
Acta Universitatis Apulensis
ISSN: 1582-5329

No. 32/2012
pp. 17-30

STABILITY BY KRASNOSELSKII FIXED POINT THEOREM FOR
NEUTRAL NONLINEAR DIFFERENTIAL EQUATIONS WITH

VARIABLE DELAYS
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Abstract. We use Krasnoselskii’s fixed point theorem to obtain bounded-
ness and stability results about the zero solution of a neutral nonlinear differential
equation with variable delays. A stability theorem with a necessary and sufficient
condition is given. The results obtained here extend and improve the works of C.
H. Jin and J. W. Luo [12] and also those of [5, 9, 15]. In the end we provide an
example to illustrate our claim.
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1. Introduction

Certainly, the Liapunov direct method has been, for more than 100 years, the
main tool for the study of stability properties of ordinary, functional and partial
differential equations. Nevertheless, the application of this method to problems of
stability in differential equations with delay has encountered serious difficulties if
the delay is unbounded or if the equation has unbounded terms [3−5]. Recently, T.
A. Burton and T. Furumochi, B. Zhang and others investigators noticed that some
of these difficulties vanish or might be overcome by means of fixed point theory (see
[1− 13, 15]). The fixed point theory does not only solve the problem on stability
but has a significant advantage over Liapunov’s direct method. The conditions of
the former are often averages but those of the latter are usually pointwise (see [3]).

In this paper we consider the neutral nonlinear differential equation with variable
delays

x′ (t) = −a (t)x (t− r1 (t)) +
d

dt
Q (t, x (t− r1 (t)))

+ c (t)F (x (t− r1 (t)) , x (t− r2 (t))) + b (t)G (xγ (t− r2 (t))) , (1.1)
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with the initial condition

x (t) = ψ (t) for t ∈ [m (0) , 0] ,

where ψ ∈ C ([m (0) , 0] ,R), mj (0) = inf {t− rj (t) , t ≥ 0}, m (0) = min{mj (0) ,
j = 1, 2}, γ ∈ (0, 1) and γ is a quotient with odd positive integer denominator.
Throughout this paper we assume that a, b, c ∈ C (R+,R) , and r1 ∈ C1 (R+,R+) ,
r2 ∈ C (R+,R+) with t − rj (t) → ∞ as t → ∞, j = 1, 2 . The functions
G (x) , Q (t, x) and F (x, y) are locally Lipschitz continuous in x, x and in x and
y, respectively. That is, there are positive constants L1, L2, L3, L4 so that if
|x| , |y| , |z| , |w| ≤ 1 then

|G (x)−G (y)| ≤ L1 |x− y| , |Q (t, x)−Q (t, y)| ≤ L2 |x− y| ,
|F (x, y)− F (z, w)| ≤ L3 |x− z|+ L4 |y − w| .

(1.2)

We also assume that
G (0) = Q (t, 0) = F (0, 0) = 0. (1.3)

Our purpose here is to give, by using Krasnoselskii fixed point theorem, bounded-
ness and stability results for the nonlinear neutral differential equation with variable
delays (1.1).

Special cases of equation (1.1) have been previously considered and studied under
various conditions. Particularly, T. A. Burton in [5] and B. Zhang in [15] have
investigated the boundedness and stability of the linear equation

x′ (t) = −a (t)x (t− r1 (t)) .

In [9], T. A. Burton and T. Furumochi have studied the boundedness and the asymp-
totic stability by using Krasnoselskii fixed point theorem for the following equation

x′ (t) = −a (t)x (t− r1) + b (t)x
1
3 (t− r2 (t)) ,

with r1 ≥ 0 is a constant and a ∈ C (R+, (0,∞)) . In the case γ = 1/3, G (x) = x,
Q (t, x) = 0, and c (t) = 0, C. H. Jin and J. W. Luo in [12] studied, by means of
Krasnoselskii’s fixed point theorem, the boundedness and the stability of the zero
solution, under appropriate conditions, of the following equation

x′ (t) = −a (t)x (t− r1 (t)) + b (t)x
1
3 (t− r2 (t)) ,

and generalized the results claimed previously by [5, 9, 15].
In Section 2, we present the inversion of neutral nonlinear differential equation

(1.1) and Krasnoselskii’s fixed point theorem. For details on Krasnoselskii theorem
we refer the reader to [3, 14]. We present our main results on stability in Section 3
and at the end we provide an example to illustrate our claim.
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2. Inversion of equation(1.1)

We have to invert equation (1.1) . For this, we use the variation of parameter
formula and rewrite the equation as an integral equation suitable for Krasnoselskii
theorem.

