^{\prime}(z,\zeta)\prec\prec p(z,\zeta)+\frac{1}{\gamma}zp_{z}^{\prime}\left(z,\zeta\right),\qquad z\in U,\ \zeta\in\overline{U},$$

then

$$q(z,\zeta) \prec \prec p(z,\zeta), \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{\gamma}{nz^{\frac{\gamma}{n}}} \int_0^z h\left(t,\zeta\right) t^{\frac{\gamma}{n}-1} dt$, $z \in U$, $\zeta \in \overline{U}$. The function q is the best subordinant.

2. Main results

Definition No. 5 [2] Let $m \in \mathbb{N} \cup \{0\}$. Denote by SR^m the operator given by the Hadamard product (the convolution product) of the extended Sălăgean operator S^m and the extended Ruscheweyh operator R^m , $SR^m : \mathcal{A}^*_{\zeta} \to \mathcal{A}^*_{\zeta}$,

$$SR^{m}f\left(z,\zeta\right) =\left(S^{m}\ast R^{m}\right) f\left(z,\zeta\right) .$$

Remark No. 4 [2] If $f \in \mathcal{A}_{\zeta}^{*}$, $f(z,\zeta) = z + \sum_{j=2}^{\infty} a_{j}(\zeta) z^{j}$, then $SR^{m} f(z,\zeta) = z + \sum_{j=2}^{\infty} C_{m+j-1}^{m} j^{m} a_{j}^{2}(\zeta) z^{j}$, $z \in U$, $\zeta \in \overline{U}$.

Theorem No. 1 Let $h(z,\zeta)$ be a convex function in $U \times \overline{U}$ with $h(0,\zeta) = 1$. Let $m \in \mathbb{N}$, $f(z,\zeta) \in \mathcal{A}_{\zeta}^*$, $F(z,\zeta) = I_c(f)(z,\zeta) = \frac{c+2}{z^{c+1}} \int_0^z t^c f(t,\zeta) dt$, $z \in U$, $\zeta \in \overline{U}$, Rec > -2, and suppose that $(SR^m f(z,\zeta))'_z$ is univalent in $U \times \overline{U}$, $(SR^m F(z,\zeta))'_z \in \mathcal{H}^*[1,1,\zeta] \cap Q^*$ and

$$h(z,\zeta) \prec \prec (SR^m f(z,\zeta))'_z, \quad z \in U, \ \zeta \in \overline{U},$$
 (1)

then

$$q\left(z,\zeta\right)\prec\prec\left(SR^{m}F\left(z,\zeta\right)\right)_{z}^{\prime},\quad z\in U,\ \zeta\in\overline{U},$$

where $q(z,\zeta) = \frac{c+2}{z^{c+2}} \int_0^z h(t,\zeta) t^{c+1} dt$. The function q is convex and it is the best subordinant.

Proof. We have

$$z^{c+1}F\left(z,\zeta\right) = \left(c+2\right)\int_{0}^{z}t^{c}f\left(t,\zeta\right)dt$$

and differentiating it, with respect to z, we obtain $(c+1) F(z,\zeta) + zF'_z(z,\zeta) = (c+2) f(z,\zeta)$ and

$$\left(c+1\right)SR^{m}F\left(z,\zeta\right)+z\left(SR^{m}F\left(z,\zeta\right)\right)_{z}^{\prime}=\left(c+2\right)SR^{m}f\left(z,\zeta\right),\quad z\in U,\ \zeta\in\overline{U}.$$

Differentiating the last relation with respect to z we have

$$\left(SR^{m}F\left(z,\zeta\right)\right)_{z}^{\prime}+\frac{1}{c+2}z\left(SR^{m}F\left(z,\zeta\right)\right)_{z^{2}}^{\prime\prime}=\left(SR^{m}f\left(z,\zeta\right)\right)_{z}^{\prime},\quad z\in U,\ \zeta\in\overline{U}.\tag{2}$$

Using (2), the strong differential superordination (1) becomes

$$h(z,\zeta) \prec \prec (SR^m F(z,\zeta))'_z + \frac{1}{c+2} z (SR^m F(z,\zeta))''_{z^2}.$$
 (3)

