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1. Introduction

In this article we study the problem of the existence of solutions for the
Fredholm integral equation

x(t) =

∫ 1

0

K(t, s, x(s))ds, t ∈ [0, 1]. (1)

where the functions x,K have values in a locally convex space.
In paper [8] the above equations are studied using fixed point theorems for

self-maps. Our approach is based on the continuation method.
The results presented in this paper extend and complement those in [8]-[9].
We finish this section by stating the main result from [1] which will be used

in the next section.
For a map H : D × [0, 1] → X, where D ⊂ X, we will use the following

notations:

Σ = {(x, λ) ∈ D × [0, 1] : H(x, λ) = x},
S = {x ∈ D : H(x, λ) = x for some λ ∈ [0, 1]},
Λ = {λ ∈ [0, 1] : H(x, λ) = x for some x ∈ D}.

(2)
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Theorem 1.Let X be a set endowed with the separating gauge structures
P = {pα}α∈A and Qλ = {qλβ}β∈B for λ ∈ [0, 1]. Let D ⊂ X be P-sequentially
closed, H : D × [0, 1] → X a map, and assume that the following conditions
are satisfies:

(i) for each λ ∈ [0, 1], there exists a function ϕλ : B → B and aλ ∈ [0, 1)B,
aλ = {aλβ}β∈B such that

qλβ(H(x, λ), H(y, λ)) ≤ aλβq
λ
ϕλ(β)(x, y), (3)

∞∑
n=1

aλβa
λ
ϕλ(β)a

λ
ϕ2

λ(β)...a
λ
ϕn−1

λ (β)
qλϕn

λ(β)(x, y) <∞ (4)

for every β ∈ B and x, y ∈ D;
(ii) there exists ρ > 0 such that for each (x, λ) ∈ Σ, there is a β ∈ B with

inf{qλβ(x, y) : y ∈ X\D} > ρ; (5)

(iii) for each λ ∈ [0, 1], there is a function ψ : A → B and c ∈ (0,∞)A,
c = {cα}α∈A such that

pα(x, y) ≤ cαq
λ
ψ(α)(x, y) for all α ∈ A and x, y ∈ X; (6)

(iv) (X,P) is a sequentially complete gauge space;
(v) if λ ∈ [0, 1], x0 ∈ D, xn = H(xn−1, λ) for n = 1, 2, ..., and P-limn→∞ xn =

x, then H(x, λ) = x;
(vi) for every ε > 0, there exists δ = δ(ε) > 0 with

qλϕn
λ(β)(x,H(x, λ)) ≤ (1− aλϕn

λ(β))ε

for (x, µ) ∈ Σ, |λ− µ| ≤ δ, all β ∈ B, and n ∈ N.
In addition, assume that H0 := H(., 0) has a fixed point. Then, for each

λ ∈ [0, 1], the map Hλ := H(., λ) has a unique fixed point.

Remark 2.Notice that, by condition (ii) we have: for each (x, λ) ∈ Σ,
there is a β ∈ B such that the set

B(x, λ, β) = {y ∈ X : qλϕn
λ(β)(x, y) ≤ ρ, ∀n ∈ N} ⊂ D. (7)
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The proof of Theorem 1, in [1], shows that the contraction condition (3)
given on D, can be asked only on sets of the form (7), more exactely for
(x, λ) ∈ Σ and y ∈ B(x, λ, β).

2.Existence Results

This section contains existence results for the equation (1).

Theorem 3.Let E be a locally convex space, Hausdorff separated, complete
by sequences, with the topology defined by the saturated and sufficient set of
semi-norms {|.|α , α ∈ A} and let δ > 0 be a fixed number. Assume that the
following conditions are satisfied:

(1) K : [0, 1]2 × E → E is continuous;
(2) there exists r = {rα}α∈A such that, any solution x of the equation

x(t) = λ

∫ 1

0

K(t, s, x(s))ds, t ∈ [0, 1], (8)

for some λ ∈ [0, 1] satisfies |x(t)|α ≤ rα, for all t ∈ [0, 1] and α ∈ A;
(3) there exists {Lα}α∈A ∈ [0, 1)A such that

|K(t, s, x)−K(t, s, y)|α ≤ Lα |x− y|f(α) (9)

whenever α ∈ A,for all t, s ∈ [0, 1] and x, y ∈ Er where Er = {x ∈ E : there
exists α ∈ A such that |x|α ≤ rα + δ};