Lemma 2.1. Let g : [m (0) ,∞) → R+ be an arbitrary continuous function.
Then x is a solution of (1.1) if and only if

x (t) =

(
x (0)−Q (0, x (−r1 (0)))−

∫ 0

−r1(0)
g (u)x (u) du

)
e−

∫ t
0 g(u)du

+Q (t, x (t− r1 (t))) +

∫ t

t−r1(t)
g (u)x (u) du

−
∫ t

0
e−

∫ t
s g(u)dug (s)

(∫ s

s−r1(s)
g (u)x (u) du

)
ds

+

∫ t

0
e−

∫ t
s g(u)du

[
g (s− r1 (s))

(
1− r′1 (s)

)
− a (s)

]
x (s− r1 (s)) ds

−
∫ t

0
e−

∫ t
s g(u)duQ (s, x (s− r1 (s))) g (s) ds

+

∫ t

0
e−

∫ t
s g(u)duc (s)F (x (s− r1 (s)) , x (s− r2 (s))) ds

+

∫ t

0
e−

∫ t
s g(u)dub (s)G (xγ (s− r2 (s))) ds. (2.1)

Proof. Let x be a solution of (1.1) . Rewrite equation (1.1) as

d

dt
{x (t)−Q (t, x (t− r1 (t)))}

= −g (t) {x (t)−Q (t, x (t− r1 (t)))}

+
d

dt

∫ t

t−r1(t)
g (s)x (s) ds

+
[
g (t− r1 (t))

(
1− r′1 (t)

)
− a (t)

]
x (t− r1 (t))

− g (t)Q (t, x (t− r1 (t)))

+ c (t)F (x (t− r1 (t)) , x (t− r2 (t)))

+ b (t)G (xγ (t− r2 (t))) .

Multiply both sides of the above equation by e
∫ t
0 g(s)ds and then integrate from 0 to

19



A. Ardjouni and A. Djoudi - Stability by Krasnoselskii fixed point theorem ...

t to obtain

x (t) = (x (0)−Q (0, x (−r1 (0)))) e−
∫ t
0 g(s)ds +Q (t, x (t− r1 (t)))

+

∫ t

0
e−

∫ t
s g(u)dud

(∫ s

s−r1(s)
g (u)x (u) du

)

+

∫ t

0
e−

∫ t
s g(u)du

[
g (s− r1 (s))

(
1− r′1 (s)

)
− a (s)

]
x (s− r1 (s)) ds

−
∫ t

0
e−

∫ t
s g(u)duQ (s, x (s− r1 (s))) g (s) ds

+

∫ t

0
e−

∫ t
s g(u)duc (s)F (x (s− r1 (s)) , x (s− r2 (s))) ds

+

∫ t

0
e−

∫ t
s g(u)dub (s)G (xγ (s− r2 (s))) ds. (2.2)

By performing an integration by parts, we have∫ t

0
e−

∫ t
s g(u)dud

(∫ s

s−r1(s)
g (u)x (u) du

)

= −e−
∫ t
0 g(u)du

∫ 0

−r1(0)
g (u)x (u) du+

∫ t

t−r1(t)
g (u)x (u) du

−
∫ t

0
e−

∫ t
s g(u)dug (s)

(∫ s

s−r1(s)
g (u)x (u) du

)
ds. (2.3)

Finally, substituting (2.3) into (2.2) ends the proof.
Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables

us to prove the stability of the zero solution. For its proof we refer the reader to
[3, 14] .

Theorem 2.1. (Krasnoselskii) Let M be a closed convex nonempty subset of a
Banach space (S, ‖.‖) . Suppose that A and B map M into S such that

(i) x, y ∈M, implies Ax+By ∈M,
(ii) A is continuous and AM is contained in a compact set,
(iii) B is a contraction with constant α < 1.

Then there exists z ∈M with z = Az +Bz.

3. Stability by Krasnoselkii fixed point theorem

From existence theory, which can be found in [3], we conclude that for each
continuous initial function ψ : [m (0) , 0]→ R, there is a continuous solution x (t, 0, ψ)
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on an interval [0, T ) for some T > 0 and x (t, 0, ψ) = ψ (t) on [m (0) , 0] . For stability
definitions we refer to [3].