Denote

$$p(z,\zeta) = (SR^m F(z,\zeta))'_z, \quad z \in U, \ \zeta \in \overline{U}.$$
 (4)

Replacing (4) in (3) we obtain

$$h(z,\zeta) \prec \prec p(z,\zeta) + \frac{1}{c+2} z p'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

Using Lemma 1 for n = 1 and $\gamma = c + 2$, we have

$$q(z,\zeta) \prec \prec p(z,\zeta), \ z \in U, \ \zeta \in \overline{U}, \text{ i.e. } q(z,\zeta) \prec \prec (SR^mF(z,\zeta))'_z, \ z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta)=\frac{c+2}{z^{c+2}}\int_0^z h(t,\zeta)t^{c+1}dt$. The function q is convex and it is the best subordinant.

Corollary No. 1 Let $h\left(z,\zeta\right)=\frac{1+(2\beta-\zeta)z}{1+z},$ where $\beta\in[0,1).$ Let $m\in\mathbb{N},$ $f\left(z,\zeta\right)\in\mathcal{A}_{\zeta}^{*},$ $F\left(z,\zeta\right)=I_{c}\left(f\right)\left(z,\zeta\right)=\frac{c+2}{z^{c+1}}\int_{0}^{z}t^{c}f\left(t,\zeta\right)dt,$ $z\in U,$ $\zeta\in\overline{U},$ Rec>-2, and suppose that $\left(SR^{m}f\left(z,\zeta\right)\right)_{z}^{\prime}$ is univalent in $U\times\overline{U},$ $\left(SR^{m}F\left(z,\zeta\right)\right)_{z}^{\prime}\in\mathcal{H}^{*}\left[1,1,\zeta\right]\cap Q^{*}$ and

$$h(z,\zeta) \prec \prec (SR^m f(z,\zeta))'_z, \ z \in U, \ \zeta \in \overline{U},$$
 (5)

then

$$q(z,\zeta) \prec \prec (SR^m F(z,\zeta))'_z, \quad z \in U, \ \zeta \in \overline{U},$$

where q is given by $q(z,\zeta) = 2\beta - \zeta + \frac{(c+2)(1+\zeta-2\beta)}{z^{c+2}} \int_0^z \frac{t^{c+1}}{t+1} dt$, $z \in U$, $\zeta \in \overline{U}$. The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 1 and considering $p(z,\zeta) = (SR^mF(z,\zeta))'_z$, the strong differential superordination (5) becomes

$$h(z,\zeta) = \frac{1 + (2\beta - \zeta)z}{1 + z} \prec \prec p(z,\zeta) + \frac{1}{c + 2} z p_z'(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1 for n=1 and $\gamma=c+2$, we have $q(z,\zeta)\prec\prec p(z,\zeta)$, i.e.

$$q(z,\zeta) = \frac{c+2}{z^{c+2}} \int_0^z h(t,\zeta) t^{c+1} dt = \frac{c+2}{z^{c+2}} \int_0^z \frac{1+(2\beta-\zeta)t}{1+t} t^{c+1} dt$$

$$=2\beta-\zeta+\frac{(c+2)\left(1+\zeta-2\beta\right)}{z^{c+2}}\int_{0}^{z}\frac{t^{c+1}}{t+1}dt\prec\prec\left(SR^{m}F\left(z,\zeta\right)\right)_{z}',\quad z\in U,\ \zeta\in\overline{U}.$$

The function q is convex and it is the best subordinant.

