ON A CLASS OF MODULAR NUMERICAL SEMIGROUPS

Sedat Ilhan

Abstract. In this study, we give some results about $S=S\left(a, a^{2}\right)$ modular numerical semigroups, where $a \geq 2$ and a is a integer.

2005 Mathematics Subject Classification: 20M14
Keywords and phrases: Numerical semigroups, Modular semigroups, Gaps, Fundamental gaps, Frobenius number.

1. Introduction

Let \mathbb{Z} and \mathbb{N} denote the set of integers and nonnegative integers, respectively. A numerical semigroup S is subset of \mathbb{N} that is closed under addition, $0 \in S$, and generates \mathbb{Z} as a group. There exist elements of S, say $n_{0}, n_{1}, \cdots, n_{p}$ such that $n_{0}<n_{1}<\cdots<n_{p}$ and

$$
S=\left\langle n_{0}, n_{1}, \cdots, n_{p}\right\rangle=\left\{\sum_{i=0}^{p} k_{i} n_{i} \quad: k_{i} \in \mathbb{N}\right\}
$$

and

$$
\text { g.c.d. }\left(n_{0}, n_{1}, \cdots, n_{p}\right)=1 \Leftrightarrow \operatorname{Card}(\mathbb{N} \backslash S)<\infty
$$

by [1].
The Frobenius number of S, denoted by $g(S)$, is the largest integer not in S. That is, $g(S)=\max \{x \in \mathbb{Z}: x \notin S\}$. Thus, a numerical semigroup S can be expressed as $S=\left\{0, n_{0}, n_{1}, \cdots, g(S)+1 \rightarrow \cdots\right\}$ where " \rightarrow " means that every integer is greater then $g(S)+1$ belongs to S. We say that a numerical semigroup S is symmetric if for every $x \in \mathbb{Z} \backslash S$ we have $g(S)-x \in S$ by [1].

The elements of $\mathbb{N} \backslash S$, denoted by $H(S)$, are called gaps of S. A gap x of a numerical semigroup S is fundamental if $\{2 x, 3 x\} \subset S$. Denote by $F H(S)$ the set of fundamental gaps of S by [2]. Let $a, b \in \mathbb{N}$ and $b \neq 0$. We denote by $a \bmod b$ the remainder of division of a by b.

A Modular Diophantine inequality is an expression of the form $a x \bmod b \leq$ x. We say that a numerical semigroup S is modular with modulus b and factor a if $S=\{x \in \mathbb{N}: a x \bmod b \leq x\}$ by [3]. In this study, we will show that the modular numerical semigroup $S=S\left(a, a^{2}\right)$ will be rewritten as $S=$ $\langle a, a+1\rangle$, for $a \geq 2$ and a is a integer. In additional, for S modular numerical semigroup, we calculate Frobenius number, the gaps and fundamental gaps of S, in a different way.

2. Main Results

In this section, we will give some results for the theory of modular numerical semigroups generated by two elements.

Lemma 1. Let $S=S\left(a, a^{2}\right)$ be a modular numerical semigroup. If $x \neq$ $0, x \in S$, then $x \geq a$ and $a \in \mathbb{N}$.

Proof. We suppose that $x<a$ for $x \in S$. Then there exists $r>0, r \in \mathbb{N}$ such that $a=x+r$. Thus, we write that $a x=x^{2}+x r$ and $\left(\left(x^{2}+x r\right) \bmod \left(x^{2}+\right.\right.$ $\left.\left.r^{2}+2 x r\right)\right)=x^{2}+x r \leq x$, for $x \in S=S\left(a, a^{2}\right)$. This is a contradiction.

Theorem 2. If $S=S\left(a, a^{2}\right)$ is a modular numerical semigroup,then $S=<a, a+1>$ and S is symmetric, for $a \geq 2$ and $a \in \mathbb{N}$.

Proof. Let $x \in S=S\left(a, a^{2}\right)$. From Lemma 1, $x \geq a$. Then there exist $p, q \in \mathbb{N}$ such that $x=a p+a q+q$. In this case, we get $x \in<a, a+1>$. Conversely, if $y \in\langle a, a+1>$, then we write $y=a k+(a+1) n$ for $k, n \in \mathbb{N}$. Thus, we find that $y \in S\left(a, a^{2}\right)$ since $a y \bmod a^{2}=a n \bmod a^{2} \leq(a k+n)+a n=$ y. Furthermore, the modular numerical semigroup $S=S\left(a, a^{2}\right)=<a, a+1>$ is symmetric since S is generated by two elements [see 5].

Lemma 3. Let $S=S\left(a, a^{2}\right)=<a, a+1>$ be a modular numerical semigroup, for $a \geq 2$ and $a \in \mathbb{N}$. Then, $\sharp(H(S))=\frac{a^{2}-a}{2}$.

Proof. We obtain that $\sharp(H(S))=\frac{(a-1)((a+1)-1)}{2}=\frac{a^{2}-a}{2}$ since S is generated by two elements [see 4].

TheOrem 4. Let $S=S\left(a, a^{2}\right)=<a, a+1>$ be a modular numerical semigroup, for $a \geq 2$ and $a \in \mathbb{N}$. Then, $g(S))=a^{2}-a-1$.

Proof. Since the modular numerical semigroup $S=S\left(a, a^{2}\right)=<a, a+1>$ is symmetric, we can write that $\sharp(H(S))=\frac{g(S)+1}{2}$ [see 4]. Thus, the proof is obtained.