Theorem 3.1. Suppose conditions (1.2) and (1.3) hold, and that there are
constants α ∈ (0, 1), k1, k2 > 0 and a function g ∈ C ([m (0) ,∞) ,R+) such that for
|t2 − t1| ≤ 1, ∣∣∣∣∫ t2

t1

|b (u)| du
∣∣∣∣ ≤ k1 |t1 − t2| , (3.1)

and ∣∣∣∣∫ t2

t1

g (u) du

∣∣∣∣ ≤ k2 |t1 − t2| , (3.2)

while for t ≥ 0

L2 +

∫ t

t−r1(t)
g (u) du+

∫ t

0
e−

∫ t
s g(u)dug (s)

(∫ s

s−r1(s)
g (u) du

)
ds

+

∫ t

0
e−

∫ t
s g(u)du{

∣∣g (s− r1 (s))
(
1− r′1 (s)

)
− a (s)

∣∣
+ L2g (s) + (L3 + L4) |c (s)|+ L1 |b (s)|}ds ≤ α. (3.3)

If ψ is a given continuous initial function which is sufficiently small, then there is
a solution x (t, 0, ψ) of (1.1) on R+ with |x (t, 0, ψ)| ≤ 1.

Proof. For α ∈ (0, 1) , find an appropriate δ > 0 such that{∣∣∣∣∣1−
∫ 0

−r1(0)
g (u) du

∣∣∣∣∣+ L2

}
e−

∫ t
0 g(s)dsδ + α ≤ 1.

Let ψ : [m (0) , 0] → R be a given small bounded initial function with ‖ψ‖ < δ. In
the same context as in papers [3, 9, 12], let h : [m (0) ,∞)→ [1,∞) be any strictly
increasing and continuous function with h (m (0)) = 1, h (s) → ∞ as s → ∞, such
that

L2 +

∫ t

t−r1(t)
g (u)h (u) /h (t) du

+

∫ t

0
e−

∫ t
s g(u)dug (s)

(∫ s

s−r1(s)
g (u)h (u) /h (t) du

)
ds

+

∫ t

0
e−

∫ t
s g(u)du

[
{
∣∣g (s− r1 (s))

(
1− r′1 (s)

)
− a (s)

∣∣
+L2g (s) + L3 |c (s)|}h (s− r1 (s)) + L4 |c (s)|h (s− r2 (s))] /h (t) ds ≤ α. (3.4)
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Let (S, |·|h) be the Banach space of continuous ϕ : [m (0) ,∞)→ R with

|ϕ|h := sup
t≥m(0)

|ϕ (t) /h (t)| <∞,

and define the set Sψ by

Sψ = {ϕ ∈ S : |ϕ (t)| ≤ 1 for t ∈ [m (0) ,∞) and ϕ (t) = ψ (t) if t ∈ [m (0) , 0]} .

Define the mappings A,B : Sψ → Sψ by

(Aϕ) (t) =

∫ t

0
e−

∫ t
s g(u)dub (s)G (ϕγ (s− r2 (s))) ds, (3.5)

and

(Bϕ) (t) =

(
x (0)−Q (0, ϕ (−r1 (0)))−

∫ 0

−r1(0)
g (u)ϕ (u) du

)
e−

∫ t
0 g(s)ds

+Q (t, ϕ (t− r1 (t))) +

∫ t

t−r1(t)
g (u)ϕ (u) du

−
∫ t

0
e−

∫ t
s g(u)dug (s)

(∫ s

s−r1(s)
g (u)ϕ (u) du

)
ds

+

∫ t

0
e−

∫ t
s g(u)du

[
g (s− r1 (s))

(
1− r′1 (s)

)
− a (s)

]
ϕ (s− r1 (s)) ds

−
∫ t

0
e−

∫ t
s g(u)duQ (s, ϕ (s− r1 (s))) g (s) ds

+

∫ t

0
e−

∫ t
s g(u)duc (s)F (ϕ (s− r1 (s)) , ϕ (s− r2 (s))) ds. (3.6)