Theorem No. 2 Let $q(z,\zeta)$ be a convex function in $U \times \overline{U}$ and let $h(z,\zeta) = q(z,\zeta) + \frac{1}{c+2}zq'_z(z,\zeta)$, where $z \in U$, $\zeta \in \overline{U}$, Rec > -2. Let $m \in \mathbb{N}$, $f(z,\zeta) \in \mathcal{A}^*_{\zeta}$, $F(z,\zeta) = I_c(f)(z,\zeta) = \frac{c+2}{z^{c+1}} \int_0^z t^c f(t,\zeta) dt$, $z \in U$, $\zeta \in \overline{U}$, and suppose that $(SR^m f(z,\zeta))'_z$ is univalent in $U \times \overline{U}$, $(SR^m F(z,\zeta))'_z \in \mathcal{H}^*[1,1,\zeta] \cap Q^*$ and

$$h(z,\zeta) \prec \prec (SR^m f(z,\zeta))'_z, \quad z \in U, \ \zeta \in \overline{U},$$
 (6)

then

$$q(z,\zeta) \prec \prec (SR^m F(z,\zeta))'_z, \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{c+2}{z^{c+2}} \int_0^z h(t,\zeta) t^{c+1} dt$. The function q is the best subordinant.

Proof. We obtain that

$$z^{c+1}F(z,\zeta) = (c+2) \int_0^z t^c f(t,\zeta) \, dt.$$
 (7)

Differentiating (7), with respect to z, we have $(c+1) F(z,\zeta) + zF'_z(z,\zeta) = (c+2) f(z,\zeta)$ and

$$\left(c+1\right)SR^{m}F\left(z,\zeta\right)+z\left(SR^{m}F\left(z,\zeta\right)\right)_{z}^{\prime}=\left(c+2\right)SR^{m}f\left(z,\zeta\right),\quad z\in U,\ \zeta\in\overline{U}.\ (8)$$

Differentiating (8) with respect to z we have

$$(SR^{m}F(z,\zeta))'_{z} + \frac{1}{c+2}z(SR^{m}F(z,\zeta))''_{z^{2}} = (SR^{m}f(z,\zeta))'_{z}, \quad z \in U, \ \zeta \in \overline{U}.$$
 (9)

Using (9), the strong differential superordination (6) becomes

$$h(z,\zeta) = q(z,\zeta) + \frac{1}{c+2} z q_z'(z,\zeta) \prec \prec (SR^m F(z,\zeta))_z' + \frac{1}{c+2} z (SR^m F(z,\zeta))_{z^2}''.$$
(10)

Denote

$$p(z,\zeta) = (SR^m F(z,\zeta))'_z, \quad z \in U, \ \zeta \in \overline{U}.$$
(11)

Replacing (11) in (10) we obtain

$$h\left(z,\zeta\right)=q\left(z,\zeta\right)+\frac{1}{c+2}zq_{z}'\left(z,\zeta\right)\prec\prec p\left(z,\zeta\right)+\frac{1}{c+2}zp_{z}'\left(z,\zeta\right),\quad z\in U,\ \zeta\in\overline{U}.$$

Using Lemma 2 for n = 1 and $\gamma = c + 2$, we have

$$q\left(z,\zeta\right)\prec\prec p\left(z,\zeta\right),\ z\in U,\ \zeta\in\overline{U},\ \text{i.e.}\ q\left(z,\zeta\right)\prec\prec\left(SR^{m}F\left(z,\zeta\right)\right)_{z}^{\prime},\ z\in U,\ \zeta\in\overline{U},$$

where $q(z,\zeta) = \frac{c+2}{z^{c+2}} \int_0^z h(t,\zeta) t^{c+1} dt$. The function q is the best subordinant.

Theorem No. 3 Let $h(z,\zeta)$ be a convex function, $h(0,\zeta)=1$. Let $m\in$ \mathbb{N} , $f(z,\zeta) \in \mathcal{A}_{\zeta}^*$ and suppose that $(SR^m f(z,\zeta))_z'$ is univalent and $\frac{SR^m f(z,\zeta)}{z} \in \mathcal{H}^*[1,1,\zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec (SR^m f(z,\zeta))'_z, \quad z \in U, \ \zeta \in \overline{U},$$
 (12)

then

$$q(z,\zeta) \prec \prec \frac{SR^mf\left(z,\zeta\right)}{z}, \qquad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{z} \int_0^z h(t,\zeta)dt$. The function q is convex and it is the best subordinant.