(4)
∞∑
n=0

LαLf(α)...Lfn(α) <∞ (10)

for every α ∈ A;
(5) for every α ∈ A and for each continuous function g : [0, 1] → E one

has
sup{|g(t)|fn(α) : t ∈ [0, 1], n = 0, 1, 2, ...} <∞;

(6) there exists C with 0 < C ≤
1− Lfn(α)

Mfn(α)

for all α ∈ A and n ∈ N, where

Mα := sup
t,s∈[0,1],

|x|f(α)≤rf(α)

|K(t, s, x)|α.
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Then problem (1) has a solution.

Notice that Mα <∞. Indeed, from (9) we have

|K(t, s, x)|α ≤ |K(t, s, x)−K(t, s, 0)|α + |K(t, s, 0)|α
≤ Lαrf(α) + max

t,s∈[0,1]
|K(t, s, 0)|α <∞

for all t, s ∈ [0, 1] and x ∈ E with |x|f(α) ≤ rf(α).
Proof. We shall apply Theorem 1. Let X = C([0, 1], X). For each α ∈ A

we define the map dα : X ×X → R+, by

dα(x, y) = max
t∈[0,1]

|x(t)− y(t)|α .

It is easy to show that dα is a pseudo-metric on X and the family {dα}α∈A
defines on X a gauge structure, separated and complete by sequences.

Here P = Qλ = {dα}α∈A for every λ ∈ [0, 1]. Let D be the closure in X of
the set

{x ∈ X : dα(x, 0) ≤ rα + δ for some α ∈ A}.

We define H : D × [0, 1] → X, by H(x, λ) = λA(x) , where

A(x)(t) =

∫ 1

0

K(t, s, x(s))ds.

With this notation all the assumptions (i)-(vi) of Theorem 1 are satisfied
and problem (1) has a solution.

For the detalies see the paper [2].
In Banach space, Theorem 3 becomes the following well-known result.

Corollary 4.Let (E, |.|) be a Banach space. Assume that the following
conditions are satisfied:

(1) K : [0, 1]2 × E → E is continuous;
(2) there exists r > 0 such that, any solution x of the equation

x(t) = λ

∫ 1

0

K(t, s, x(s))ds, t ∈ [0, 1], (11)

for some λ ∈ [0, 1] satisfies |x(t)| < r, for all t ∈ [0, 1] and any λ ∈ [0, 1];
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(3) there exists L ∈ [0, 1) such that

|K(t, s, x)−K(t, s, y)| ≤ L |x− y| (12)

for all t, s ∈ [0, 1] and x, y ∈ E with |x| , |y| ≤ r.
Then problem (1) has a solution.

Notice that an analogue result is true for Volterra integral equation

x(t) =

∫ t

0

K(t, s, x(s))ds, t ∈ [0, 1]. (13)

Theorem 5.Let E be a locally convex space, Hausdorff separated, complete
by the sequences, with the topology defined by the saturated and sufficient set
of semi-norms {|.|α , α ∈ A} and let δ > 0 be a fixed number. Assume that the
following conditions are satisfied:

(1) K : [0, 1]2 × E → E is continuous;
(2) there exists r = {rα}α∈A such that, any solution x of the equation

x(t) = λ

∫ t

0

K(t, s, x(s))ds t ∈ [0, 1]

for some λ ∈ [0, 1] satisfies |x(t)|α ≤ rα, for all t ∈ [0, 1] and α ∈ A;
(3) there exists {Lα}α∈A ∈ [0, 1)A such that

|K(t, s, x)−K(t, s, y)|α ≤ Lα |x− y|f(α)

whenever α ∈ A, for all t, s ∈ [0, 1] and x, y ∈ Er;
(4)

∑∞
n=0 LαLf(α)...Lfn(α) <∞, for every α ∈ A;

(5) for every α ∈ A and for each continuous function g : [0, 1] → E, one
has

sup{|g(t)|fn(α) : t ∈ [0, 1], n = 0, 1, 2, ...} <∞;

(6) there exists C with 0 < C ≤
1− Lfn(α)

Mfn(α)

, for all α ∈ A and n ∈ N,

where Mα := sup
t∈[0,1],

|x|f(α)≤rf(α)

|K(t, s, x)|α .

Then, the problem (13) has a solution.
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