That A maps Sψ into itself can be deduced from condition (3.3).
We now show that ϕ, φ ∈ Sψ implies that Aϕ + Bφ ∈ Sψ. When doing this we

see that also B maps Sψ into itself by letting ϕ = 0 in the preceding sum. Now, let
‖·‖ be the supremum norm on [m (0) ,∞) of ϕ ∈ Sψ if ϕ is bounded. Note that if
ϕ, φ ∈ Sψ then

|(Aϕ) (t) + (Bφ) (t)|

≤

{∣∣∣∣∣1−
∫ 0

−r1(0)
g (u) du

∣∣∣∣∣+ L2

}
e−

∫ t
0 g(s)ds ‖ψ‖+ L2 ‖φ‖+ ‖φ‖

∫ t

t−r1(t)
g (u) du

+ ‖φ‖
∫ t

0
e−

∫ t
s g(u)dug (s)

(∫ s

s−r1(s)
g (u) du

)
ds
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+ ‖φ‖
∫ t

0
e−

∫ t
s g(u)du

{∣∣g (s− r1 (s))
(
1− r′1 (s)

)
− a (s)

∣∣} ds
+ ‖φ‖

∫ t

0
e−

∫ t
s g(u)duL2g (s) ds+ ‖φ‖

∫ t

0
e−

∫ t
s g(u)du (L3 + L4) |c (s)| ds

+ ‖ϕ‖γ
∫ t

0
e−

∫ t
s g(u)duL1 |b (s)| ds

≤

{∣∣∣∣∣1−
∫ 0

−r1(0)
g (u) du

∣∣∣∣∣+ L2

}
e−

∫ t
0 g(s)dsδ + α ≤ 1.

Next, we show that ASψ is equicontinuous. If ϕ ∈ Sψ and 0 ≤ t1 < t2 with
t2 − t1 < 1, then

|(Aϕ) (t2)− (Aϕ) (t1)|

=

∣∣∣∣∫ t2

0
e−

∫ t2
s g(u)dub (s)G (ϕγ (s− r2 (s))) ds

−
∫ t1

0
e−

∫ t1
s g(u)dub (s)G (ϕγ (s− r2 (s))) ds

∣∣∣∣
≤
∣∣∣∣∫ t2

t1

e−
∫ t2
s g(u)dub (s)G (ϕγ (s− r2 (s))) ds

∣∣∣∣
+

∣∣∣∣∫ t1

0

[
e−

∫ t2
s g(u)du − e−

∫ t1
s g(u)du

]
b (s)G (ϕγ (s− r2 (s))) ds

∣∣∣∣
≤ L1

∫ t2

t1

e−
∫ t2
s g(u)dud

(∫ s

t1

|b (s)| ds
)

+ L1

∣∣∣e− ∫ t2
s g(u)du − e−

∫ t1
s g(u)du

∣∣∣ e∫ t1
0 g(u)du

∫ t1

0
e−

∫ t1
s g(u)du |b (s)| ds

≤ L1

∫ t2

t1

|b (u)| du
(

1 +

∫ t2

t1

e−
∫ t2
s g(u)dug (s) ds

)
+ α

∣∣∣e− ∫ t2
t1
g(u)du − 1

∣∣∣
≤ 2L1

∫ t2

t1

|b (u)| du+ α

∣∣∣∣∫ t2

t1

g (u) du

∣∣∣∣ ≤ (2L1k1 + αk2) |t2 − t1| ,

by (1.2), (1.3) and (3.1) − (3.3) . In the space (S, |·|h) , the set ASψ is uniformly
bounded and equicontinuous. Hence by Ascoli-Arzela’s theorem ASψ resides in a
compact set.

Now we show that B is a contraction with respect to the norm |·|h with constant
α. Indeed,

|(Bφ1) (t)− (Bφ2) (t)| /h (t)

≤ |Q (t, φ1 (t− r1 (t)))−Q (t, φ2 (t− r1 (t)))| /h (t)

23



A. Ardjouni and A. Djoudi - Stability by Krasnoselskii fixed point theorem ...

+

∫ t

t−r1(t)
g (u) |φ1 (u)− φ2 (u)| /h (t) du

+

∫ t

0
e−

∫ t
s g(u)dug (s)

(∫ s

s−r1(s)
g (u) |φ1 (u)− φ2 (u)| /h (t) du

)
ds

+

∫ t

0
e−

∫ t
s g(u)du

∣∣g (s− r1 (s))
(
1− r′1 (s)

)
− a (s)