$$\begin{array}{l} \textit{Proof. Consider} \\ p\left(z,\zeta\right) = \frac{SR^{m}f(z,\zeta)}{z} = \frac{z+\sum_{j=2}^{\infty}C_{m+j-1}^{m}j^{m}a_{j}^{2}(\zeta)z^{j}}{z} = 1 + \sum_{j=2}^{\infty}C_{m+j-1}^{m}j^{m}a_{j}^{2}\left(\zeta\right)z^{j-1}. \\ \text{Evidently } p \in \mathcal{H}^{*}[1,1,\zeta]. \end{array}$$

Differentiating with respect to z, we obtain $p\left(z,\zeta\right)+zp_{z}'\left(z,\zeta\right)=\left(SR^{m}f\left(z,\zeta\right)\right)_{z}'$. Then (12) becomes

$$h(z,\zeta) \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1 for n = 1 and $\gamma = 1$, we have

$$q(z,\zeta) \prec \prec p(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}, \quad \text{i.e.} \quad q(z,\zeta) \prec \prec \frac{SR^m f(z,\zeta)}{z}, \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{z} \int_0^z h(t,\zeta) dt$. The function q is convex and it is the best subordinant.

Corollary No. 2 Let $h(z,\zeta) = \frac{1+(2\beta-\zeta)z}{1+z}$ be a convex function in $U \times \overline{U}$, where $0 \le \beta < 1$. Let $m \in \mathbb{N} \cup \{0\}$, $f(z,\zeta) \in \mathcal{A}^*_{\zeta}$ and suppose that $(SR^m f(z,\zeta))'_z$ is univalent and $\frac{SR^m f(z,\zeta)}{z} \in \mathcal{H}^*[1,1,\zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec (SR^m f(z,\zeta))'_z, \quad z \in U, \ \zeta \in \overline{U},$$
 (13)

then

$$q(z,\zeta) \prec \prec \frac{SR^m f(z,\zeta)}{z}, \quad z \in U, \ \zeta \in \overline{U},$$

where q is given by $q(z,\zeta) = 2\beta - \zeta + \frac{1+\zeta-2\beta}{z} \ln(1+z)$, $z \in U$, $\zeta \in \overline{U}$. The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 3 and considering $p(z,\zeta)=\frac{SR^mf(z,\zeta)}{z}$, the strong differential superordination (13) becomes

$$h(z,\zeta) = \frac{1 + (2\beta - \zeta)z}{1 + z} \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1 for n=1 and $\gamma=1$, we have $q(z,\zeta) \prec \prec p(z,\zeta)$, i.e.

$$\begin{split} q(z,\zeta) &= \frac{1}{z} \int_0^z h\left(t,\zeta\right) dt = \frac{1}{z} \int_0^z \frac{1 + \left(2\beta - \zeta\right) t}{1 + t} dt \\ &= 2\beta - \zeta + \frac{1 + \zeta - 2\beta}{z} \ln\left(1 + z\right) \prec \prec \frac{SR^m f\left(z,\zeta\right)}{z}, \quad z \in U, \ \zeta \in \overline{U}. \end{split}$$

The function q is convex and it is the best subordinant.

Theorem No. 4 Let $q(z,\zeta)$ be convex in $U \times \overline{U}$ and let h be defined by $h(z,\zeta) = q(z,\zeta) + zq'_z(z,\zeta)$. If $m \in \mathbb{N} \cup \{0\}$, $f(z,\zeta) \in \mathcal{A}^*_{\zeta}$, suppose that $(SR^m f(z,\zeta))'_z$ is univalent, $\frac{SR^m f(z,\zeta)}{z} \in \mathcal{H}^*[1,1,\zeta] \cap Q^*$ and satisfies the strong differential superordination

$$h(z,\zeta) = q(z,\zeta) + zq'_{z}(z,\zeta) \prec \prec (SR^{m}f(z,\zeta))'_{z}, \quad z \in U, \ \zeta \in \overline{U},$$
 (14)

then

$$q(z,\zeta) \prec \prec \frac{SR^m f(z,\zeta)}{z}, \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{z} \int_0^z h(t,\zeta) dt$. The function q is the best subordinant.