Theorem 5. Let $S=S\left(a, a^{2}\right)=<a, a+1>$ be a modular numerical semigroup, for $a \geq 4$ and $a \in \mathbb{N}$. If $x \in F H(S)$, then $x>a$.

Proof. If $x=a$, then $x \in S$. This is in contradiction with the definition of Fundamental gaps of S. If $x<a$, then we write $a=x+r, r \in \mathbb{N}$. In this case, we obtain that $x^{2}+x r>x$. This is a contradiction, since $a \in S, x \notin S$.

Corollary 6. Let $S=S\left(a, a^{2}\right)=<a, a+1>$ be a modular numerical semigroup, for $a \geq 2$.and $a \in \mathbb{N}$. If a is odd, then $\sharp(F H(S))=\frac{\left(a^{2}-1\right)}{4}-$ $\left\lceil\frac{a+1}{6}\right\rceil\left\lceil\frac{a-3}{6}\right\rceil$. (For a rational number x, we define $\lceil x\rceil=\min \{z \in \mathbb{Z}: x \leq z\}$).

Proof. If we put $n_{2}=a+1$ in [4, Corollary 11(a)], then the proof is obtained.

LEMMA 7. Let $S_{1}=S_{1}\left(a, a^{2}\right)=<a, a+1>$ and $S_{2}=S_{2}\left(b, b^{2}\right)=<$ $b, b+1>$ be two modular numerical semigroups for $a, b \in \mathbb{N}$. If $a \mid b$ then $S_{2} \subseteq S_{1}$.

Proof. This result follows from the fact that S_{1} and S_{2} are modular numerical semigroups.

Corollary 8. Let $S_{1}=S_{1}\left(a, a^{2}\right)=<a, a+1>$ and $S_{2}=S_{2}\left(b, b^{2}\right)=<$ $b, b+1>$ be two modular numerical semigroups for $a, b \in \mathbb{N}$. If $a \mid b$ then $H\left(S_{1}\right) \subseteq H\left(S_{2}\right)$ and $g\left(S_{1}\right) \leq g\left(S_{2}\right)$.

Proof. This follows immediately from the definitions of gaps and Frobenius number of S.

Example 9. Let

$$
S=S(3,9)=\{x \in \mathbb{N}: 3 x \bmod 9 \leq x\}=\{0,3,4,6,7, \rightarrow \ldots\}=<3,4>
$$

By Lemma 3, Theorem 4 and Corollary 6, we obtain that $\sharp(H(S))=3, g(S)=$ 5 and $\sharp(F H(S))=2$. In fact,one can easily compute $H(S)=\{1,2,5\}$ and $F H(S)=\{2,5\}$.

Example 10. Let

$$
S_{1}=S_{1}(3,9)=\{x \in \mathbb{N}: 3 x \bmod 9 \leq x\}=\{0,3,4,6,7, \rightarrow \ldots\}=<3,4>
$$

and

$$
\begin{gathered}
S_{2}=S_{2}(6,36)=\{x \in \mathbb{N}: 6 x \bmod 36 \leq x\}= \\
\{0,6,7,12,13,14,18,19,20,21,24,25,26,27,28,30,31, \rightarrow \ldots\}=<6,7>
\end{gathered}
$$

be two modular numerical semigroups. We obtain that

$$
\sharp\left(H\left(S_{2}\right)\right)=15, g\left(S_{2}\right)=29
$$

by Lemma 3 and Theorem 4. In fact, we find sets of

$$
H\left(S_{2}\right)=\{1,2,3,4,5,8,9,10,11,15,16,17,22,23,29\}
$$

and

$$
F H\left(S_{2}\right)=\{9,10,15,16,17,22,23,29\},
$$

respectively. We find that $x>6$,for all $x \in F H\left(S_{2}\right)$. by Theorem 5. Thus, we write that $S_{2} \subseteq S_{1}, H\left(S_{1}\right) \subseteq H\left(S_{2}\right)$ and $g\left(S_{1}\right) \leq g\left(S_{2}\right)$ from Lemma 7, Corollary 8 and Example 9, respectively.

References

[1] V.Barucci, D.E. Dobbs, and M. Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analyticalle Irreducible Local Domains, Memoirs of the Amer. Math. Soc., vol.598, A.Math.Soc. (Providence, 1997).
[2] J.C. Rosales, P.A. Garcia-Sancez, J.I. Garcia-Garcia, J.A. Jimenez Madrid, Fundamental gaps in numerical Semigroups Journal of Pure and Applied Algebra, 189 (2004), 301-313.
[3] J.C. Rosales, P.A. Garcia-Sancez and J.M.Urbano-Blanco, Modular Diophantine Inequalities and Numerical Semigroups, Pacific journal of Mathematics,Vol.218,No 2 (2005),279-398.
[4] J.C. Rosales, Fundamental gaps of numerical semigroups generated by two elements, Linear Algebra and its applications, 405 (2005),200-208.
[5] R.Frberg, C.Gottlieb and R.Haggkvist, On numerical semigroups, Semigroup Forum, vol 35(1987), 63-83.

Author:

Sedat Ilhan
Department of Mathematics, Faculty of Science and Art, Dicle University, Diyarbakır 21280, Turkey
E-mail: sedati@dicle.edu.tr