∣∣
× |φ1 (s− r1 (s))− φ2 (s− r1 (s))| /h (t) ds

+

∫ t

0
e−

∫ t
s g(u)dug (s) |Q (s, φ1 (s− r1 (s)))−Q (s, φ2 (s− r1 (s)))| /h (t) ds

+

∫ t

0
e−

∫ t
s g(u)du |c (s)| |F (φ1 (s− r1 (s)) , φ1 (s− r2 (s)))

−F (φ2 (s− r1 (s)) , φ2 (s− r2 (s)))| /h (t) ds

≤ |φ1 − φ2|h

{
L2 +

∫ t

t−r1(t)
g (u)h (u) /h (t) du

+

∫ t

0
e−

∫ t
s g(u)dug (s)

(∫ s

s−r1(s)
g (u)h (u) /h (t) du

)
ds

+

∫ t

0
e−

∫ t
s g(u)du

[
{
∣∣g (s− r1 (s))

(
1− r′1 (s)

)
− a (s)

∣∣
+L2g (s) + L3 |c (s)|}h (s− r1 (s)) + L4 |c (s)|h (s− r2 (s))] /h (t) ds}
≤ α |φ1 − φ2|h ,

by (1.2) and (3.4) .
Finally, we need to show that A is continuous. Let ε > 0 be given and let ϕ ∈ Sψ.

Now xγ is uniformly continuous on [−1, 1] so for a fixed T > 0 with 4/h (T ) < ε
there is a η > 0 such that |x1 − x2| < ηh (T ) implies |xγ1 − x

γ
2 | < ε/2. Thus for

|ϕ (t)− φ (t)| < ηh (t) and for t > T we have

|(Aϕ) (t)− (Aφ) (t)| /h (t)

≤ (1/h (t))

∫ t

0
e−

∫ t
s g(u)du |b (s)| |G (ϕγ (s− r2 (s)))−G (φγ (s− r2 (s)))| ds

≤ L1 (1/h (t))

∫ t

0
e−

∫ t
s g(u)du |b (s)| |ϕγ (s− r2 (s))− φγ (s− r2 (s))| ds

≤ L1 (1/h (t))

{∫ T

0
e−

∫ t
s g(u)du |b (s)| |ϕγ (s− r2 (s))− φγ (s− r2 (s))| ds
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+2

∫ t

T
|b (s)| e−

∫ t
s g(u)duds

}
≤ L1 {(αε) / (2h (t)) + 2α/h (T )} ≤ L1 {(αε/2) + (2α/h (T ))} < L1αε.

The conditions of Krasnoselskii’s theorem are satisfied with M = Sψ and there
is a fixed point which solve our problem. This completes the proof.

Letting r1 (t) = r1, a constant, and g (t) = a (t+ r1) with a ∈ C (R+,R+) , we
have

Corollary 3.1. Let (1.2), (1.3) , (3.1) and (3.2) hold and (3.3) be replaced by

L2 +

∫ t

t−r1
a (u+ r1) du+

∫ t

0
e−

∫ t
s a(u+r1)dua (s+ r1)

(∫ s

s−r1
a (u+ r1) du

)
ds

+

∫ t

0
e−

∫ t
s a(u+r1)du (L2a (s+ r1) + (L3 + L4) |c (s)|+ L1 |b (s)|) ds ≤ α. (3.7)

If ψ is a given continuous initial function which is sufficiently small, then there is
a solution x (t, 0, ψ) of (1.1) on R+ with |x (t, 0, ψ)| ≤ 1.

Letting γ = 1/3, G (x) = x, Q (t, x) = 0 and c (t) = 0, we have
Corollary 3.2. Let (3.1) and (3.2) hold and (3.3) be replaced by∫ t

t−r1(t)
g (u) du+

∫ t

0
e−

∫ t
s g(u)dug (s)

(∫ s

s−r1(s)
g (u) du

)
ds

+

∫ t

0
e−

∫ t
s g(u)du

{∣∣g (s− r1 (s))
(
1− r′1 (s)

)
− a (s)

∣∣+ |b (s)|
}
ds ≤ α. (3.8)

If ψ is a given continuous initial function which is sufficiently small, then there is
a solution x (t, 0, ψ) of (1.1) on R+ with |x (t, 0, ψ)| ≤ 1.