Proof. Let

Frooj. Let
$$p(z,\zeta) = \frac{SR^m f(z,\zeta)}{z} = \frac{z + \sum_{j=2}^{\infty} C_{m+j-1}^m j^m a_j^2(\zeta) z^j}{z} = 1 + \sum_{j=2}^{\infty} C_{m+j-1}^m j^m a_j^2(\zeta) z^{j-1}.$$
 Evidently $p \in \mathcal{H}^*[1,1,\zeta].$

Differentiating with respect to z, we obtain $p(z,\zeta) + zp'_z(z,\zeta) = (SR^m f(z,\zeta))'_z$, $z \in U, \zeta \in \overline{U}$, and (14) becomes

$$q(z,\zeta) + zq'_z(z,\zeta) \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \zeta \in \overline{U}.$$

Using Lemma 2 for n=1 and $\gamma=1$, we have

$$\begin{split} q(z,\zeta) \prec \prec p(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}, \quad \text{i.e.} \\ q(z,\zeta) &= \frac{1}{z} \int_0^z h(t,\zeta) dt \prec \prec \frac{SR^m f(z,\zeta)}{z}, \quad z \in U, \ \zeta \in \overline{U}, \end{split}$$

and q is the best subordinant.

Theorem No. 5 Let $h(z,\zeta)$ be a convex function, $h(0,\zeta)=1$. Let $m\in\mathbb{N}\cup$ $\{0\}, f(z,\zeta) \in \mathcal{A}^*_{\zeta} \text{ and suppose that } \left(\frac{zSR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}\right)'_{z} \text{ is univalent and } \frac{SR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)} \in$ $\mathcal{H}^* [1, 1, \zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec \left(\frac{zSR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}\right)_z', \quad z \in U, \ \zeta \in \overline{U},$$
 (15)

then

$$q(z,\zeta) \prec \prec \frac{SR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}, \qquad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{z} \int_0^z h(t,\zeta)dt$. The function q is convex and it is the best subordinant.

$$\begin{array}{l} \textit{Proof. Consider} \\ p\left(z,\zeta\right) = \frac{SR^{m+1}f(z,\zeta)}{SR^{m}f(z,\zeta)} = \frac{z + \sum_{j=2}^{\infty} C_{m+j}^{m+1} j^{m+1} a_{j}^{2}(\zeta) z^{j}}{z + \sum_{j=2}^{\infty} C_{m+j-1}^{m} j^{m} a_{j}^{2}(\zeta) z^{j}} = \frac{1 + \sum_{j=2}^{\infty} C_{m+j}^{m+1} j^{m+1} a_{j}^{2}(\zeta) z^{j-1}}{1 + \sum_{j=2}^{\infty} C_{m+j-1}^{m} j^{m} a_{j}^{2}(\zeta) z^{j-1}}. \\ \text{Evidently } p \in \mathcal{H}^{*}[1,1,\zeta]. \end{array}$$

We have $p_{z}'\left(z,\zeta\right)=\frac{\left(SR^{m+1}f(z,\zeta)\right)_{z}'}{SR^{m}f(z,\zeta)}-p\left(z,\zeta\right)\cdot\frac{\left(SR^{m}f(z,\zeta)\right)_{z}'}{SR^{m}f(z,\zeta)}$ and $p\left(z,\zeta\right)+zp_{z}'\left(z,\zeta\right)=$ $\left(\frac{zSR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)} \right)_z'.$ Then (15) becomes

$$h(z,\zeta) \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1 for n = 1 and $\gamma = 1$, we have

$$q(z,\zeta) \prec \prec p(z,\zeta), \ z \in U, \ \zeta \in \overline{U}, \text{ i.e. } q(z,\zeta) \prec \prec \frac{SR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}, \ z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{z} \int_0^z h(t,\zeta) dt$. The function q is convex and it is the best subordinant.

Corollary No. 3 Let $h(z,\zeta) = \frac{1+(2\beta-\zeta)z}{1+z}$ be a convex function in $U \times \overline{U}$, where $0 \le \beta < 1$. Let $m \in \mathbb{N} \cup \{0\}$, $f(z,\zeta) \in \mathcal{A}_{\zeta}^*$ and suppose that $\left(\frac{zSR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}\right)_z'$ is univalent, $\frac{SR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)} \in \mathcal{H}^* [1,1,\zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec \left(\frac{zSR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}\right)_z', \qquad z \in U, \ \zeta \in \overline{U},$$
 (16)

then

$$q(z,\zeta) \prec \prec \frac{SR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}, \quad z \in U, \ \zeta \in \overline{U},$$

where q is given by $q(z,\zeta)=2\beta-\zeta+\frac{1+\zeta-2\beta}{z}\ln\left(1+z\right),\ z\in U,\ \zeta\in\overline{U}.$ The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 5 and considering $p(z,\zeta) = \frac{SR^m f(z,\zeta)}{z}$, the strong differential superordination (16) becomes

$$h(z,\zeta) = \frac{1 + (2\beta - \zeta)z}{1 + z} \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1 for n=1 and $\gamma=1$, we have $q(z,\zeta)\prec\prec p(z,\zeta)$, i.e.

$$\begin{split} q(z,\zeta) &= \frac{1}{z} \int_0^z h\left(t,\zeta\right) dt = \frac{1}{z} \int_0^z \frac{1 + \left(2\beta - \zeta\right) t}{1 + t} dt \\ &= 2\beta - \zeta + \frac{1 + \zeta - 2\beta}{z} \ln\left(1 + z\right) \prec \prec \frac{SR^{m+1} f\left(z,\zeta\right)}{SR^m f\left(z,\zeta\right)}, \quad z \in U, \ \zeta \in \overline{U}. \end{split}$$

The function q is convex and it is the best subordinant.

Theorem No. 6 Let $q(z,\zeta)$ be convex in $U \times \overline{U}$ and let h be defined by $h(z,\zeta) = q(z,\zeta) + zq'_z(z,\zeta)$. If $m \in \mathbb{N} \cup \{0\}$, $f(z,\zeta) \in \mathcal{A}^*_{\zeta}$, suppose that $\left(\frac{zSR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}\right)'_z$ is

univalent, $\frac{SR^{m+1}f(z,\zeta)}{SR^mf(z)} \in \mathcal{H}^*[1,1,\zeta] \cap Q^*$ and satisfies the strong differential super-ordination

$$h(z,\zeta) = q(z,\zeta) + zq_z'(z,\zeta) \prec \prec \left(\frac{zSR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}\right)_z', \quad z \in U, \ \zeta \in \overline{U}, \quad (17)$$

then

$$q(z,\zeta) \prec \prec \frac{SR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}, \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{z} \int_0^z h(t,\zeta) dt$. The function q is the best subordinant.

Proof. Let

$$p\left(z,\zeta\right) = \frac{SR^{m+1}f(z,\zeta)}{SR^{m}f(z,\zeta)} = \frac{z + \sum_{j=2}^{\infty} C_{m+j}^{m+1} j^{m+1} a_{j}^{2}(\zeta) z^{j}}{z + \sum_{j=2}^{\infty} C_{m+j-1}^{m} j^{m} a_{j}^{2}(\zeta) z^{j}} = \frac{1 + \sum_{j=2}^{\infty} C_{m+j}^{m+1} j^{m+1} a_{j}^{2}(\zeta) z^{j-1}}{1 + \sum_{j=2}^{\infty} C_{m+j-1}^{m} j^{m} a_{j}^{2}(\zeta) z^{j-1}}.$$
 Evidently $p \in \mathcal{H}^{*}[1, 1, \zeta]$.

Differentiating with respect to z, we obtain $p(z,\zeta) + zp'_z(z,\zeta) = \left(\frac{zSR^{m+1}f(z,\zeta)}{SR^mf(z,\zeta)}\right)'_z$, $z \in U, \zeta \in \overline{U}$, and (17) becomes

$$q(z,\zeta) + zq'_z(z,\zeta) \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

Using Lemma 2 for n=1 and $\gamma=1$, we have

$$\begin{split} q(z,\zeta) \prec \prec p(z,\zeta), & \quad z \in U, \ \zeta \in \overline{U}, \quad \text{i.e.} \\ q(z,\zeta) &= \frac{1}{z} \int_0^z h(t,\zeta) dt \prec \prec \frac{SR^{m+1} f\left(z,\zeta\right)}{SR^m f\left(z,\zeta\right)}, \ z \in U, \ \zeta \in \overline{U}, \end{split}$$

and q is the best subordinant.