Remark 3.1. The corollary 3.2 improves Theorem 2.1 in [12] .
Theorem 3.2. Let (1.2) , (1.3) and (3.1)− (3.3) hold and assume that∫ t

0
e−

∫ t
s g(u)du |b (s)| ds→ 0 as t→∞, (3.9)

If ψ is a given continuous initial function which is sufficiently small, then (1.1) has
a solution x (t, 0, ψ)→ 0 as t→∞ if and only if∫ t

0
g (s) ds→∞ as t→∞. (3.10)

Proof. First, suppose that (3.10) holds. We set

N = sup
t≥0

{
e−

∫ t
0 g(s)ds

}
. (3.11)
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All of the calculations in the proof of Theorem 3.1 hold with h (t) = 1 when |·|h is
replaced by the supremum norm ‖·‖ .
For ϕ ∈ Sψ, (1.2) and (1.3) implies

|(Aϕ) (t)| ≤ L1

∫ t

0
e−

∫ t
s g(u)du |b (s)| ds =: q (t) , (3.12)

where q (t)→ 0 as t→∞ by (3.9) .
Add to Sψ the condition that ϕ ∈ Sψ implies that ϕ (t) → 0 as t → ∞. We can

see that for ϕ ∈ Sψ then (Aϕ) (t) → 0 as t → ∞ by (3.12) , and (Bφ) (t) → 0 as
t→∞ by (1.3) and (3.10) . Since ASψ has been shown to be equicontinuous, A maps
Sψ into a compact subset of Sψ (see [3] , Theorem 1.2.2 on p. 20). By Krasnoselskii’s
theorem there is an x ∈ Sψ with Ax+Bx = x. As x ∈ Sψ, x (t)→ 0 as t→∞.

Conversely, suppose (3.10) fails. Then there exists a sequence {tn} , tn → ∞
as n → ∞ such that lim

n→∞

∫ tn
0 g (u) du = l for some l ∈ R+. We may also choose a

positive constant J satisfying

−J ≤
∫ tn

0
g (s) ds ≤ J,

for all n ≥ 1. To simplify the expression, we define

ω (s) =
∣∣g (s− r1 (s))

(
1− r′1 (s)

)
− a (s)

∣∣+ (L3 + L4) |c (s)|

+ L1 |b (s)|+ g (s)

(
L2 +

∫ s

s−r1(s)
g (u) du

)
,

for all s ≥ 0. By (3.3) , we have∫ tn

0
e−

∫ tn
s g(u)duω (s) ds ≤ α.

This yields ∫ tn

0
e
∫ s
0 g(u)duω (s) ds ≤ αe

∫ tn
0 g(u)du ≤ J.

The sequence
{∫ tn

0 e
∫ s
0 g(u)duω (s) ds

}
is bounded, so there exists a convergent sub-

sequence. For brevity of notation, we may assume

lim
n→∞

∫ tn

0
e
∫ s
0 g(u)duω (s) ds = λ,
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for some λ ∈ R+ and choose a positive integer m so large that∫ tn

tm

e
∫ s
0 g(u)duω (s) ds < δ0/4N,

for all n ≥ m, where δ0 > 0 satisfies 2δ0Ne
J + α ≤ 1.

We now consider the solution x (t) = x (t, tm, ψ) of (1.1) with ψ (tm) = δ0 and
|ψ (s)| ≤ δ0 for s ≤ tm. We may choose ψ so that |x (t)| ≤ 1 for t ≥ tm and

ψ (tm)−Q (tm, ψ (tm − r1 (tm)))−
∫ tm

tm−r1(tm)
g (s)ψ (s) ds ≥ 1

2
δ0.

It follows from (3.5) and (3.6) with x (t) = (Ax) (t) + (Bx) (t) that for n ≥ m∣∣∣∣∣x (tn)−Q (tn, x (tn − r1 (tn)))−
∫ tn

tn−r1(tn)
g (s)x (s) ds

∣∣∣∣∣
≥ 1

2
δ0e
−

∫ tn
tm

g(u)du −
∫ tn

tm

e−
∫ tn
s g(u)duω (s) ds

=
1

2
δ0e
−

∫ tn
tm

g(u)du − e−
∫ tn
0 g(u)du

∫ tn

tm

e
∫ s
0 g(u)duω (s) ds

= e−
∫ tn
tm

g(u)du

(
1

2
δ0 − e−

∫ tm
0 g(u)du

∫ tn

tm

e
∫ s
0 g(u)duω (s) ds

)
≥ e−

∫ tn
tm

g(u)du

(
1

2
δ0 −N

∫ tn

tm

e
∫ s
0 g(u)duω (s) ds

)
≥ 1

4
δ0e
−

∫ tn
tm

g(u)du ≥ 1

4
δ0e
−2J > 0. (3.13)

On the other hand, if the solution of (1.1) x (t) = x (t, tm, ψ) → 0 as t → ∞, since
tn − r1 (tn)→∞ as n→∞ and (3.3) holds, we have

x (tn)−Q (tn, x (tn − r1 (tn)))−
∫ tn

tn−r1(tn)
g (s)x (s) ds→ 0 as n→∞,

which contradicts (3.13). Hence condition (3.10) is necessary in order that (1.1) has
a solution x (t, 0, ψ)→ 0 as t→∞. The proof is complete.