Theorem No. 7 Let $h(z,\zeta)$ be a convex function, $h(0,\zeta) = 1$. Let $m \in \mathbb{N} \cup \{0\}$, $f(z,\zeta) \in \mathcal{A}_{\zeta}^*$ and suppose that $\frac{1}{z}SR^{m+1}f(z,\zeta)$ is univalent and $(SR^mf(z,\zeta))_z' \in \mathcal{H}^*[1,1,\zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec \frac{1}{z} SR^{m+1} f(z,\zeta), \qquad z \in U, \ \zeta \in \overline{U},$$
 (18)

then

$$q(z,\zeta) \prec \prec (SR^m f(z,\zeta))'_z, \qquad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{m+1}{z^{m+1}} \int_0^z h(t,\zeta) t^m dt$. The function q is convex and it is the best sub-ordinant.

Proof. With notation $p\left(z,\zeta\right)=\left(SR^{m}f\left(z,\zeta\right)\right)_{z}'=1+\sum_{j=2}^{\infty}C_{m+j-1}^{m}j^{m+1}a_{j}^{2}\left(\zeta\right)z^{j-1}$ and $p\left(0,\zeta\right)=1,$ we obtain for $f(z)=z+\sum_{j=2}^{\infty}a_{j}\left(\zeta\right)z^{j},$ $p\left(z,\zeta\right)+\frac{1}{m+1}zp_{z}'\left(z,\zeta\right)=\frac{1}{z}SR^{m+1}f\left(z,\zeta\right)$. Evidently $p\in\mathcal{H}^{*}[1,1,\zeta]$.

Then (18) becomes

$$h(z,\zeta) \prec \prec p(z,\zeta) + \frac{1}{m+1} z p_z'(z,\zeta), \qquad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1 for n = 1 and $\gamma = m + 1$, we have

$$q(z,\zeta) \prec \prec p(z,\zeta), \ z \in U, \ \zeta \in \overline{U}, \text{ i.e. } q(z,\zeta) \prec \prec (SR^m f(z,\zeta))'_z, \ z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{m+1}{z^{m+1}} \int_0^z h(t,\zeta) t^m dt$. The function q is convex and it is the best subordinant.

Corollary No. 4 Let $h(z,\zeta) = \frac{1+(2\beta-\zeta)z}{1+z}$ be a convex function in $U \times \overline{U}$, where $0 \le \beta < 1$. Let $m \in \mathbb{N} \cup \{0\}$, $f(z,\zeta) \in \mathcal{A}^*_{\zeta}$ and suppose that $\frac{1}{z}SR^{m+1}f(z,\zeta)$ is univalent and $(SR^mf(z,\zeta))'_z \in \mathcal{H}^*[1,1,\zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec \frac{1}{z} SR^{m+1} f(z,\zeta), \qquad z \in U, \ \zeta \in \overline{U},$$
 (19)

then

$$q(z,\zeta) \prec \prec (SR^m f(z,\zeta))'_z, \quad z \in U, \ \zeta \in \overline{U},$$

where q is given by $q(z,\zeta)=2\beta-\zeta+\frac{(1+\zeta-2\beta)(m+1)}{z^{m+1}}\int_0^z\frac{t^m}{1+t}dt,\ z\in U,\ \zeta\in\overline{U}.$ The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 7 and considering $p(z,\zeta) = (SR^m f(z,\zeta))'_z$, the strong differential superordination (19) becomes

$$h(z,\zeta) = \frac{1 + (2\beta - \zeta)z}{1 + z} \prec \prec p(z,\zeta) + \frac{1}{m+1} z p'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1 for n=1 and $\gamma=m+1$, we have $q(z,\zeta)\prec\prec p(z,\zeta)$, i.e.

$$q(z,\zeta)=\frac{m+1}{z^{m+1}}\int_{0}^{z}h\left(t,\zeta\right)t^{m}dt=\frac{m+1}{z^{m+1}}\int_{0}^{z}t^{m}\frac{1+\left(2\beta-\zeta\right)t}{1+t}dt$$

$$=2\beta-\zeta+\frac{\left(1+\zeta-2\beta\right)\left(m+1\right)}{z^{m+1}}\int_{0}^{z}\frac{t^{m}}{1+t}dt\prec\prec\left(SR^{m}f\left(z,\zeta\right)\right)_{z}',\quad z\in U,\ \zeta\in\overline{U}.$$

The function q is convex and it is the best subordinant.

Theorem No. 8 Let $q(z,\zeta)$ be convex in $U \times \overline{U}$ and let h be defined by $h(z,\zeta) = q(z,\zeta) + \frac{1}{m+1}zq'_z(z,\zeta)$. If $m \in \mathbb{N} \cup \{0\}$, $f(z,\zeta) \in \mathcal{A}^*_{\zeta}$, suppose that $\frac{1}{z}SR^{m+1}f(z,\zeta)$

is univalent, $(SR^m f(z,\zeta))_z' \in \mathcal{H}^*[1,1,\zeta] \cap Q^*$ and satisfies the strong differential superordination

$$h(z,\zeta) = q(z,\zeta) + \frac{1}{m+1} z q_z'(z,\zeta) \prec \prec \frac{1}{z} S R^{m+1} f(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}, \quad (20)$$

then

$$q(z,\zeta) \prec \prec (SR^m f(z,\zeta))', \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{m+1}{z^{m+1}} \int_0^z h(t,\zeta) t^m dt$. The function q is the best subordinant.

 $\begin{array}{l} \textit{Proof. Let } p\left(z,\zeta\right) = \left(SR^m f\left(z,\zeta\right)\right)_z' = 1 + \sum_{j=2}^{\infty} C_{m+j-1}^m j^{m+1} a_j^2\left(\zeta\right) z^{j-1}. \\ \textit{Differentiating with respect to } z, \textit{ we obtain } p(z,\zeta) + \frac{1}{m+1} z p_z'(z,\zeta) = \frac{1}{z} SR^{m+1} f\left(z,\zeta\right), \end{array}$

 $z \in U, \zeta \in \overline{U}$, and (20) becomes

$$q(z,\zeta)+\frac{1}{m+1}zq_z'(z,\zeta)\prec\prec p(z,\zeta)+\frac{1}{m+1}zp_z'\left(z,\zeta\right), \quad z\in U,\ \zeta\in\overline{U}.$$

Using Lemma 2 for n = 1 and $\gamma = m + 1$, we have

$$q(z,\zeta) \prec \prec p(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}, \quad \text{i.e.}$$

$$q(z,\zeta) = \frac{m+1}{z^{m+1}} \int_0^z h(t,\zeta) t^m dt \prec \prec \left(SR^m f(z,\zeta) \right)', \quad z \in U, \ \zeta \in \overline{U},$$

and q is the best subordinant.

References

- [1] A. Alb Lupas, G.I. Oros, Gh. Oros, On special strong differential subordinations using Sălăgean and Ruscheweyh operators, Journal of Computational Analysis and Applications, Vol. 14, No. 2, 2012, 266-270.
- [2] A. Alb Lupas, A note on strong differential subordinations using Sălăgean and Ruscheweyh operators, Libertas Mathematica, tomus XXXI (2011), 15-21.
- [3] A. Alb Lupas, On special strong differential superordinations using Sălăgean and Ruscheweyh operators, Archimedes Journal of Mathematics, 1(2011) (to appear).
- [4] G.I. Oros, Strong differential superordination, Acta Universitatis Apulensis, Nr. 19, 2009, 101-106.
 - [5] G.I. Oros, On a new strong differential subordination, (to appear).

Alb Lupas Alina

Department of Mathematics

University of Oradea

str. Universității nr. 1, 410087, Oradea, Romania

email: dalb@uoradea.ro