Letting r1 (t) = r1, a constant, and g (t) = a (t+ r1) with a ∈ C (R+,R+) , we
have

Corollary 3.3. Let (1.2) , (1.3) , (3.1) , (3.2) and (3.9) hold and (3.3) be replaced
by (3.7) . If ψ is a given continuous initial function which is sufficiently small, then
(1.1) has a solution x (t, 0, ψ)→ 0 as t→∞ if and only if∫ t

0
g (s) ds→∞ as t→∞.
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For the case γ = 1/3, G (x) = x, Q (t, x) = 0 and c (t) = 0, we have
Corollary 3.4. Let (3.1) , (3.2) and (3.9) hold and (3.3) be replaced by (3.8) .

If ψ is a given continuous initial function which is sufficiently small, then (1.1) has
a solution x (t, 0, ψ)→ 0 as t→∞ if and only if∫ t

0
g (s) ds→∞ as t→∞.

Remark 3.2. The corollary 3.4 improves Theorem 2.2 in [12] .
Example 3.1. Let

x′ (t) = −a (t)x (t− r1 (t)) +
d

dt
Q (t, x (t− r1 (t)))

+ c (t)F (x (t− r1 (t)) , x (t− r2 (t))) + b (t)G (xγ (t− r2 (t))) , (3.14)

where γ = 1/3, G (x) = sin (x) , Q (t, x) = (1/16) sin (x) , F (x, y) = sin (x+ y) ,

r1 (t) = 0.172t, r2 ∈ C (R+,R+) , a (t) = 0.928/ (0.828t+ 1) , b (t) = 1/
(

8 (t+ 1)2
)
,

c (t) = sin (t) / (16t+ 16) .
Then for any small continuous initial function ψ, every solution x (t, 0, ψ) of the
nonlinear neutral differential equation (3.14) goes to 0 as t→∞.

Clearly G (0) = Q (t, 0) = F (0, 0) = 0 and G (x) , Q (t, x) and F (x, y) are locally
Lipschitz continuous in x, x and in x and y, respectively. Let |x| , |y| , |z| , |w| ≤ 1,
then

|G (x)−G (y)| = |sin (x)− sin (y)| ≤ |x− y| ,

and
|Q (t, x)−Q (t, y)| = (1/16) |sin (x)− sin (y)| ≤ (1/16) |x− y| ,

and

|F (x, y)− F (x, y)| = |sin (x+ y)− sin (z + w)| ≤ |x− z|+ |y − w| .

Choosing g (t) = 1/ (t+ 1) , we have∫ t
t−r1(t) g (s) ds =

∫ t
0.828t 1/ (s+ 1) ds = ln

(
t+1

0.828t+1

)
< 0.189,∫ t

0 e
−

∫ t
s g(u)dug (s)

(∫ s
s−r1(s) g (u) du

)
ds < 0.189,∫ t

0
e−

∫ t
s g(u)du

∣∣g (s− r1 (s))
(
1− r′1 (s)

)
− a (s)

∣∣ ds
<

0.1

0.828

∫ t

0
e−

∫ t
s

1
u+1

du 1

s+ 1
ds < 0.121,∫ t

0 e
−

∫ t
s g(u)duL2g (s) ds < 0.063,
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∫ t
0 e
−

∫ t
s g(u)du (L3 + L4) |c (s)| ds ≤ 0.125,∫ t

0 e
−

∫ t
s g(u)duL1 |b (s)| ds ≤ 0.125.

Let α = 0.063 + 0.189 + 0.189 + 0.121 + 0.063 + 0.125 + 0.125 = 0.875 < 1, then by
Theorem 3.2, every solution x (t, 0, ψ) of (3.14) with small continuous initial function
ψ, goes to zero as t→∞.
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